summaryrefslogtreecommitdiffstats
path: root/src/LightingThread.cpp
blob: 71209b3f0fc2f6b58bd6b773b5068eac4d50032c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

// LightingThread.cpp

// Implements the cLightingThread class representing the thread that processes requests for lighting

#include "Globals.h"
#include "LightingThread.h"
#include "ChunkMap.h"
#include "World.h"
#include "BlockInfo.h"





/** Chunk data callback that takes the chunk data and puts them into cLightingThread's m_BlockTypes[] / m_HeightMap[]:
 */
class cReader : public cChunkDataCallback
{
	virtual void ChunkData(const ChunkBlockData & a_BlockData, const ChunkLightData &) override
	{
		BLOCKTYPE * OutputRows = m_BlockTypes;
		int OutputIdx = m_ReadingChunkX + m_ReadingChunkZ * cChunkDef::Width * 3;
		for (size_t i = 0; i != cChunkDef::NumSections; ++i)
		{
			const auto Section = a_BlockData.GetSection(i);
			if (Section == nullptr)
			{
				// Skip to the next section
				OutputIdx += 9 * cChunkDef::SectionHeight * cChunkDef::Width;
				continue;
			}

			for (size_t OffsetY = 0; OffsetY != cChunkDef::SectionHeight; ++OffsetY)
			{
				for (size_t Z = 0; Z != cChunkDef::Width; ++Z)
				{
					auto InPtr = Section->data() + Z * cChunkDef::Width + OffsetY * cChunkDef::Width * cChunkDef::Width;
					std::copy_n(InPtr, cChunkDef::Width, OutputRows + OutputIdx * cChunkDef::Width);

					OutputIdx += 3;
				}
				// Skip into the next y-level in the 3x3 chunk blob; each level has cChunkDef::Width * 9 rows
				// We've already walked cChunkDef::Width * 3 in the "for z" cycle, that makes cChunkDef::Width * 6 rows
				// left to skip
				OutputIdx += cChunkDef::Width * 6;
			}
		}
	}  // BlockTypes()


	virtual void HeightMap(const cChunkDef::HeightMap & a_Heightmap) override
	{
		// Copy the entire heightmap, distribute it into the 3x3 chunk blob:
		typedef struct
		{
			HEIGHTTYPE m_Row[16];
		} ROW;
		const ROW * InputRows = reinterpret_cast<const ROW *>(a_Heightmap);
		ROW * OutputRows = reinterpret_cast<ROW *>(m_HeightMap);
		int InputIdx = 0;
		int OutputIdx = m_ReadingChunkX + m_ReadingChunkZ * cChunkDef::Width * 3;
		for (int z = 0; z < cChunkDef::Width; z++)
		{
			OutputRows[OutputIdx] = InputRows[InputIdx++];
			OutputIdx += 3;
		}  // for z

		// Find the highest block in the entire chunk, use it as a base for m_MaxHeight:
		HEIGHTTYPE MaxHeight = m_MaxHeight;
		for (size_t i = 0; i < ARRAYCOUNT(a_Heightmap); i++)
		{
			if (a_Heightmap[i] > MaxHeight)
			{
				MaxHeight = a_Heightmap[i];
			}
		}
		m_MaxHeight = MaxHeight;
	}

  public:
	int m_ReadingChunkX;  // 0, 1 or 2; x-offset of the chunk we're reading from the BlockTypes start
	int m_ReadingChunkZ;  // 0, 1 or 2; z-offset of the chunk we're reading from the BlockTypes start
	HEIGHTTYPE m_MaxHeight;  // Maximum value in this chunk's heightmap
	BLOCKTYPE *
		m_BlockTypes;  // 3x3 chunks of block types, organized as a single XZY blob of data (instead of 3x3 XZY blobs)
	HEIGHTTYPE *
		m_HeightMap;  // 3x3 chunks of height map,  organized as a single XZY blob of data (instead of 3x3 XZY blobs)

	cReader(BLOCKTYPE * a_BlockTypes, HEIGHTTYPE * a_HeightMap) :
		m_ReadingChunkX(0), m_ReadingChunkZ(0), m_MaxHeight(0), m_BlockTypes(a_BlockTypes), m_HeightMap(a_HeightMap)
	{
		std::fill_n(m_BlockTypes, cChunkDef::NumBlocks * 9, E_BLOCK_AIR);
	}
};





