// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/device_memory.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
namespace Tegra {
std::atomic<size_t> MemoryManager::unique_identifier_generator{};
MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 big_page_bits_,
u64 page_bits_)
: system{system_}, memory{system.Memory()}, device_memory{system.DeviceMemory()},
address_space_bits{address_space_bits_}, page_bits{page_bits_}, big_page_bits{big_page_bits_},
entries{}, big_entries{}, page_table{address_space_bits, address_space_bits + page_bits - 38,
page_bits != big_page_bits ? page_bits : 0},
kind_map{PTEKind::INVALID}, unique_identifier{unique_identifier_generator.fetch_add(
1, std::memory_order_acq_rel)} {
address_space_size = 1ULL << address_space_bits;
page_size = 1ULL << page_bits;
page_mask = page_size - 1ULL;
big_page_size = 1ULL << big_page_bits;
big_page_mask = big_page_size - 1ULL;
const u64 page_table_bits = address_space_bits - page_bits;
const u64 big_page_table_bits = address_space_bits - big_page_bits;
const u64 page_table_size = 1ULL << page_table_bits;
const u64 big_page_table_size = 1ULL << big_page_table_bits;
page_table_mask = page_table_size - 1;
big_page_table_mask = big_page_table_size - 1;
big_entries.resize(big_page_table_size / 32, 0);
big_page_table_cpu.resize(big_page_table_size);
big_page_continous.resize(big_page_table_size / continous_bits, 0);
entries.resize(page_table_size / 32, 0);
}
MemoryManager::~MemoryManager() = default;
template <bool is_big_page>
MemoryManager::EntryType MemoryManager::GetEntry(size_t position) const {
if constexpr (is_big_page) {
position = position >> big_page_bits;
const u64 entry_mask = big_entries[position / 32];
const size_t sub_index = position % 32;
return static_cast<EntryType>((entry_mask >> (2 * sub_index)) & 0x03ULL);
} else {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
return static_cast<EntryType>((entry_mask >> (2 * sub_index)) & 0x03ULL);
}
}
template <bool is_big_page>
void MemoryManager::SetEntry(size_t position, MemoryManager::EntryType entry) {
if constexpr (is_big_page) {
position = position >> big_page_bits;
const u64 entry_mask = big_entries[position / 32];
const size_t sub_index = position % 32;
big_entries[position / 32] =
(~(3ULL << sub_index * 2) & entry_mask) | (static_cast<u64>(entry) << sub_index * 2);
} else {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
entries[position / 32] =
(~(3ULL << sub_index * 2) & entry_mask) | (static_cast<u64>(entry) << sub_index * 2);
}
}
PTEKind MemoryManager::GetPageKind(GPUVAddr gpu_addr) const {
return kind_map.GetValueAt(gpu_addr);
}
inline bool MemoryManager::IsBigPageContinous(size_t big_page_index) const {
const u64 entry_mask = big_page_continous[big_page_index / continous_bits];
const size_t sub_index = big_page_index % continous_bits;
return ((entry_mask >> sub_index) & 0x1ULL) != 0;
}
inline void MemoryManager::SetBigPageContinous(size_t big_page_index, bool value) {
const u64 continous_mask = big_page_continous[big_page_index / continous_bits];
const size_t sub_index = big_page_index % continous_bits;
big_page_continous[big_page_index / continous_bits] =
(~(1ULL << sub_index) & continous_mask) | (value ? 1ULL << sub_index : 0);
}
template <MemoryManager::EntryType entry_type>
GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size,
PTEKind kind) {
[[maybe_unused]] u64 remaining_size{size};
if constexpr (entry_type == EntryType::Mapped) {
page_table.ReserveRange(gpu_addr, size);
}
for (u64 offset{}; offset < size; offset += page_size) {
const GPUVAddr current_gpu_addr = gpu_addr + offset;
[[maybe_unused]] const auto current_entry_type = GetEntry<false>(current_gpu_addr);
SetEntry<false>(current_gpu_addr, entry_type);
if (current_entry_type != entry_type) {
rasterizer->ModifyGPUMemory(unique_identifier, gpu_addr, page_size);
}
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const auto index = PageEntryIndex<false>(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> cpu_page_bits);
page_table[index] = sub_value;
}
remaining_size -= page_size;
}
kind_map.Map(gpu_addr, gpu_addr + size, kind);
return gpu_addr;
}
