1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
% do-vimlatex-onwrite
\documentclass[]{article}
\usepackage[utf8]{inputenc}
\usepackage{siunitx}
\usepackage[slovene]{babel}
\usepackage[inline]{enumitem}
\usepackage[a4paper, total={7in, 10in}]{geometry}
\usepackage{hologo}
\usepackage[hidelinks,unicode]{hyperref}
\usepackage{datetime}
\usepackage{tkz-euclide}
\usepackage{amssymb}
\usepackage{multicol}
\usepackage{amsmath}
% \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, per-mode=fraction} % frac način
% \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, per-mode=symbol} % poševnica način
\sisetup{output-decimal-marker = {,}, quotient-mode=fraction} % na -1 način
\settimeformat{hhmmsstime}
\newcommand{\razhroscevanje}{0}
\newcommand{\razhroscevanjeg}{0} % grafično razhroščevanje
\makeatletter
\newcommand{\xslalph}[1]{\expandafter\@xslalph\csname c@#1\endcsname}
\newcommand{\@xslalph}[1]{%
\ifcase#1\or a\or b\or c\or \v{c}\or d\or e\or f\or g\or h\or i%
\or j\or k\or l\or m\or n\or o\or p\or r\or s\or \v{s}%
\or t\or u\or v\or z\or \v{z}
\else\@ctrerr\fi%
}
\AddEnumerateCounter{\xslalph}{\@xslalph}{m}
\makeatother
\title{Formule}
\author{Anton Luka Šijanec, 3. a}
\begin{document}
\maketitle
% \begin{abstract}
% Spisek izbranih trigonometričnih izrekov bom kot pripomoček imel na drugem testu pri matematiki v tretjem letniku.
% \end{abstract}
% \tableofcontents
\section{Trigonometrija: Drugi test}
\begin{multicols}{2}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$\measuredangle$ & Rad & $\sin$ & $\cos$ & $\tan$ & $\cot$ \\
\hline
$\ang{0}$ & 0 & 0 & 1 & 0 & ne obstaja \\
\hline
$\ang{30}$ &$\frac{\pi}{6}$& $\frac{1}{2}$ & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{3}}{2}$ & $\sqrt{3}$ \\
\hline
$\ang{45}$ & $\frac{\pi}{4}$& $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{2}}{2}$ & 1 & 1 \\
\hline
$\ang{60}$ & $\frac{\pi}{3}$& $\frac{\sqrt{3}}{2}$ & $\frac{1}{2}$ & $\sqrt{3}$ & $\frac{\sqrt{3}}{3}$ \\
\hline
$\ang{90}$ & $\frac{\pi}{2}$& 1 & 0 & ne obstaja & 0 \\
\hline
\end{tabular}
$$\sin^2\alpha+\cos^2\alpha=1$$
$$\sin\alpha=\pm\sqrt{1-\cos^2\alpha}$$
$$\cos\alpha=\pm\sqrt{1-\sin^2\alpha}$$
$\sin, \tan, \cot$ so lihe, $\cos$ je soda.
$$\sin\left(-\alpha\right)=-\sin\alpha$$
$$\cos\left(-\alpha\right)=\cos\alpha$$
$$\sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$
$$\cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$$
$$\tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$$
$$\sin\left(\alpha\pm\beta\right)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta$$
$$\cos\left(\alpha\pm\beta\right)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$$
$$\tan\left(\alpha\pm\beta\right)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}$$
$$\cot\left(\alpha\pm\beta\right)=\frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha}$$
$$\sin2\alpha=2\sin\alpha\cos\alpha$$
$$\cos2\alpha=cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha$$
$$\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$$
$$\cot2\alpha=\frac{\cot^2\alpha-1}{2\cot\alpha}$$
$$\sin3\alpha=3\sin\alpha-4\sin^3\alpha=4\sin\left(\frac{\pi}{3}-\alpha\right)\sin\left(\frac{\pi}{3}+\alpha\right)$$
$$\cos3\alpha=4\cos^3\alpha-3\cos\alpha=4\cos\alpha\cos\left(\frac{\pi}{3}-\alpha\right)\cos\left(\frac{\pi}{3}+\alpha\right)$$
$$\tan3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}=\tan\alpha\tan\left(\frac{\pi}{3}-\alpha\right)\tan\left(\frac{\pi}{3}+\alpha\right)$$
$$\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}$$
$$\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}$$
$$\tan\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}=\frac{\sin\alpha}{1+\cos\alpha}$$