////////////////////////////////////////////////////////////////////////////////
// cLightingThread:

cLightingThread::cLightingThread(cWorld & a_World) :
	Super("Lighting Executor"), m_World(a_World), m_MaxHeight(0), m_NumSeeds(0)
{
}





cLightingThread::~cLightingThread()
{
	Stop();
}





void cLightingThread::Stop(void)
{
	{
		cCSLock Lock(m_CS);
		for (cChunkStays::iterator itr = m_PendingQueue.begin(), end = m_PendingQueue.end(); itr != end; ++itr)
		{
			(*itr)->Disable();
			delete *itr;
		}
		m_PendingQueue.clear();
		for (cChunkStays::iterator itr = m_Queue.begin(), end = m_Queue.end(); itr != end; ++itr)
		{
			(*itr)->Disable();
			delete *itr;
		}
		m_Queue.clear();
	}
	m_ShouldTerminate = true;
	m_evtItemAdded.Set();

	Super::Stop();
}





void cLightingThread::QueueChunk(int a_ChunkX, int a_ChunkZ, std::unique_ptr<cChunkCoordCallback> a_CallbackAfter)
{
	cChunkStay * ChunkStay = new cLightingChunkStay(*this, a_ChunkX, a_ChunkZ, std::move(a_CallbackAfter));
	{
		// The ChunkStay will enqueue itself using the QueueChunkStay() once it is fully loaded
		// In the meantime, put it into the PendingQueue so that it can be removed when stopping the thread
		cCSLock Lock(m_CS);
		m_PendingQueue.push_back(ChunkStay);
	}
	ChunkStay->Enable(*m_World.GetChunkMap());
}





void cLightingThread::WaitForQueueEmpty(void)
{
	cCSLock Lock(m_CS);
	while (!m_ShouldTerminate && (!m_Queue.empty() || !m_PendingQueue.empty()))
	{
		cCSUnlock Unlock(Lock);
		m_evtQueueEmpty.Wait();
	}
}





size_t cLightingThread::GetQueueLength(void)
{
	cCSLock Lock(m_CS);
	return m_Queue.size() + m_PendingQueue.size();
}





void cLightingThread::Execute(void)
{
	for (;;)
	{
		{
			cCSLock Lock(m_CS);
			if (m_Queue.empty())
			{
				cCSUnlock Unlock(Lock);
				m_evtItemAdded.Wait();
			}
		}

		if (m_ShouldTerminate)
		{
			return;
		}

		// Process one items from the queue:
		cLightingChunkStay * Item;
		{
			cCSLock Lock(m_CS);
			if (m_Queue.empty())
			{
				continue;
			}
			Item = static_cast<cLightingChunkStay *>(m_Queue.front());
			m_Queue.pop_front();
			if (m_Queue.empty())
			{
				m_evtQueueEmpty.Set();
			}
		}  // CSLock(m_CS)

		LightChunk(*Item);
		Item->Disable();
		delete Item;
	}
}





void cLightingThread::LightChunk(cLightingChunkStay & a_Item)
{
	// If the chunk is already lit, skip it (report as success):
	if (m_World.IsChunkLighted(a_Item.m_ChunkX, a_Item.m_ChunkZ))
	{
		if (a_Item.m_CallbackAfter != nullptr)
		{
			a_Item.m_CallbackAfter->Call({a_Item.m_ChunkX, a_Item.m_ChunkZ}, true);
		}
		return;
	}

	cChunkDef::BlockNibbles BlockLight, SkyLight;

	ReadChunks(a_Item.m_ChunkX, a_Item.m_ChunkZ);

	PrepareBlockLight();
	CalcLight(m_BlockLight);

	PrepareSkyLight();

	/*
	// DEBUG: Save chunk data with highlighted seeds for visual inspection:
	cFile f4;
	if (
		f4.Open(fmt::format(FMT_STRING("Chunk_{}_{}_seeds.grab"), a_Item.m_ChunkX, a_Item.m_ChunkZ), cFile::fmWrite)
	)
	{
		for (int z = 0; z < cChunkDef::Width * 3; z++)
		{
			for (int y = cChunkDef::Height / 2; y >= 0; y--)
			{
				unsigned char Seeds     [cChunkDef::Width * 3];
				memcpy(Seeds, m_BlockTypes + y * BlocksPerYLayer + z * cChunkDef::Width * 3, cChunkDef::Width * 3);
				for (int x = 0; x < cChunkDef::Width * 3; x++)
				{
					if (m_IsSeed1[y * BlocksPerYLayer + z * cChunkDef::Width * 3 + x])
					{
						Seeds[x] = E_BLOCK_DIAMOND_BLOCK;
					}
				}
				f4.Write(Seeds, cChunkDef::Width * 3);
			}
		}
		f4.Close();
	}
	//*/

	CalcLight(m_SkyLight);