template <MemoryManager::EntryType entry_type>
GPUVAddr MemoryManager::BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr,
size_t size, PTEKind kind) {
[[maybe_unused]] u64 remaining_size{size};
for (u64 offset{}; offset < size; offset += big_page_size) {
const GPUVAddr current_gpu_addr = gpu_addr + offset;
[[maybe_unused]] const auto current_entry_type = GetEntry<true>(current_gpu_addr);
SetEntry<true>(current_gpu_addr, entry_type);
if (current_entry_type != entry_type) {
rasterizer->ModifyGPUMemory(unique_identifier, gpu_addr, big_page_size);
}
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const auto index = PageEntryIndex<true>(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> cpu_page_bits);
big_page_table_cpu[index] = sub_value;
const bool is_continous = ([&] {
uintptr_t base_ptr{
reinterpret_cast<uintptr_t>(memory.GetPointerSilent(current_cpu_addr))};
if (base_ptr == 0) {
return false;
}
for (VAddr start_cpu = current_cpu_addr + page_size;
start_cpu < current_cpu_addr + big_page_size; start_cpu += page_size) {
base_ptr += page_size;
auto next_ptr = reinterpret_cast<uintptr_t>(memory.GetPointerSilent(start_cpu));
if (next_ptr == 0 || base_ptr != next_ptr) {
return false;
}
}
return true;
})();
SetBigPageContinous(index, is_continous);
}
remaining_size -= big_page_size;
}
kind_map.Map(gpu_addr, gpu_addr + size, kind);
return gpu_addr;
}
void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
GPUVAddr MemoryManager::Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size, PTEKind kind,
bool is_big_pages) {
if (is_big_pages) [[likely]] {
return BigPageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size, kind);
}
return PageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size, kind);
}
GPUVAddr MemoryManager::MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages) {
if (is_big_pages) [[likely]] {
return BigPageTableOp<EntryType::Reserved>(gpu_addr, 0, size, PTEKind::INVALID);
}
return PageTableOp<EntryType::Reserved>(gpu_addr, 0, size, PTEKind::INVALID);
}
void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
if (size == 0) {
return;
}
const auto submapped_ranges = GetSubmappedRange(gpu_addr, size);
for (const auto& [map_addr, map_size] : submapped_ranges) {
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(map_addr);
ASSERT(cpu_addr);
rasterizer->UnmapMemory(*cpu_addr, map_size);
}
BigPageTableOp<EntryType::Free>(gpu_addr, 0, size, PTEKind::INVALID);
PageTableOp<EntryType::Free>(gpu_addr, 0, size, PTEKind::INVALID);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
if (!IsWithinGPUAddressRange(gpu_addr)) [[unlikely]] {
return std::nullopt;
}
if (GetEntry<true>(gpu_addr) != EntryType::Mapped) [[unlikely]] {
if (GetEntry<false>(gpu_addr) != EntryType::Mapped) {
return std::nullopt;
}
const VAddr cpu_addr_base = static_cast<VAddr>(page_table[PageEntryIndex<false>(gpu_addr)])
<< cpu_page_bits;
return cpu_addr_base + (gpu_addr & page_mask);
}
const VAddr cpu_addr_base =
static_cast<VAddr>(big_page_table_cpu[PageEntryIndex<true>(gpu_addr)]) << cpu_page_bits;
return cpu_addr_base + (gpu_addr & big_page_mask);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
size_t page_index{addr >> page_bits};
const size_t page_last{(addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr) {
return page_addr;
}
++page_index;
}
return std::nullopt;
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, page_pointer, sizeof(T));
return value;
}
ASSERT(false);
return {};
}
template <typename T>
void MemoryManager::Write(GPUVAddr addr, T data) {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(page_pointer, &data, sizeof(T));
return;
}
ASSERT(false);
}
template u8 MemoryManager::Read<u8>(GPUVAddr addr) const;
template u16 MemoryManager::Read<u16>(GPUVAddr addr) const;
template u32 MemoryManager::Read<u32>(GPUVAddr addr) const;
template u64 MemoryManager::Read<u64>(GPUVAddr addr) const;
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return memory.GetPointer(*address);
}
const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return memory.GetPointer(*address);
}
#ifdef _MSC_VER // no need for gcc / clang but msvc's compiler is more conservative with inlining.
