summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_vulkan/vk_memory_manager.cpp
blob: cabf0b6ca05d115332a7fb8b5b8b156e753dc50e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <bit>
#include <optional>
#include <tuple>
#include <vector>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"

namespace Vulkan {
namespace {
struct Range {
    u64 begin;
    u64 end;

    [[nodiscard]] bool Contains(u64 iterator, u64 size) const noexcept {
        return iterator < end && begin < iterator + size;
    }
};

[[nodiscard]] u64 GetAllocationChunkSize(u64 required_size) {
    static constexpr std::array sizes{
        0x1000ULL << 10,  0x1400ULL << 10,  0x1800ULL << 10,  0x1c00ULL << 10, 0x2000ULL << 10,
        0x3200ULL << 10,  0x4000ULL << 10,  0x6000ULL << 10,  0x8000ULL << 10, 0xA000ULL << 10,
        0x10000ULL << 10, 0x18000ULL << 10, 0x20000ULL << 10,
    };
    static_assert(std::is_sorted(sizes.begin(), sizes.end()));

    const auto it = std::ranges::lower_bound(sizes, required_size);
    return it != sizes.end() ? *it : Common::AlignUp(required_size, 4ULL << 20);
}
} // Anonymous namespace

class MemoryAllocation {
public:
    explicit MemoryAllocation(const Device& device_, vk::DeviceMemory memory_,
                              VkMemoryPropertyFlags properties_, u64 allocation_size_, u32 type_)
        : device{device_}, memory{std::move(memory_)}, properties{properties_},
          allocation_size{allocation_size_}, shifted_type{ShiftType(type_)} {}

    [[nodiscard]] std::optional<MemoryCommit> Commit(VkDeviceSize size, VkDeviceSize alignment) {
        const std::optional<u64> alloc = FindFreeRegion(size, alignment);
        if (!alloc) {
            // Signal out of memory, it'll try to do more allocations.
            return std::nullopt;
        }
        const Range range{
            .begin = *alloc,
            .end = *alloc + size,
        };
        commits.insert(std::ranges::upper_bound(commits, *alloc, {}, &Range::begin), range);
        return std::make_optional<MemoryCommit>(device, this, *memory, *alloc, *alloc + size);
    }

    void Free(u64 begin) {
        const auto it = std::ranges::find(commits, begin, &Range::begin);
        ASSERT_MSG(it != commits.end(), "Invalid commit");
        commits.erase(it);
    }

    [[nodiscard]] std::span<u8> Map() {
        if (!memory_mapped_span.empty()) {
            return memory_mapped_span;
        }
        u8* const raw_pointer = memory.Map(0, allocation_size);
        memory_mapped_span = std::span<u8>(raw_pointer, allocation_size);
        return memory_mapped_span;
    }

    /// Returns whether this allocation is compatible with the arguments.
    [[nodiscard]] bool IsCompatible(VkMemoryPropertyFlags wanted_properties, u32 type_mask) const {
        return (wanted_properties & properties) && (type_mask & shifted_type) != 0;
    }

private:
    [[nodiscard]] static constexpr u32 ShiftType(u32 type) {
        return 1U << type;
    }

    [[nodiscard]] std::optional<u64> FindFreeRegion(u64 size, u64 alignment) noexcept {
        ASSERT(std::has_single_bit(alignment));
        const u64 alignment_log2 = std::countr_zero(alignment);
        std::optional<u64> candidate;
        u64 iterator = 0;
        auto commit = commits.begin();
        while (iterator + size <= allocation_size) {
            candidate = candidate.value_or(iterator);
            if (commit == commits.end()) {
                break;
            }
            if (commit->Contains(*candidate, size)) {
                candidate = std::nullopt;
            }
            iterator = Common::AlignUpLog2(commit->end, alignment_log2);
            ++commit;
        }
        return candidate;
    }

    const Device& device;                   ///< Vulkan device.
    const vk::DeviceMemory memory;          ///< Vulkan memory allocation handler.
    const VkMemoryPropertyFlags properties; ///< Vulkan properties.
    const u64 allocation_size;              ///< Size of this allocation.
    const u32 shifted_type;                 ///< Stored Vulkan type of this allocation, shifted.
    std::vector<Range> commits;             ///< All commit ranges done from this allocation.
    std::span<u8> memory_mapped_span;       ///< Memory mapped span. Empty if not queried before.
};

