blob: c27546b0e164aad7ed5cc86f1010bea6065da5f9 (
plain) (
tree)
|
|
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <cstring>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include <boost/container/small_vector.hpp>
#include <boost/intrusive/list.hpp>
#include "common/assert.h"
#include "common/bit_cast.h"
#include "common/common_types.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/ir/attribute.h"
#include "shader_recompiler/frontend/ir/opcodes.h"
#include "shader_recompiler/frontend/ir/patch.h"
#include "shader_recompiler/frontend/ir/pred.h"
#include "shader_recompiler/frontend/ir/reg.h"
#include "shader_recompiler/frontend/ir/type.h"
namespace Shader::IR {
class Block;
class Inst;
struct AssociatedInsts;
class Value {
public:
Value() noexcept = default;
explicit Value(IR::Inst* value) noexcept;
explicit Value(IR::Reg value) noexcept;
explicit Value(IR::Pred value) noexcept;
explicit Value(IR::Attribute value) noexcept;
explicit Value(IR::Patch value) noexcept;
explicit Value(bool value) noexcept;
explicit Value(u8 value) noexcept;
explicit Value(u16 value) noexcept;
explicit Value(u32 value) noexcept;
explicit Value(f32 value) noexcept;
explicit Value(u64 value) noexcept;
explicit Value(f64 value) noexcept;
[[nodiscard]] bool IsIdentity() const noexcept;
[[nodiscard]] bool IsPhi() const noexcept;
[[nodiscard]] bool IsEmpty() const noexcept;
[[nodiscard]] bool IsImmediate() const noexcept;
[[nodiscard]] IR::Type Type() const noexcept;
[[nodiscard]] IR::Inst* Inst() const;
[[nodiscard]] IR::Inst* InstRecursive() const;
[[nodiscard]] IR::Inst* TryInstRecursive() const;
[[nodiscard]] IR::Value Resolve() const;
[[nodiscard]] IR::Reg Reg() const;
[[nodiscard]] IR::Pred Pred() const;
[[nodiscard]] IR::Attribute Attribute() const;
[[nodiscard]] IR::Patch Patch() const;
[[nodiscard]] bool U1() const;
[[nodiscard]] u8 U8() const;
[[nodiscard]] u16 U16() const;
[[nodiscard]] u32 U32() const;
[[nodiscard]] f32 F32() const;
[[nodiscard]] u64 U64() const;
[[nodiscard]] f64 F64() const;
[[nodiscard]] bool operator==(const Value& other) const;
[[nodiscard]] bool operator!=(const Value& other) const;
private:
IR::Type type{};
union {
IR::Inst* inst{};
IR::Reg reg;
IR::Pred pred;
IR::Attribute attribute;
IR::Patch patch;
bool imm_u1;
u8 imm_u8;
u16 imm_u16;
u32 imm_u32;
f32 imm_f32;
u64 imm_u64;
f64 imm_f64;
};
};
static_assert(static_cast<u32>(IR::Type::Void) == 0, "memset relies on IR::Type being zero");
static_assert(std::is_trivially_copyable_v<Value>);
template <IR::Type type_>
class TypedValue : public Value {
public:
TypedValue() = default;
template <IR::Type other_type>
requires((other_type & type_) != IR::Type::Void)
explicit(false) TypedValue(const TypedValue<other_type>& value) : Value(value) {}
explicit TypedValue(const Value& value) : Value(value) {
if ((value.Type() & type_) == IR::Type::Void) {
throw InvalidArgument("Incompatible types {} and {}", type_, value.Type());
}
}
explicit TypedValue(IR::Inst* inst_) : TypedValue(Value(inst_)) {}
};
class Inst : public boost::intrusive::list_base_hook<> {
public:
explicit Inst(IR::Opcode op_, u32 flags_) noexcept;
explicit Inst(const Inst& base);
~Inst();
Inst& operator=(const Inst&) = delete;
Inst& operator=(Inst&&) = delete;
Inst(Inst&&) = delete;
/// Get the number of uses this instruction has.
[[nodiscard]] int UseCount() const noexcept {
return use_count;
}
/// Determines whether this instruction has uses or not.