	/*
	// DEBUG: Save XY slices of the chunk data and lighting for visual inspection:
	cFile f1, f2, f3;
	if (
		f1.Open(fmt::format(FMT_STRING("Chunk_{}_{}_data.grab"), a_Item.m_ChunkX, a_Item.m_ChunkZ), cFile::fmWrite) &&
		f2.Open(fmt::format(FMT_STRING("Chunk_{}_{}_sky.grab"),  a_Item.m_ChunkX, a_Item.m_ChunkZ), cFile::fmWrite) &&
		f3.Open(fmt::format(FMT_STRING("Chunk_{}_{}_glow.grab"), a_Item.m_ChunkX, a_Item.m_ChunkZ), cFile::fmWrite)
	)
	{
		for (int z = 0; z < cChunkDef::Width * 3; z++)
		{
			for (int y = cChunkDef::Height / 2; y >= 0; y--)
			{
				f1.Write(m_BlockTypes + y * BlocksPerYLayer + z * cChunkDef::Width * 3, cChunkDef::Width * 3);
				unsigned char SkyLight  [cChunkDef::Width * 3];
				unsigned char BlockLight[cChunkDef::Width * 3];
				for (int x = 0; x < cChunkDef::Width * 3; x++)
				{
					SkyLight[x]   = m_SkyLight  [y * BlocksPerYLayer + z * cChunkDef::Width * 3 + x] << 4;
					BlockLight[x] = m_BlockLight[y * BlocksPerYLayer + z * cChunkDef::Width * 3 + x] << 4;
				}
				f2.Write(SkyLight,   cChunkDef::Width * 3);
				f3.Write(BlockLight, cChunkDef::Width * 3);
			}
		}
		f1.Close();
		f2.Close();
		f3.Close();
	}
	//*/

	CompressLight(m_BlockLight, BlockLight);
	CompressLight(m_SkyLight, SkyLight);

	m_World.ChunkLighted(a_Item.m_ChunkX, a_Item.m_ChunkZ, BlockLight, SkyLight);

	if (a_Item.m_CallbackAfter != nullptr)
	{
		a_Item.m_CallbackAfter->Call({a_Item.m_ChunkX, a_Item.m_ChunkZ}, true);
	}
}





void cLightingThread::ReadChunks(int a_ChunkX, int a_ChunkZ)
{
	cReader Reader(m_BlockTypes, m_HeightMap);

	for (int z = 0; z < 3; z++)
	{
		Reader.m_ReadingChunkZ = z;
		for (int x = 0; x < 3; x++)
		{
			Reader.m_ReadingChunkX = x;
			VERIFY(m_World.GetChunkData({a_ChunkX + x - 1, a_ChunkZ + z - 1}, Reader));
		}  // for z
	}  // for x

	memset(m_BlockLight, 0, sizeof(m_BlockLight));
	memset(m_SkyLight, 0, sizeof(m_SkyLight));
	m_MaxHeight = Reader.m_MaxHeight;
}





void cLightingThread::PrepareSkyLight(void)
{
	// Clear seeds:
	memset(m_IsSeed1, 0, sizeof(m_IsSeed1));
	m_NumSeeds = 0;

	// Fill the top of the chunk with all-light:
	if (m_MaxHeight < cChunkDef::Height - 1)
	{
		std::fill(
			m_SkyLight + (m_MaxHeight + 1) * BlocksPerYLayer,
			m_SkyLight + ARRAYCOUNT(m_SkyLight),
			static_cast<NIBBLETYPE>(15)
		);
	}

	// Walk every column that has all XZ neighbors
	for (int z = 1; z < cChunkDef::Width * 3 - 1; z++)
	{
		int BaseZ = z * cChunkDef::Width * 3;
		for (int x = 1; x < cChunkDef::Width * 3 - 1; x++)
		{
			int idx = BaseZ + x;
			// Find the lowest block in this column that receives full sunlight (go through transparent blocks):
			int Current = m_HeightMap[idx];
			ASSERT(Current < cChunkDef::Height);
			while ((Current >= 0) && cBlockInfo::IsTransparent(m_BlockTypes[idx + Current * BlocksPerYLayer]) &&
				   !cBlockInfo::IsSkylightDispersant(m_BlockTypes[idx + Current * BlocksPerYLayer]))
			{
				Current -= 1;  // Sunlight goes down unchanged through this block
			}
			Current += 1;  // Point to the last sunlit block, rather than the first non-transparent one
			// The other neighbors don't need transparent-block-checking. At worst we'll have a few dud seeds above the
			// ground.
			int Neighbor1 = m_HeightMap[idx + 1] + 1;  // X + 1
			int Neighbor2 = m_HeightMap[idx - 1] + 1;  // X - 1
			int Neighbor3 = m_HeightMap[idx + cChunkDef::Width * 3] + 1;  // Z + 1
			int Neighbor4 = m_HeightMap[idx - cChunkDef::Width * 3] + 1;  // Z - 1
			int MaxNeighbor = std::max(
				std::max(Neighbor1, Neighbor2),
				std::max(Neighbor3, Neighbor4)
			);  // Maximum of the four neighbors

