diff options
author | Anton Luka Šijanec <anton@sijanec.eu> | 2024-02-02 12:49:38 +0100 |
---|---|---|
committer | Anton Luka Šijanec <anton@sijanec.eu> | 2024-02-02 12:49:38 +0100 |
commit | 53b31c6ea98363871c7c6bdb8e662ad825e3f47a (patch) | |
tree | afb56424b413287bb9189a014475286bf06dc706 /šola/ds1 | |
parent | la2kol (diff) | |
download | r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.tar r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.tar.gz r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.tar.bz2 r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.tar.lz r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.tar.xz r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.tar.zst r-53b31c6ea98363871c7c6bdb8e662ad825e3f47a.zip |
Diffstat (limited to 'šola/ds1')
-rw-r--r-- | šola/ds1/izpit.lyx | 1911 |
1 files changed, 1911 insertions, 0 deletions
diff --git a/šola/ds1/izpit.lyx b/šola/ds1/izpit.lyx new file mode 100644 index 0000000..f442310 --- /dev/null +++ b/šola/ds1/izpit.lyx @@ -0,0 +1,1911 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\end_preamble +\use_default_options true +\begin_modules +enumitem +\end_modules +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 1cm +\rightmargin 1cm +\bottommargin 2cm +\headheight 1cm +\headsep 1cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newcommand +\backslash +euler{e} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +setlength{ +\backslash +columnseprule}{0.2pt} +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Paragraph +Izjavni račun +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall\exists$ +\end_inset + +, +\begin_inset Formula $\neg$ +\end_inset + +, +\begin_inset Formula $\wedge\uparrow\downarrow$ +\end_inset + +, +\begin_inset Formula $\vee\oplus$ +\end_inset + +, +\begin_inset Formula $\Rightarrow$ +\end_inset + + (left to right), +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\end_layout + +\begin_layout Standard +absorbcija: +\begin_inset Formula $a\wedge\left(b\vee a\right)\sim a,\quad a\vee\left(b\wedge a\right)\sim a$ +\end_inset + + +\end_layout + +\begin_layout Standard +kontrapozicija: +\begin_inset Formula $a\Rightarrow b\quad\sim\quad\neg a\vee b$ +\end_inset + + +\end_layout + +\begin_layout Standard +osnovna konjunkcija +\begin_inset Formula $\coloneqq$ +\end_inset + + minterm +\end_layout + +\begin_layout Standard +globina +\begin_inset Formula $\coloneqq$ +\end_inset + + +\begin_inset Formula $\begin{cases} +1 & \text{izraz nima veznikov}\\ +1+\max\left\{ A_{1}\dots A_{n}\right\} & A_{i}\text{ param. zun. vezn.} +\end{cases}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A_{1},\dots,A_{n},B$ +\end_inset + + je pravilen sklep, če +\begin_inset Formula $\vDash\bigwedge_{k=1}^{n}A_{k}\Rightarrow B$ +\end_inset + +. + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +zaključek +\begin_inset Formula $B$ +\end_inset + + drži pri vseh tistih naborih vrednostih spremenljivk, pri katerih hkrati + držijo vse predpostavke +\begin_inset Formula $A_{i}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Paragraph + +\series bold +Pravila sklepanja +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{align*} +\end_layout + +\begin_layout Plain Layout + +&& A, A +\backslash +Rightarrow B & +\backslash +vDash B && +\backslash +text{ +\backslash +emph{modus ponens}} && +\backslash +text{M. + P.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +Rightarrow B, +\backslash +neg B & +\backslash +vDash +\backslash +neg A && +\backslash +text{ +\backslash +emph{modus tollens}} && +\backslash +text{M. + T.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +wedge B, +\backslash +neg B & +\backslash +vDash A && +\backslash +text{ +\backslash +emph{disjunktivni silogizem}} && +\backslash +text{D. + S.