[[nodiscard]] bool HasUses() const noexcept {
return use_count > 0;
}
/// Get the opcode this microinstruction represents.
[[nodiscard]] IR::Opcode GetOpcode() const noexcept {
return op;
}
/// Determines if there is a pseudo-operation associated with this instruction.
[[nodiscard]] bool HasAssociatedPseudoOperation() const noexcept {
return associated_insts != nullptr;
}
/// Determines whether or not this instruction may have side effects.
[[nodiscard]] bool MayHaveSideEffects() const noexcept;
/// Determines whether or not this instruction is a pseudo-instruction.
/// Pseudo-instructions depend on their parent instructions for their semantics.
[[nodiscard]] bool IsPseudoInstruction() const noexcept;
/// Determines if all arguments of this instruction are immediates.
[[nodiscard]] bool AreAllArgsImmediates() const;
/// Gets a pseudo-operation associated with this instruction
[[nodiscard]] Inst* GetAssociatedPseudoOperation(IR::Opcode opcode);
/// Get the type this instruction returns.
[[nodiscard]] IR::Type Type() const;
/// Get the number of arguments this instruction has.
[[nodiscard]] size_t NumArgs() const {
return op == IR::Opcode::Phi ? phi_args.size() : NumArgsOf(op);
}
/// Get the value of a given argument index.
[[nodiscard]] Value Arg(size_t index) const noexcept {
if (op == IR::Opcode::Phi) {
return phi_args[index].second;
} else {
return args[index];
}
}
/// Set the value of a given argument index.
void SetArg(size_t index, Value value);
/// Get a pointer to the block of a phi argument.
[[nodiscard]] Block* PhiBlock(size_t index) const;
/// Add phi operand to a phi instruction.
void AddPhiOperand(Block* predecessor, const Value& value);
/// Orders the Phi arguments from farthest away to nearest.
void OrderPhiArgs();
void Invalidate();
void ClearArgs();
void ReplaceUsesWith(Value replacement);
void ReplaceOpcode(IR::Opcode opcode);
template <typename FlagsType>
requires(sizeof(FlagsType) <= sizeof(u32) && std::is_trivially_copyable_v<FlagsType>)
[[nodiscard]] FlagsType Flags() const noexcept {
FlagsType ret;
std::memcpy(reinterpret_cast<char*>(&ret), &flags, sizeof(ret));
return ret;
}
template <typename FlagsType>
requires(sizeof(FlagsType) <= sizeof(u32) && std::is_trivially_copyable_v<FlagsType>)
void SetFlags(FlagsType value) noexcept {
std::memcpy(&flags, &value, sizeof(value));
}
/// Intrusively store the host definition of this instruction.
template <typename DefinitionType>
void SetDefinition(DefinitionType def) {
definition = Common::BitCast<u32>(def);
}
/// Return the intrusively stored host definition of this instruction.
template <typename DefinitionType>
[[nodiscard]] DefinitionType Definition() const noexcept {
return Common::BitCast<DefinitionType>(definition);
}
/// Destructively remove one reference count from the instruction
/// Useful for register allocation
void DestructiveRemoveUsage() {
--use_count;
}
/// Destructively add usages to the instruction
/// Useful for register allocation
void DestructiveAddUsage(int count) {
use_count += count;
}
private:
struct NonTriviallyDummy {
NonTriviallyDummy() noexcept {}
};
void Use(const Value& value);
void UndoUse(const Value& value);
IR::Opcode op{};
int use_count{};
u32 flags{};
u32 definition{};
union {
NonTriviallyDummy dummy{};
boost::container::small_vector<std::pair<Block*, Value>, 2> phi_args;
std::array<Value, 5> args;
};
std::unique_ptr<AssociatedInsts> associated_insts;
