summaryrefslogblamecommitdiffstats
path: root/src/video_core/host1x/ffmpeg/ffmpeg.cpp
blob: 96686da59d4a2ac8237e14fcede0ddaa69227e7c (plain) (tree)










































































































































































































































                                                                                                   





                                                                     






















































































































































































                                                                                                  
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"

extern "C" {
#ifdef LIBVA_FOUND
// for querying VAAPI driver information
#include <libavutil/hwcontext_vaapi.h>
#endif
}

namespace FFmpeg {

namespace {

constexpr AVPixelFormat PreferredGpuFormat = AV_PIX_FMT_NV12;
constexpr AVPixelFormat PreferredCpuFormat = AV_PIX_FMT_YUV420P;
constexpr std::array PreferredGpuDecoders = {
    AV_HWDEVICE_TYPE_CUDA,
#ifdef _WIN32
    AV_HWDEVICE_TYPE_D3D11VA,
    AV_HWDEVICE_TYPE_DXVA2,
#elif defined(__unix__)
    AV_HWDEVICE_TYPE_VAAPI,
    AV_HWDEVICE_TYPE_VDPAU,
#endif
    // last resort for Linux Flatpak (w/ NVIDIA)
    AV_HWDEVICE_TYPE_VULKAN,
};

AVPixelFormat GetGpuFormat(AVCodecContext* codec_context, const AVPixelFormat* pix_fmts) {
    for (const AVPixelFormat* p = pix_fmts; *p != AV_PIX_FMT_NONE; ++p) {
        if (*p == codec_context->pix_fmt) {
            return codec_context->pix_fmt;
        }
    }

    LOG_INFO(HW_GPU, "Could not find compatible GPU AV format, falling back to CPU");
    av_buffer_unref(&codec_context->hw_device_ctx);

    codec_context->pix_fmt = PreferredCpuFormat;
    return codec_context->pix_fmt;
}

std::string AVError(int errnum) {
    char errbuf[AV_ERROR_MAX_STRING_SIZE] = {};
    av_make_error_string(errbuf, sizeof(errbuf) - 1, errnum);
    return errbuf;
}

} // namespace

Packet::Packet(std::span<const u8> data) {
    m_packet = av_packet_alloc();
    m_packet->data = const_cast<u8*>(data.data());
    m_packet->size = static_cast<s32>(data.size());
}

Packet::~Packet() {
    av_packet_free(&m_packet);
}

Frame::Frame() {
    m_frame = av_frame_alloc();
}

Frame::~Frame() {
    av_frame_free(&m_frame);
}

Decoder::Decoder(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
    const AVCodecID av_codec = [&] {
        switch (codec) {
        case Tegra::Host1x::NvdecCommon::VideoCodec::H264:
            return AV_CODEC_ID_H264;
        case Tegra::Host1x::NvdecCommon::VideoCodec::VP8:
            return AV_CODEC_ID_VP8;
        case Tegra::Host1x::NvdecCommon::VideoCodec::VP9:
            return AV_CODEC_ID_VP9;
        default:
            UNIMPLEMENTED_MSG("Unknown codec {}", codec);
            return AV_CODEC_ID_NONE;
        }
    }();

    m_codec = avcodec_find_decoder(av_codec);
}

bool Decoder::SupportsDecodingOnDevice(AVPixelFormat* out_pix_fmt, AVHWDeviceType type) const {
    for (int i = 0;; i++) {
        const AVCodecHWConfig* config = avcodec_get_hw_config(m_codec, i);
        if (!config) {
            LOG_DEBUG(HW_GPU, "{} decoder does not support device type {}", m_codec->name,
                      av_hwdevice_get_type_name(type));
            break;
        }
        if ((config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX) != 0 &&
            config->device_type == type) {
            LOG_INFO(HW_GPU, "Using {} GPU decoder", av_hwdevice_get_type_name(type));
            *out_pix_fmt = config->pix_fmt;
            return true;
        }
    }

    return false;
}

std::vector<AVHWDeviceType> HardwareContext::GetSupportedDeviceTypes() {
    std::vector<AVHWDeviceType> types;
    AVHWDeviceType current_device_type = AV_HWDEVICE_TYPE_NONE;

    while (true) {
        current_device_type = av_hwdevice_iterate_types(current_device_type);
        if (current_device_type == AV_HWDEVICE_TYPE_NONE) {
            return types;
        }

        types.push_back(current_device_type);
    }
}

HardwareContext::~HardwareContext() {
    av_buffer_unref(&m_gpu_decoder);
}

bool HardwareContext::InitializeForDecoder(DecoderContext& decoder_context,
                                           const Decoder& decoder) {
    const auto supported_types = GetSupportedDeviceTypes();
    for (const auto type : PreferredGpuDecoders) {
        AVPixelFormat hw_pix_fmt;

        if (std::ranges::find(supported_types, type) == supported_types.end()) {
            LOG_DEBUG(HW_GPU, "{} explicitly unsupported", av_hwdevice_get_type_name(type));
            continue;
        }

        if (!this->InitializeWithType(type)) {
            continue;
        }

        if (decoder.SupportsDecodingOnDevice(&hw_pix_fmt, type)) {
            decoder_context.InitializeHardwareDecoder(*this, hw_pix_fmt);
            return true;
        }
    }

    return false;
}

bool HardwareContext::InitializeWithType(AVHWDeviceType type) {
    av_buffer_unref(&m_gpu_decoder);

    if (const int ret = av_hwdevice_ctx_create(&m_gpu_decoder, type, nullptr, nullptr, 0);
        ret < 0) {
        LOG_DEBUG(HW_GPU, "av_hwdevice_ctx_create({}) failed: {}", av_hwdevice_get_type_name(type),
                  AVError(ret));
        return false;
    }