			// Fill the column from m_MaxHeight to Current with all-light:
			for (int y = m_MaxHeight, Index = idx + y * BlocksPerYLayer; y >= Current; y--, Index -= BlocksPerYLayer)
			{
				m_SkyLight[Index] = 15;
			}

			// Add Current as a seed:
			if (Current < cChunkDef::Height)
			{
				int CurrentIdx = idx + Current * BlocksPerYLayer;
				m_IsSeed1[CurrentIdx] = true;
				m_SeedIdx1[m_NumSeeds++] = static_cast<UInt32>(CurrentIdx);
			}

			// Add seed from Current up to the highest neighbor:
			for (int y = Current + 1, Index = idx + y * BlocksPerYLayer; y < MaxNeighbor; y++, Index += BlocksPerYLayer)
			{
				m_IsSeed1[Index] = true;
				m_SeedIdx1[m_NumSeeds++] = static_cast<UInt32>(Index);
			}
		}
	}
}





void cLightingThread::PrepareBlockLight()
{
	// Clear seeds:
	memset(m_IsSeed1, 0, sizeof(m_IsSeed1));
	memset(m_IsSeed2, 0, sizeof(m_IsSeed2));
	m_NumSeeds = 0;

	// Add each emissive block into the seeds:
	for (int Idx = 0; Idx < (m_MaxHeight * BlocksPerYLayer); ++Idx)
	{
		if (cBlockInfo::GetLightValue(m_BlockTypes[Idx]) == 0)
		{
			// Not a light-emissive block
			continue;
		}

		// Add current block as a seed:
		m_IsSeed1[Idx] = true;
		m_SeedIdx1[m_NumSeeds++] = static_cast<UInt32>(Idx);

		// Light it up:
		m_BlockLight[Idx] = cBlockInfo::GetLightValue(m_BlockTypes[Idx]);
	}
}





void cLightingThread::CalcLight(NIBBLETYPE * a_Light)
{
	size_t NumSeeds2 = 0;
	while (m_NumSeeds > 0)
	{
		// Buffer 1 -> buffer 2
		memset(m_IsSeed2, 0, sizeof(m_IsSeed2));
		NumSeeds2 = 0;
		CalcLightStep(a_Light, m_NumSeeds, m_IsSeed1, m_SeedIdx1, NumSeeds2, m_IsSeed2, m_SeedIdx2);
		if (NumSeeds2 == 0)
		{
			return;
		}

		// Buffer 2 -> buffer 1
		memset(m_IsSeed1, 0, sizeof(m_IsSeed1));
		m_NumSeeds = 0;
		CalcLightStep(a_Light, NumSeeds2, m_IsSeed2, m_SeedIdx2, m_NumSeeds, m_IsSeed1, m_SeedIdx1);
	}
}





void cLightingThread::CalcLightStep(
	NIBBLETYPE * a_Light,
	size_t a_NumSeedsIn,
	unsigned char * a_IsSeedIn,
	unsigned int * a_SeedIdxIn,
	size_t & a_NumSeedsOut,
	unsigned char * a_IsSeedOut,
	unsigned int * a_SeedIdxOut
)
{
	UNUSED(a_IsSeedIn);
	size_t NumSeedsOut = 0;
	for (size_t i = 0; i < a_NumSeedsIn; i++)
	{
		UInt32 SeedIdx = static_cast<UInt32>(a_SeedIdxIn[i]);
		int SeedX = SeedIdx % (cChunkDef::Width * 3);
		int SeedZ = (SeedIdx / (cChunkDef::Width * 3)) % (cChunkDef::Width * 3);