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +Rightarrow B, B +\backslash +Rightarrow C & +\backslash +vDash A +\backslash +Rightarrow C && +\backslash +text{ +\backslash +emph{hipotetični silogizem}} && +\backslash +text{H. + S} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A, B & +\backslash +vDash A +\backslash +wedge B && +\backslash +text{ +\backslash +emph{združitev}} && +\backslash +text{Zd.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& A +\backslash +wedge B & +\backslash +vDash A && +\backslash +text{ +\backslash +emph{poenostavitev}} && +\backslash +text{Po.} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{align*} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Protiprimer +\begin_inset Formula $1,\dots,1\vDash0$ +\end_inset + + dokaže nepravilnost sklepa. +\end_layout + +\begin_layout Paragraph + +\series bold +Pomožni sklepi +\series default +: +\end_layout + +\begin_layout Itemize +Pogojni sklep (P.S.): +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newline +\end_layout + +\end_inset + + +\begin_inset Formula $A_{1},\dots,A_{n}\vDash B\Rightarrow C\quad\sim\quad A_{1},\dots,A_{n},B\vDash C$ +\end_inset + + +\end_layout + +\begin_layout Itemize +S protislovjem (R.A. + – +\emph on +reduction ad absurdum +\emph default +): +\begin_inset Formula $A_{1},\dots,A_{n}\vDash B\quad\sim\quad A_{1},\dots,A_{n},\neg B\vDash0$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Analiza primerov (A. + P.): +\begin_inset Formula $A_{1},\dots,A_{n},B_{1}\vee B_{2}\vDash C\sim\left(A_{1},\dots,A_{n},B_{1}\vDash C\right)\wedge\left(A_{1},\dots,A_{n},B_{2}\vDash C\right)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A_{1},\dots,A_{n},B_{1}\wedge B_{2}\vDash C\quad\sim\quad A_{1},\dots,A_{n},B_{1},B_{2}\vDash C$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Predikatni račun +\end_layout + +\begin_layout Standard +\begin_inset Formula $P:D^{n}\longrightarrow\left\{ 0,1\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +De Morganov zakon negacije: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall x:\neg P\left(x\right)\quad\sim\quad\neg\exists x:P\left(x\right)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists x:\neg P\left(x\right)\quad\sim\quad\neg\forall x:P\left(x\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Izjava je zaprta izjavna formula, torej taka, ki ne vsebuje prostih ( +\begin_inset Formula $=$ +\end_inset + +nevezanih) nastopov spremenljivk. +\end_layout + +\begin_layout Paragraph +Množice +\end_layout + +\begin_layout Standard +\begin_inset Formula $^{\mathcal{C}},\cap\backslash,\cup\oplus$ +\end_inset + + (left to right) +\end_layout + +\begin_layout Standard +Distributivnost: +\begin_inset Formula $\cup\cap$ +\end_inset + +, +\begin_inset Formula $\cap\cup$ +\end_inset + +, +\begin_inset Formula $\left(\mathcal{A}\oplus\mathcal{B}\right)\cap\mathcal{C}=\left(\mathcal{A\cap\mathcal{C}}\right)\oplus\left(\mathcal{B}\cap\mathcal{C}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Asociativnost: +\begin_inset Formula $\oplus\cup\cap$ +\end_inset + +. + Distributivnost: +\begin_inset Formula $\oplus\cup\cap$ +\end_inset + + +\end_layout + +\begin_layout Standard +Absorbcija: +\begin_inset Formula $\mathcal{A}\cup\left(\mathcal{A}\cap\mathcal{B}\right)=\mathcal{A}=A\cap\left(\mathcal{A}\cup\mathcal{B}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{A}\subseteq\mathcal{B}\Leftrightarrow\mathcal{A}\cup\mathcal{B}=\mathcal{B}\Leftrightarrow\mathcal{A}\cup\mathcal{B}=\mathcal{A}\Leftrightarrow\mathcal{A}\backslash\mathcal{B}=\emptyset\Leftrightarrow\mathcal{B}^{\mathcal{C}}\subseteq\mathcal{A^{\mathcal{C}}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{A}=\mathcal{B}\Longleftrightarrow\mathcal{A\oplus\mathcal{B}}=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{A}=\emptyset\wedge\mathcal{B}=\emptyset\Longleftrightarrow\mathcal{A}\cup\mathcal{B}=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(\mathcal{X}\cap\mathcal{P}\right)\cup\left(\mathcal{X^{C}}\cap\mathcal{Q}\right)=\emptyset\Longleftrightarrow\text{\ensuremath{\mathcal{Q\subseteq