// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
extern "C" {
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <libswscale/swscale.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
}
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/logging/log.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/host1x/host1x.h"
#include "video_core/host1x/nvdec.h"
#include "video_core/host1x/vic.h"
#include "video_core/memory_manager.h"
#include "video_core/textures/decoders.h"
namespace Tegra {
namespace Host1x {
namespace {
enum class VideoPixelFormat : u64_le {
RGBA8 = 0x1f,
BGRA8 = 0x20,
RGBX8 = 0x23,
YUV420 = 0x44,
};
} // Anonymous namespace
union VicConfig {
u64_le raw{};
BitField<0, 7, VideoPixelFormat> pixel_format;
BitField<7, 2, u64_le> chroma_loc_horiz;
BitField<9, 2, u64_le> chroma_loc_vert;
BitField<11, 4, u64_le> block_linear_kind;
BitField<15, 4, u64_le> block_linear_height_log2;
BitField<32, 14, u64_le> surface_width_minus1;
BitField<46, 14, u64_le> surface_height_minus1;
};
Vic::Vic(Host1x& host1x_, std::shared_ptr<Nvdec> nvdec_processor_)
: host1x(host1x_),
nvdec_processor(std::move(nvdec_processor_)), converted_frame_buffer{nullptr, av_free} {}
Vic::~Vic() = default;
void Vic::ProcessMethod(Method method, u32 argument) {
LOG_DEBUG(HW_GPU, "Vic method 0x{:X}", static_cast<u32>(method));
const u64 arg = static_cast<u64>(argument) << 8;
switch (method) {
case Method::Execute:
Execute();
break;
case Method::SetConfigStructOffset:
config_struct_address = arg;
break;
case Method::SetOutputSurfaceLumaOffset:
output_surface_luma_address = arg;
break;
case Method::SetOutputSurfaceChromaOffset:
output_surface_chroma_address = arg;
break;
default:
break;
}
}
void Vic::Execute() {
if (output_surface_luma_address == 0) {
LOG_ERROR(Service_NVDRV, "VIC Luma address not set.");
return;
}
const VicConfig config{host1x.GMMU().Read<u64>(config_struct_address + 0x20)};
auto frame = nvdec_processor->GetFrame();
if (!frame) {
return;
}
const u64 surface_width = config.surface_width_minus1 + 1;
const u64 surface_height = config.surface_height_minus1 + 1;
if (static_cast<u64>(frame->GetWidth()) != surface_width ||
static_cast<u64>(frame->GetHeight()) != surface_height) {
// TODO: Properly support multiple video streams with differing frame dimensions
LOG_WARNING(Service_NVDRV, "Frame dimensions {}x{} don't match surface dimensions {}x{}",
frame->GetWidth(), frame->GetHeight(), surface_width, surface_height);
}
switch (config.pixel_format) {
case VideoPixelFormat::RGBA8:
case VideoPixelFormat::BGRA8:
case VideoPixelFormat::RGBX8:
WriteRGBFrame(std::move(frame), config);
break;
case VideoPixelFormat::YUV420:
WriteYUVFrame(std::move(frame), config);
break;
default:
UNIMPLEMENTED_MSG("Unknown video pixel format {:X}", config.pixel_format.Value());
break;
}
}
void Vic::WriteRGBFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config) {
LOG_TRACE(Service_NVDRV, "Writing RGB Frame");
const auto frame_width = frame->GetWidth();
const auto frame_height = frame->GetHeight();
const auto frame_format = frame->GetPixelFormat();
if (!scaler_ctx || frame_width != scaler_width || frame_height != scaler_height) {
const AVPixelFormat target_format = [pixel_format = config.pixel_format]() {
switch (pixel_format) {
case VideoPixelFormat::RGBA8:
return AV_PIX_FMT_RGBA;
case VideoPixelFormat::BGRA8:
return AV_PIX_FMT_BGRA;
case VideoPixelFormat::RGBX8:
return AV_PIX_FMT_RGB0;
default:
return AV_PIX_FMT_RGBA;
}
}();
sws_freeContext(scaler_ctx);
// Frames are decoded into either YUV420 or NV12 formats. Convert to desired RGB format
scaler_ctx = sws_getContext(frame_width, frame_height, frame_format, frame_width,
frame_height, target_format, 0, nullptr, nullptr, nullptr);
scaler_width = frame_width;
scaler_height = frame_height;
converted_frame_buffer.reset();
}
if (!converted_frame_buffer) {
const size_t frame_size = frame_width * frame_height * 4;
converted_frame_buffer = AVMallocPtr{static_cast<u8*>(av_malloc(frame_size)), av_free};
}
const std::array<int, 4> converted_stride{frame_width * 4, frame_height * 4, 0, 0};
u8* const converted_frame_buf_addr{converted_frame_buffer.get()};
sws_scale(scaler_ctx, frame->GetPlanes(), frame->GetStrides(), 0, frame_height,
&converted_frame_buf_addr, converted_stride.data());
// Use the minimum of surface/frame dimensions to avoid buffer overflow.