		// Propagate seed:
		if (SeedX < cChunkDef::Width * 3 - 1)
		{
			PropagateLight(a_Light, SeedIdx, SeedIdx + 1, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut);
		}
		if (SeedX > 0)
		{
			PropagateLight(a_Light, SeedIdx, SeedIdx - 1, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut);
		}
		if (SeedZ < cChunkDef::Width * 3 - 1)
		{
			PropagateLight(a_Light, SeedIdx, SeedIdx + cChunkDef::Width * 3, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut);
		}
		if (SeedZ > 0)
		{
			PropagateLight(a_Light, SeedIdx, SeedIdx - cChunkDef::Width * 3, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut);
		}
		if (SeedIdx < (cChunkDef::Height - 1) * BlocksPerYLayer)
		{
			PropagateLight(a_Light, SeedIdx, SeedIdx + BlocksPerYLayer, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut);
		}
		if (SeedIdx >= BlocksPerYLayer)
		{
			PropagateLight(a_Light, SeedIdx, SeedIdx - BlocksPerYLayer, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut);
		}
	}  // for i - a_SeedIdxIn[]
	a_NumSeedsOut = NumSeedsOut;
}





void cLightingThread::CompressLight(NIBBLETYPE * a_LightArray, NIBBLETYPE * a_ChunkLight)
{
	int InIdx = cChunkDef::Width * 49;  // Index to the first nibble of the middle chunk in the a_LightArray
	int OutIdx = 0;
	for (int y = 0; y < cChunkDef::Height; y++)
	{
		for (int z = 0; z < cChunkDef::Width; z++)
		{
			for (int x = 0; x < cChunkDef::Width; x += 2)
			{
				a_ChunkLight[OutIdx++] = static_cast<NIBBLETYPE>(a_LightArray[InIdx + 1] << 4) | a_LightArray[InIdx];
				InIdx += 2;
			}
			InIdx += cChunkDef::Width * 2;
		}
		// Skip into the next y-level in the 3x3 chunk blob; each level has cChunkDef::Width * 9 rows
		// We've already walked cChunkDef::Width * 3 in the "for z" cycle, that makes cChunkDef::Width * 6 rows left to
		// skip
		InIdx += cChunkDef::Width * cChunkDef::Width * 6;
	}
}





void cLightingThread::PropagateLight(
	NIBBLETYPE * a_Light,
	unsigned int a_SrcIdx,
	unsigned int a_DstIdx,
	size_t & a_NumSeedsOut,
	unsigned char * a_IsSeedOut,
	unsigned int * a_SeedIdxOut
)
{
	ASSERT(a_SrcIdx < ARRAYCOUNT(m_SkyLight));
	ASSERT(a_DstIdx < ARRAYCOUNT(m_BlockTypes));

	if (a_Light[a_SrcIdx] <= a_Light[a_DstIdx] + cBlockInfo::GetSpreadLightFalloff(m_BlockTypes[a_DstIdx]))
	{
		// We're not offering more light than the dest block already has
		return;
	}

	a_Light[a_DstIdx] = a_Light[a_SrcIdx] - cBlockInfo::GetSpreadLightFalloff(m_BlockTypes[a_DstIdx]);
	if (!a_IsSeedOut[a_DstIdx])
	{
		a_IsSeedOut[a_DstIdx] = true;
		a_SeedIdxOut[a_NumSeedsOut++] = a_DstIdx;
	}
}





void cLightingThread::QueueChunkStay(cLightingChunkStay & a_ChunkStay)
{
	// Move the ChunkStay from the Pending queue to the lighting queue.
	{
		cCSLock Lock(m_CS);
		m_PendingQueue.remove(&a_ChunkStay);
		m_Queue.push_back(&a_ChunkStay);
	}
	m_evtItemAdded.Set();
}





////////////////////////////////////////////////////////////////////////////////
// cLightingThread::cLightingChunkStay:

cLightingThread::cLightingChunkStay::cLightingChunkStay(
	cLightingThread & a_LightingThread,
	int a_ChunkX,
	int a_ChunkZ,
	std::unique_ptr<cChunkCoordCallback> a_CallbackAfter
) :
	m_LightingThread(a_LightingThread),
	m_ChunkX(a_ChunkX),
	m_ChunkZ(a_ChunkZ),
	m_CallbackAfter(std::move(a_CallbackAfter))
{
	Add(a_ChunkX + 1, a_ChunkZ + 1);
	Add(a_ChunkX + 1, a_ChunkZ);
	Add(a_ChunkX + 1, a_ChunkZ - 1);
	Add(a_ChunkX, a_ChunkZ + 1);
	Add(a_ChunkX, a_ChunkZ);
	Add(a_ChunkX, a_ChunkZ - 1);
	Add(a_ChunkX - 1, a_ChunkZ + 1);
	Add(a_ChunkX - 1, a_ChunkZ);
	Add(a_ChunkX - 1, a_ChunkZ - 1);
}





bool cLightingThread::cLightingChunkStay::OnAllChunksAvailable(void)
{
	m_LightingThread.QueueChunkStay(*this);

	// Keep the ChunkStay alive:
	return false;
}





void cLightingThread::cLightingChunkStay::OnDisabled(void)
{
	// Nothing needed in this callback
}