};
static_assert(sizeof(Inst) <= 128, "Inst size unintentionally increased");
struct AssociatedInsts {
union {
Inst* in_bounds_inst;
Inst* sparse_inst;
Inst* zero_inst{};
};
Inst* sign_inst{};
Inst* carry_inst{};
Inst* overflow_inst{};
};
using U1 = TypedValue<Type::U1>;
using U8 = TypedValue<Type::U8>;
using U16 = TypedValue<Type::U16>;
using U32 = TypedValue<Type::U32>;
using U64 = TypedValue<Type::U64>;
using F16 = TypedValue<Type::F16>;
using F32 = TypedValue<Type::F32>;
using F64 = TypedValue<Type::F64>;
using U32U64 = TypedValue<Type::U32 | Type::U64>;
using F32F64 = TypedValue<Type::F32 | Type::F64>;
using U16U32U64 = TypedValue<Type::U16 | Type::U32 | Type::U64>;
using F16F32F64 = TypedValue<Type::F16 | Type::F32 | Type::F64>;
using UAny = TypedValue<Type::U8 | Type::U16 | Type::U32 | Type::U64>;
inline bool Value::IsIdentity() const noexcept {
return type == Type::Opaque && inst->GetOpcode() == Opcode::Identity;
}
inline bool Value::IsPhi() const noexcept {
return type == Type::Opaque && inst->GetOpcode() == Opcode::Phi;
}
inline bool Value::IsEmpty() const noexcept {
return type == Type::Void;
}
inline bool Value::IsImmediate() const noexcept {
IR::Type current_type{type};
const IR::Inst* current_inst{inst};
while (current_type == Type::Opaque && current_inst->GetOpcode() == Opcode::Identity) {
const Value& arg{current_inst->Arg(0)};
current_type = arg.type;
current_inst = arg.inst;
}
return current_type != Type::Opaque;
}
inline IR::Inst* Value::Inst() const {
DEBUG_ASSERT(type == Type::Opaque);
return inst;
}
inline IR::Inst* Value::InstRecursive() const {
DEBUG_ASSERT(type == Type::Opaque);
if (IsIdentity()) {
return inst->Arg(0).InstRecursive();
}
return inst;
}
inline IR::Inst* Value::TryInstRecursive() const {
if (IsIdentity()) {
return inst->Arg(0).TryInstRecursive();
}
return type == Type::Opaque ? inst : nullptr;
}
inline IR::Value Value::Resolve() const {
if (IsIdentity()) {
return inst->Arg(0).Resolve();
}
return *this;
}
inline IR::Reg Value::Reg() const {
DEBUG_ASSERT(type == Type::Reg);
return reg;
}
inline IR::Pred Value::Pred() const {
DEBUG_ASSERT(type == Type::Pred);
return pred;
}
inline IR::Attribute Value::Attribute() const {
DEBUG_ASSERT(type == Type::Attribute);
return attribute;
}
inline IR::Patch Value::Patch() const {
DEBUG_ASSERT(type == Type::Patch);
return patch;
}
inline bool Value::U1() const {
if (IsIdentity()) {
return inst->Arg(0).U1();
}
DEBUG_ASSERT(type == Type::U1);
return imm_u1;
}
inline u8 Value::U8() const {
if (IsIdentity()) {
return inst->Arg(0).U8();
}
DEBUG_ASSERT(type == Type::U8);
return imm_u8;
}
inline u16 Value::U16() const {
if (IsIdentity()) {
return inst->Arg(0).U16();
}
DEBUG_ASSERT(type == Type::U16);
return imm_u16;
}
inline u32 Value::U32() const {
if (IsIdentity()) {
return inst->Arg(0).U32();
}
DEBUG_ASSERT(type == Type::U32);
return imm_u32;
}
inline f32 Value::F32() const {
if (IsIdentity()) {
return inst->Arg(0).F32();
}
DEBUG_ASSERT(type == Type::F32);
return imm_f32;
}
inline u64 Value::U64() const {
if (IsIdentity()) {
return inst->Arg(0).U64();
}
DEBUG_ASSERT(type == Type::U64);
return imm_u64;
}
inline f64 Value::F64() const {
if (IsIdentity()) {
return inst->Arg(0).F64();
}
DEBUG_ASSERT(type == Type::F64);
return imm_f64;
}
[[nodiscard]] inline bool IsPhi(const Inst& inst) {
return inst.GetOpcode() == Opcode::Phi;
}
} // namespace Shader::IR
|