#ifdef LIBVA_FOUND
    if (type == AV_HWDEVICE_TYPE_VAAPI) {
        // We need to determine if this is an impersonated VAAPI driver.
        auto* hwctx = reinterpret_cast<AVHWDeviceContext*>(m_gpu_decoder->data);
        auto* vactx = static_cast<AVVAAPIDeviceContext*>(hwctx->hwctx);
        const char* vendor_name = vaQueryVendorString(vactx->display);
        if (strstr(vendor_name, "VDPAU backend")) {
            // VDPAU impersonated VAAPI impls are super buggy, we need to skip them.
            LOG_DEBUG(HW_GPU, "Skipping VDPAU impersonated VAAPI driver");
            return false;
        } else {
            // According to some user testing, certain VAAPI drivers (Intel?) could be buggy.
            // Log the driver name just in case.
            LOG_DEBUG(HW_GPU, "Using VAAPI driver: {}", vendor_name);
        }
    }
#endif

    return true;
}

DecoderContext::DecoderContext(const Decoder& decoder) {
    m_codec_context = avcodec_alloc_context3(decoder.GetCodec());
    av_opt_set(m_codec_context->priv_data, "tune", "zerolatency", 0);
    m_codec_context->thread_count = 0;
    m_codec_context->thread_type &= ~FF_THREAD_FRAME;
}

DecoderContext::~DecoderContext() {
    av_buffer_unref(&m_codec_context->hw_device_ctx);
    avcodec_free_context(&m_codec_context);
}

void DecoderContext::InitializeHardwareDecoder(const HardwareContext& context,
                                               AVPixelFormat hw_pix_fmt) {
    m_codec_context->hw_device_ctx = av_buffer_ref(context.GetBufferRef());
    m_codec_context->get_format = GetGpuFormat;
    m_codec_context->pix_fmt = hw_pix_fmt;
}

bool DecoderContext::OpenContext(const Decoder& decoder) {
    if (const int ret = avcodec_open2(m_codec_context, decoder.GetCodec(), nullptr); ret < 0) {
        LOG_ERROR(HW_GPU, "avcodec_open2 error: {}", AVError(ret));
        return false;
    }

    if (!m_codec_context->hw_device_ctx) {
        LOG_INFO(HW_GPU, "Using FFmpeg software decoding");
    }

    return true;
}

bool DecoderContext::SendPacket(const Packet& packet) {
    if (const int ret = avcodec_send_packet(m_codec_context, packet.GetPacket()); ret < 0) {
        LOG_ERROR(HW_GPU, "avcodec_send_packet error: {}", AVError(ret));
        return false;
    }

    return true;
}

std::unique_ptr<Frame> DecoderContext::ReceiveFrame(bool* out_is_interlaced) {
    auto dst_frame = std::make_unique<Frame>();

    const auto ReceiveImpl = [&](AVFrame* frame) {
        if (const int ret = avcodec_receive_frame(m_codec_context, frame); ret < 0) {
            LOG_ERROR(HW_GPU, "avcodec_receive_frame error: {}", AVError(ret));
            return false;
        }

        *out_is_interlaced =
#if defined(FF_API_INTERLACED_FRAME) || LIBAVUTIL_VERSION_MAJOR >= 59
            (frame->flags & AV_FRAME_FLAG_INTERLACED) != 0;
#else
            frame->interlaced_frame != 0;
#endif
        return true;
    };

    if (m_codec_context->hw_device_ctx) {
        // If we have a hardware context, make a separate frame here to receive the
        // hardware result before sending it to the output.
        Frame intermediate_frame;

        if (!ReceiveImpl(intermediate_frame.GetFrame())) {
            return {};
        }

        dst_frame->SetFormat(PreferredGpuFormat);
        if (const int ret =
                av_hwframe_transfer_data(dst_frame->GetFrame(), intermediate_frame.GetFrame(), 0);
            ret < 0) {
            LOG_ERROR(HW_GPU, "av_hwframe_transfer_data error: {}", AVError(ret));
            return {};
        }
    } else {
        // Otherwise, decode the frame as normal.
        if (!ReceiveImpl(dst_frame->GetFrame())) {
            return {};
        }
    }

    return dst_frame;
}

DeinterlaceFilter::DeinterlaceFilter(const Frame& frame) {
    const AVFilter* buffer_src = avfilter_get_by_name("buffer");
    const AVFilter* buffer_sink = avfilter_get_by_name("buffersink");
    AVFilterInOut* inputs = avfilter_inout_alloc();
    AVFilterInOut* outputs = avfilter_inout_alloc();
    SCOPE_EXIT({
        avfilter_inout_free(&inputs);
        avfilter_inout_free(&outputs);
    });