#pragma inline_recursion(on)
#endif
template <bool is_big_pages, typename FuncMapped, typename FuncReserved, typename FuncUnmapped>
inline void MemoryManager::MemoryOperation(GPUVAddr gpu_src_addr, std::size_t size,
FuncMapped&& func_mapped, FuncReserved&& func_reserved,
FuncUnmapped&& func_unmapped) const {
using FuncMappedReturn =
typename std::invoke_result<FuncMapped, std::size_t, std::size_t, std::size_t>::type;
using FuncReservedReturn =
typename std::invoke_result<FuncReserved, std::size_t, std::size_t, std::size_t>::type;
using FuncUnmappedReturn =
typename std::invoke_result<FuncUnmapped, std::size_t, std::size_t, std::size_t>::type;
static constexpr bool BOOL_BREAK_MAPPED = std::is_same_v<FuncMappedReturn, bool>;
static constexpr bool BOOL_BREAK_RESERVED = std::is_same_v<FuncReservedReturn, bool>;
static constexpr bool BOOL_BREAK_UNMAPPED = std::is_same_v<FuncUnmappedReturn, bool>;
u64 used_page_size;
u64 used_page_mask;
u64 used_page_bits;
if constexpr (is_big_pages) {
used_page_size = big_page_size;
used_page_mask = big_page_mask;
used_page_bits = big_page_bits;
} else {
used_page_size = page_size;
used_page_mask = page_mask;
used_page_bits = page_bits;
}
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> used_page_bits};
std::size_t page_offset{gpu_src_addr & used_page_mask};
GPUVAddr current_address = gpu_src_addr;
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(used_page_size) - page_offset, remaining_size)};
auto entry = GetEntry<is_big_pages>(current_address);
if (entry == EntryType::Mapped) [[likely]] {
if constexpr (BOOL_BREAK_MAPPED) {
if (func_mapped(page_index, page_offset, copy_amount)) {
return;
}
} else {
func_mapped(page_index, page_offset, copy_amount);
}
} else if (entry == EntryType::Reserved) {
if constexpr (BOOL_BREAK_RESERVED) {
if (func_reserved(page_index, page_offset, copy_amount)) {
return;
}
} else {
func_reserved(page_index, page_offset, copy_amount);
}
} else [[unlikely]] {
if constexpr (BOOL_BREAK_UNMAPPED) {
if (func_unmapped(page_index, page_offset, copy_amount)) {
return;
}
} else {
func_unmapped(page_index, page_offset, copy_amount);
}
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
current_address += copy_amount;
}
}
template <bool is_safe>
void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
[[maybe_unused]] VideoCommon::CacheType which) const {
auto set_to_zero = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset, std::size_t copy_amount) {
std::memset(dest_buffer, 0, copy_amount);
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
}
u8* physical = memory.GetPointer(cpu_addr_base);
std::memcpy(dest_buffer, physical, copy_amount);
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
}
if (!IsBigPageContinous(page_index)) [[unlikely]] {
memory.ReadBlockUnsafe(cpu_addr_base, dest_buffer, copy_amount);
} else {
u8* physical = memory.GetPointer(cpu_addr_base);
std::memcpy(dest_buffer, physical, copy_amount);
}
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto read_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, set_to_zero, set_to_zero);
};
MemoryOperation<true>(gpu_src_addr, size, mapped_big, set_to_zero, read_short_pages);
}
void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
VideoCommon::CacheType which) const {
ReadBlockImpl<true>(gpu_src_addr, dest_buffer, size, which);
}
void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
const std::size_t size) const {
ReadBlockImpl<false>(gpu_src_addr, dest_buffer, size, VideoCommon::CacheType::None);
}
template <bool is_safe>
void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
[[maybe_unused]] VideoCommon::CacheType which) {
auto just_advance = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset, std::size_t copy_amount) {
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
}
u8* physical = memory.GetPointer(cpu_addr_base);
std::memcpy(physical, src_buffer, copy_amount);
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
}
if (!IsBigPageContinous(page_index)) [[unlikely]] {
memory.WriteBlockUnsafe(cpu_addr_base, src_buffer, copy_amount);
} else {
u8* physical = memory.GetPointer(cpu_addr_base);
std::memcpy(physical, src_buffer, copy_amount);
}
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto write_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, just_advance, just_advance);
};
MemoryOperation<true>(gpu_dest_addr, size, mapped_big, just_advance, write_short_pages);
}
void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
VideoCommon::CacheType which) {
WriteBlockImpl<true>(gpu_dest_addr, src_buffer, size, which);
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
std::size_t size) {
WriteBlockImpl<false>(gpu_dest_addr, src_buffer, size, VideoCommon::CacheType::None);
}
void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size,
VideoCommon::CacheType which) const {
auto do_nothing = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
};
auto flush_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, do_nothing, do_nothing);
};
MemoryOperation<true>(gpu_addr, size, mapped_big, do_nothing, flush_short_pages);
}
bool MemoryManager::IsMemoryDirty(GPUVAddr gpu_addr, size_t size,
VideoCommon::CacheType which) const {
bool result = false;
auto do_nothing = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) { return false; };
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
result |= rasterizer->MustFlushRegion(cpu_addr_base, copy_amount, which);
return result;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
result |= rasterizer->MustFlushRegion(cpu_addr_base, copy_amount, which);
return result;
};
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, do_nothing, do_nothing);
return result;
};
MemoryOperation<true>(gpu_addr, size, mapped_big, do_nothing, check_short_pages);
return result;
}
size_t MemoryManager::MaxContinousRange(GPUVAddr gpu_addr, size_t size) const {
std::optional<VAddr> old_page_addr{};
size_t range_so_far = 0;
bool result{false};
auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset,
std::size_t copy_amount) {
result = true;
return true;
};
auto short_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
result = true;
return true;
}
range_so_far += copy_amount;
old_page_addr = {cpu_addr_base + copy_amount};
return false;
};
auto big_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
return true;
}
range_so_far += copy_amount;
old_page_addr = {cpu_addr_base + copy_amount};
return false;
};
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, short_check, fail, fail);
return result;
};
MemoryOperation<true>(gpu_addr, size, big_check, fail, check_short_pages);
return range_so_far;
}
size_t MemoryManager::GetMemoryLayoutSize(GPUVAddr gpu_addr, size_t max_size) const {
return kind_map.GetContinousSizeFrom(gpu_addr);
}
void MemoryManager::InvalidateRegion(GPUVAddr gpu_addr, size_t size,
VideoCommon::CacheType which) const {
auto do_nothing = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
};
auto invalidate_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, do_nothing, do_nothing);
};
MemoryOperation<true>(gpu_addr, size, mapped_big, do_nothing, invalidate_short_pages);
}
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size,
VideoCommon::CacheType which) {
std::vector<u8> tmp_buffer(size);
ReadBlock(gpu_src_addr, tmp_buffer.data(), size, which);
// The output block must be flushed in case it has data modified from the GPU.