$$2\cos\alpha\cos\beta=\cos\left(\alpha-\beta\right)+\cos\left(\alpha+\beta\right)$$
$$2\sin\alpha\sin\beta=\pm\cos\left(\alpha\pm\beta\right)-\cos\left(\alpha\mp\beta\right)$$
$$2\sin\alpha\cos\beta=\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)$$
$$2\cos\alpha\sin\beta=\sin\left(\alpha+\beta\right)-\sin\left(\alpha-\beta\right)$$
$$\tan\alpha\tan\beta=1-\frac{\tan\alpha+\tan\beta}{\tan\left(\alpha+\beta\right)}=\frac{\cos\left(\alpha-\beta\right)-\cos\left(\alpha+\beta\right)}{\cos\left(\alpha-\beta\right)+\cos\left(\alpha+\beta\right)}$$
$$\sin\alpha\pm\sin\beta=2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha\mp\beta}{2}\right)$$
$$\cos\alpha+\cos\beta=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos\alpha-\cos\beta=-2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$\tan\alpha\pm\tan\beta=\frac{\sin\left(\alpha\pm\beta\right)}{\cos\alpha\cos\beta}$$
$$\sin\alpha\cos\alpha=\frac{1}{2}\sin2\alpha$$
$$2\cos^2\frac{\alpha}{2}=1+\cos\alpha$$
$$2\sin^2\frac{\alpha}{2}=1-\cos\alpha$$
$$\tan^2\frac{x}{2}=\frac{1-\cos\alpha}{1+\cos\alpha}$$
\end{multicols}
\section{Trikotniki in krogi: Tretji test}
\begin{multicols}{2}
$$s=\frac{a+b+c}{2} \wedge S=\sqrt{s(s-a)(s-b)(s-c)}$$
$$S_\text{trikotnika v izseku}=\frac{r^2\sin\alpha}{2}$$
$$\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}=2R$$
$$a^2=b^2+c^2-2bc\cos\alpha$$
$$S_\text{paralelograma}=av_a=ab\sin\alpha=\frac{ef}{2}\sin\omega$$
$$S_\text{romba}=av=a^2\sin\alpha=\frac{ef}{2}$$
$$S_\text{trapeza}=\frac{v(a+c)}{2}$$
$$S_\text{deltoida}=\frac{ef}{2}$$
$$S_\text{trikotnika}=\frac{ab\sin\gamma}{2}=\frac{av_a}{2}$$
$$S_\text{enakostraničnega}=\frac{a^2\sqrt{3}}{4}$$
$$\arcsin x+\arccos x=\frac{\pi}{2}$$
$$S_\text{trikotnika}=\frac{abc}{4R}=2R^2\sin\alpha\sin\beta\sin\gamma=rs\text{, kjer je } s=\frac{a+b+c}{2}$$
$$Diagonal_\text{pravilnega mnogokotnika}=\frac{n(n-3)}{2}$$
$$\alpha_\text{pravilnega mnogokotnika}=\frac{n-2}{n}\ang{180}$$
$$S_\text{pravilnega mnogokotnika}=\frac{n}{2}R^2\sin\frac{\ang{360}}{n}=
na^2\tan\frac{\alpha}{2}\frac{1}{2}=\frac{na^2}{4\tan\frac{\ang{180}}{n}}$$
$$\alpha_\text{ene premice}=\arctan k_p$$
$$\alpha_\text{med dvema premicama}=\arctan\lvert\frac{k_q-k_p}{1+k_p-k_q}\rvert$$
$$D_\text{arcsin}=D_\text{arccos}=[-1; 1] \wedge V_\text{arcsin}=[\ang{-90}; \ang{90}] \wedge V_\text{arccos}=[\ang{0}; \ang{180}]$$
$$D_\text{arctan}=D_\text{arccot}=\mathbb{R} \wedge V_\text{arctan}=(\ang{-90}; \ang{90}) \wedge V_\text{arccot}=(\ang{0}; \ang{180})$$
$$soda(x)=-soda(x) \wedge liha(-x)=-liha(x)$$
$$f(x)\neq-f(x)\nLeftrightarrow f(-x)=-f(x) \text{ in obratno}$$
$$f(x)=-f(x) \wedge f(-x)=-f(x) \Leftrightarrow f(x)=0$$
\end{multicols}
\section{Trorazsežnostna geometrijska telesa: Četrti test} % todo: funkcije na likih - notranji kot, prisekana piramida, prisekan stožec, kuboktaeder, tetraeder, včartavanje teles v druga telesa
\begin{multicols}{2}
$$S_\text{odseka}=r^2\pi\frac{\alpha}{\ang{360}}-\frac{r^2\sin\alpha}{2}$$
$$V_\text{piramide}=\frac{P_\text{osnovna}v}{3}$$
$$P_\text{stožca}=\frac{s\cdot2\pi r}{2}\text{(špornova fora)}+r^2\pi=r\pi\left(r+s\right)$$
$$V_\text{stožca}=\frac{r^2v\pi}{3}$$
$$P_\text{enakostraničnega trikotnika}=\frac{a^2\sqrt{3}}{4}$$
\end{multicols}
\section{Zaključek}
\hologo{LaTeX} izvorna koda dokumenta je objavljena na \url{https://git.sijanec.eu/sijanec/sola-gimb-3}. Za izdelavo dokumenta je potreben \texttt{TeXLive 2020}.
\if\razhroscevanje1
\vfill
\section*{Razhroščevalne informacije}
Konec generiranja dokumenta \today\ ob \currenttime.
Dokument se je generiral R0qK1KR2 \SI{}{\second}. % aaasecgeninsaaa
\fi
\end{document}
|