MemoryCommit::MemoryCommit(const Device& device_, MemoryAllocation* allocation_,
                           VkDeviceMemory memory_, u64 begin, u64 end) noexcept
    : device{&device_}, allocation{allocation_}, memory{memory_}, interval{begin, end} {}

MemoryCommit::~MemoryCommit() {
    Release();
}

MemoryCommit& MemoryCommit::operator=(MemoryCommit&& rhs) noexcept {
    Release();
    device = rhs.device;
    allocation = std::exchange(rhs.allocation, nullptr);
    memory = rhs.memory;
    interval = rhs.interval;
    span = std::exchange(rhs.span, std::span<u8>{});
    return *this;
}

MemoryCommit::MemoryCommit(MemoryCommit&& rhs) noexcept
    : device{rhs.device}, allocation{std::exchange(rhs.allocation, nullptr)}, memory{rhs.memory},
      interval{rhs.interval}, span{std::exchange(rhs.span, std::span<u8>{})} {}

std::span<u8> MemoryCommit::Map() {
    if (!span.empty()) {
        return span;
    }
    span = allocation->Map().subspan(interval.first, interval.second - interval.first);
    return span;
}

void MemoryCommit::Release() {
    if (allocation) {
        allocation->Free(interval.first);
    }
}

MemoryAllocator::MemoryAllocator(const Device& device_)
    : device{device_}, properties{device_.GetPhysical().GetMemoryProperties()} {}

MemoryAllocator::~MemoryAllocator() = default;

MemoryCommit MemoryAllocator::Commit(const VkMemoryRequirements& requirements, bool host_visible) {
    const u64 chunk_size = GetAllocationChunkSize(requirements.size);

    // When a host visible commit is asked, search for host visible and coherent, otherwise search
    // for a fast device local type.
    const VkMemoryPropertyFlags wanted_properties =
        host_visible ? VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
                     : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
    if (std::optional<MemoryCommit> commit = TryAllocCommit(requirements, wanted_properties)) {
        return std::move(*commit);
    }
    // Commit has failed, allocate more memory.
    // TODO(Rodrigo): Handle out of memory situations in some way like flushing to guest memory.
    AllocMemory(wanted_properties, requirements.memoryTypeBits, chunk_size);

    // Commit again, this time it won't fail since there's a fresh allocation above.
    // If it does, there's a bug.
    return TryAllocCommit(requirements, wanted_properties).value();
}

MemoryCommit MemoryAllocator::Commit(const vk::Buffer& buffer, bool host_visible) {
    auto commit = Commit(device.GetLogical().GetBufferMemoryRequirements(*buffer), host_visible);
    buffer.BindMemory(commit.Memory(), commit.Offset());
    return commit;
}

MemoryCommit MemoryAllocator::Commit(const vk::Image& image, bool host_visible) {
    auto commit = Commit(device.GetLogical().GetImageMemoryRequirements(*image), host_visible);
    image.BindMemory(commit.Memory(), commit.Offset());
    return commit;
}

void MemoryAllocator::AllocMemory(VkMemoryPropertyFlags wanted_properties, u32 type_mask,
                                  u64 size) {
    const u32 type = [&] {
        for (u32 type_index = 0; type_index < properties.memoryTypeCount; ++type_index) {
            const auto flags = properties.memoryTypes[type_index].propertyFlags;
            if ((type_mask & (1U << type_index)) && (flags & wanted_properties)) {
                // The type matches in type and in the wanted properties.
                return type_index;
            }
        }
        UNREACHABLE_MSG("Couldn't find a compatible memory type!");
        return 0U;
    }();
    vk::DeviceMemory memory = device.GetLogical().AllocateMemory({
        .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
        .pNext = nullptr,
        .allocationSize = size,
        .memoryTypeIndex = type,
    });
    allocations.push_back(std::make_unique<MemoryAllocation>(device, std::move(memory),
                                                             wanted_properties, size, type));
}

std::optional<MemoryCommit> MemoryAllocator::TryAllocCommit(
    const VkMemoryRequirements& requirements, VkMemoryPropertyFlags wanted_properties) {
    for (auto& allocation : allocations) {
        if (!allocation->IsCompatible(wanted_properties, requirements.memoryTypeBits)) {
            continue;
        }
        if (auto commit = allocation->Commit(requirements.size, requirements.alignment)) {
            return commit;
        }
    }
    return std::nullopt;
}

} // namespace Vulkan