// Fixes NPC geometry in Zombie Panic in Wonderland DX
FlushRegion(gpu_dest_addr, size, which);
WriteBlock(gpu_dest_addr, tmp_buffer.data(), size, which);
}
bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
if (GetEntry<true>(gpu_addr) == EntryType::Mapped) [[likely]] {
size_t page_index = gpu_addr >> big_page_bits;
if (IsBigPageContinous(page_index)) [[likely]] {
const std::size_t page{(page_index & big_page_mask) + size};
return page <= big_page_size;
}
const std::size_t page{(gpu_addr & Core::Memory::YUZU_PAGEMASK) + size};
return page <= Core::Memory::YUZU_PAGESIZE;
}
if (GetEntry<false>(gpu_addr) != EntryType::Mapped) {
return false;
}
const std::size_t page{(gpu_addr & Core::Memory::YUZU_PAGEMASK) + size};
return page <= Core::Memory::YUZU_PAGESIZE;
}
bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const {
std::optional<VAddr> old_page_addr{};
bool result{true};
auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset,
std::size_t copy_amount) {
result = false;
return true;
};
auto short_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
result = false;
return true;
}
old_page_addr = {cpu_addr_base + copy_amount};
return false;
};
auto big_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
result = false;
return true;
}
old_page_addr = {cpu_addr_base + copy_amount};
return false;
};
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, short_check, fail, fail);
return !result;
};
MemoryOperation<true>(gpu_addr, size, big_check, fail, check_short_pages);
return result;
}
bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const {
bool result{true};
auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {
result = false;
return true;
};
auto pass = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) { return false; };
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, pass, pass, fail);
return !result;
};
MemoryOperation<true>(gpu_addr, size, pass, fail, check_short_pages);
return result;
}
std::vector<std::pair<GPUVAddr, std::size_t>> MemoryManager::GetSubmappedRange(
GPUVAddr gpu_addr, std::size_t size) const {
std::vector<std::pair<GPUVAddr, std::size_t>> result{};
std::optional<std::pair<GPUVAddr, std::size_t>> last_segment{};
std::optional<VAddr> old_page_addr{};
const auto split = [&last_segment, &result]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {
if (last_segment) {
result.push_back(*last_segment);
last_segment = std::nullopt;
}
};
const auto extend_size_big = [this, &split, &old_page_addr,
&last_segment](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if (old_page_addr) {
if (*old_page_addr != cpu_addr_base) {
split(0, 0, 0);
}
}
old_page_addr = {cpu_addr_base + copy_amount};
if (!last_segment) {
const GPUVAddr new_base_addr = (page_index << big_page_bits) + offset;
last_segment = {new_base_addr, copy_amount};
} else {
last_segment->second += copy_amount;
}
};
const auto extend_size_short = [this, &split, &old_page_addr,
&last_segment](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr) {
if (*old_page_addr != cpu_addr_base) {
split(0, 0, 0);
}
}
old_page_addr = {cpu_addr_base + copy_amount};
if (!last_segment) {
const GPUVAddr new_base_addr = (page_index << page_bits) + offset;
last_segment = {new_base_addr, copy_amount};
} else {
last_segment->second += copy_amount;
}
};
auto do_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, extend_size_short, split, split);
};
MemoryOperation<true>(gpu_addr, size, extend_size_big, split, do_short_pages);
split(0, 0, 0);
return result;
}
} // namespace Tegra