    // Don't know how to get the accurate time_base but it doesn't matter for yadif filter
    // so just use 1/1 to make buffer filter happy
    std::string args = fmt::format("video_size={}x{}:pix_fmt={}:time_base=1/1", frame.GetWidth(),
                                   frame.GetHeight(), static_cast<int>(frame.GetPixelFormat()));

    m_filter_graph = avfilter_graph_alloc();
    int ret = avfilter_graph_create_filter(&m_source_context, buffer_src, "in", args.c_str(),
                                           nullptr, m_filter_graph);
    if (ret < 0) {
        LOG_ERROR(HW_GPU, "avfilter_graph_create_filter source error: {}", AVError(ret));
        return;
    }

    ret = avfilter_graph_create_filter(&m_sink_context, buffer_sink, "out", nullptr, nullptr,
                                       m_filter_graph);
    if (ret < 0) {
        LOG_ERROR(HW_GPU, "avfilter_graph_create_filter sink error: {}", AVError(ret));
        return;
    }

    inputs->name = av_strdup("out");
    inputs->filter_ctx = m_sink_context;
    inputs->pad_idx = 0;
    inputs->next = nullptr;

    outputs->name = av_strdup("in");
    outputs->filter_ctx = m_source_context;
    outputs->pad_idx = 0;
    outputs->next = nullptr;

    const char* description = "yadif=1:-1:0";
    ret = avfilter_graph_parse_ptr(m_filter_graph, description, &inputs, &outputs, nullptr);
    if (ret < 0) {
        LOG_ERROR(HW_GPU, "avfilter_graph_parse_ptr error: {}", AVError(ret));
        return;
    }

    ret = avfilter_graph_config(m_filter_graph, nullptr);
    if (ret < 0) {
        LOG_ERROR(HW_GPU, "avfilter_graph_config error: {}", AVError(ret));
        return;
    }

    m_initialized = true;
}

bool DeinterlaceFilter::AddSourceFrame(const Frame& frame) {
    if (const int ret = av_buffersrc_add_frame_flags(m_source_context, frame.GetFrame(),
                                                     AV_BUFFERSRC_FLAG_KEEP_REF);
        ret < 0) {
        LOG_ERROR(HW_GPU, "av_buffersrc_add_frame_flags error: {}", AVError(ret));
        return false;
    }

    return true;
}

std::unique_ptr<Frame> DeinterlaceFilter::DrainSinkFrame() {
    auto dst_frame = std::make_unique<Frame>();
    const int ret = av_buffersink_get_frame(m_sink_context, dst_frame->GetFrame());

    if (ret == AVERROR(EAGAIN) || ret == AVERROR(AVERROR_EOF)) {
        return {};
    }

    if (ret < 0) {
        LOG_ERROR(HW_GPU, "av_buffersink_get_frame error: {}", AVError(ret));
        return {};
    }

    return dst_frame;
}

DeinterlaceFilter::~DeinterlaceFilter() {
    avfilter_graph_free(&m_filter_graph);
}

void DecodeApi::Reset() {
    m_deinterlace_filter.reset();
    m_hardware_context.reset();
    m_decoder_context.reset();
    m_decoder.reset();
}

bool DecodeApi::Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
    this->Reset();
    m_decoder.emplace(codec);
    m_decoder_context.emplace(*m_decoder);

    // Enable GPU decoding if requested.
    if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Gpu) {
        m_hardware_context.emplace();
        m_hardware_context->InitializeForDecoder(*m_decoder_context, *m_decoder);
    }

    // Open the decoder context.
    if (!m_decoder_context->OpenContext(*m_decoder)) {
        this->Reset();
        return false;
    }

    return true;
}

bool DecodeApi::SendPacket(std::span<const u8> packet_data, size_t configuration_size) {
    FFmpeg::Packet packet(packet_data);
    return m_decoder_context->SendPacket(packet);
}

void DecodeApi::ReceiveFrames(std::queue<std::unique_ptr<Frame>>& frame_queue) {
    // Receive raw frame from decoder.
    bool is_interlaced;
    auto frame = m_decoder_context->ReceiveFrame(&is_interlaced);
    if (!frame) {
        return;
    }

    if (!is_interlaced) {
        // If the frame is not interlaced, we can pend it now.
        frame_queue.push(std::move(frame));
    } else {
        // Create the deinterlacer if needed.
        if (!m_deinterlace_filter) {
            m_deinterlace_filter.emplace(*frame);
        }

        // Add the frame we just received.
        if (!m_deinterlace_filter->AddSourceFrame(*frame)) {
            return;
        }

        // Pend output fields.
        while (true) {
            auto filter_frame = m_deinterlace_filter->DrainSinkFrame();
            if (!filter_frame) {
                break;
            }

            frame_queue.push(std::move(filter_frame));
        }
    }
}

} // namespace FFmpeg