const u32 surface_width = static_cast<u32>(config.surface_width_minus1) + 1;
const u32 surface_height = static_cast<u32>(config.surface_height_minus1) + 1;
const u32 width = std::min(surface_width, static_cast<u32>(frame_width));
const u32 height = std::min(surface_height, static_cast<u32>(frame_height));
const u32 blk_kind = static_cast<u32>(config.block_linear_kind);
if (blk_kind != 0) {
// swizzle pitch linear to block linear
const u32 block_height = static_cast<u32>(config.block_linear_height_log2);
const auto size = Texture::CalculateSize(true, 4, width, height, 1, block_height, 0);
luma_buffer.resize_destructive(size);
std::span<const u8> frame_buff(converted_frame_buf_addr, 4 * width * height);
Texture::SwizzleSubrect(luma_buffer, frame_buff, 4, width, height, 1, 0, 0, width, height,
block_height, 0, width * 4);
host1x.GMMU().WriteBlock(output_surface_luma_address, luma_buffer.data(), size);
} else {
// send pitch linear frame
const size_t linear_size = width * height * 4;
host1x.GMMU().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
linear_size);
}
}
void Vic::WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config) {
LOG_TRACE(Service_NVDRV, "Writing YUV420 Frame");
const std::size_t surface_width = config.surface_width_minus1 + 1;
const std::size_t surface_height = config.surface_height_minus1 + 1;
const std::size_t aligned_width = (surface_width + 0xff) & ~0xffUL;
// Use the minimum of surface/frame dimensions to avoid buffer overflow.
const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->GetWidth()));
const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->GetHeight()));
const auto stride = static_cast<size_t>(frame->GetStride(0));
luma_buffer.resize_destructive(aligned_width * surface_height);
chroma_buffer.resize_destructive(aligned_width * surface_height / 2);
// Populate luma buffer
const u8* luma_src = frame->GetData(0);
for (std::size_t y = 0; y < frame_height; ++y) {
const std::size_t src = y * stride;
const std::size_t dst = y * aligned_width;
std::memcpy(luma_buffer.data() + dst, luma_src + src, frame_width);
}
host1x.GMMU().WriteBlock(output_surface_luma_address, luma_buffer.data(), luma_buffer.size());
// Chroma
const std::size_t half_height = frame_height / 2;
const auto half_stride = static_cast<size_t>(frame->GetStride(1));
switch (frame->GetPixelFormat()) {
case AV_PIX_FMT_YUV420P: {
// Frame from FFmpeg software
// Populate chroma buffer from both channels with interleaving.
const std::size_t half_width = frame_width / 2;
u8* chroma_buffer_data = chroma_buffer.data();
const u8* chroma_b_src = frame->GetData(1);
const u8* chroma_r_src = frame->GetData(2);
for (std::size_t y = 0; y < half_height; ++y) {
const std::size_t src = y * half_stride;
const std::size_t dst = y * aligned_width;
for (std::size_t x = 0; x < half_width; ++x) {
chroma_buffer_data[dst + x * 2] = chroma_b_src[src + x];
chroma_buffer_data[dst + x * 2 + 1] = chroma_r_src[src + x];
}
}
break;
}
case AV_PIX_FMT_NV12: {
// Frame from VA-API hardware
// This is already interleaved so just copy
const u8* chroma_src = frame->GetData(1);
for (std::size_t y = 0; y < half_height; ++y) {
const std::size_t src = y * stride;
const std::size_t dst = y * aligned_width;
std::memcpy(chroma_buffer.data() + dst, chroma_src + src, frame_width);
}
break;
}
default:
ASSERT(false);
break;
}
host1x.GMMU().WriteBlock(output_surface_chroma_address, chroma_buffer.data(),
chroma_buffer.size());
}
} // namespace Host1x
} // namespace Tegra