X}\subseteq\mathcal{P^{C}}}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{A}\backslash\mathcal{B}\sim\mathcal{A}\cap\mathcal{B}^{C}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{X}\cup\mathcal{X^{C}}=\emptyset$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{W}=\mathcal{W}\cap\mathcal{U}=\mathcal{W\cap}\left(\mathcal{X}\cup\mathcal{X^{C}}\right)=\left(\mathcal{W}\cap\mathcal{X}\right)\cup\left(\mathcal{W}\cap\mathcal{X^{C}}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathcal{A}\oplus\mathcal{B}=\left(\mathcal{A}\backslash\mathcal{B}\right)\cup\left(\mathcal{B\backslash\mathcal{A}}\right)$ +\end_inset + + +\end_layout + +\begin_layout Paragraph + +\series bold +Lastnosti binarnih relacij +\end_layout + +\begin_layout Paragraph +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{align*} +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a +\backslash +in A : & +\backslash +left(a R a +\backslash +right) && +\backslash +text{refleksivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A : & +\backslash +left(a R b +\backslash +Rightarrow b R a +\backslash +right)&& +\backslash +text{simetričnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A : & +\backslash +left(a R b +\backslash +wedge b R a +\backslash +Rightarrow a=b +\backslash +right) && +\backslash +text{antisimetričnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b,c +\backslash +in A : & +\backslash +left(a R b +\backslash +wedge b R c +\backslash +Rightarrow a R c +\backslash +right) && +\backslash +text{tranzitivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a +\backslash +in A : & +\backslash +neg +\backslash +left(a R a +\backslash +right) && +\backslash +text{irefleksivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A: & +\backslash +left(a R b +\backslash +Rightarrow +\backslash +neg +\backslash +left(b R a +\backslash +right) +\backslash +right) && +\backslash +text{asimetričnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b,c +\backslash +in A:& +\backslash +left(a R b +\backslash +wedge b R c +\backslash +Rightarrow +\backslash +neg +\backslash +left(a R c +\backslash +right) +\backslash +right) && +\backslash +text{itranzitivnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A:& +\backslash +left(a +\backslash +not=b +\backslash +Rightarrow +\backslash +left(a R b +\backslash +vee b R a +\backslash +right) +\backslash +right) && +\backslash +text{sovisnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b +\backslash +in A:& +\backslash +left(a R b +\backslash +vee b R a +\backslash +right)&& +\backslash +text{stroga sovisnost} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall a,b,c +\backslash +in A:& +\backslash +left(aRb +\backslash +wedge aRc +\backslash +Rightarrow b=c +\backslash +right)&& +\backslash +text{enoličnost} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{align*} +\end_layout + +\end_inset + +Sklepanje s kvantifikatorji +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{align*} +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +exists x:P +\backslash +left(x +\backslash +right) +\backslash +longrightarrow& x_0 +\backslash +coloneqq x, P +\backslash +left(x +\backslash +right) && +\backslash +text{eksistenčna specifikacija} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& P +\backslash +left(x_0 +\backslash +right) +\backslash +longrightarrow& +\backslash +exists x:P +\backslash +left(x +\backslash +right)&& +\backslash +text{eksistenčna generalizacija} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +forall x:P +\backslash +left(x +\backslash +right) +\backslash +longrightarrow& x_0 +\backslash +coloneqq x, P +\backslash +left(x +\backslash +right)&& +\backslash +text{univerzalna specifikacija} +\backslash + +\backslash + +\end_layout + +\begin_layout Plain Layout + +&& +\backslash +text{poljub. + } x_0, P +\backslash +left(x_0 +\backslash +right) +\backslash +longrightarrow& +\backslash +forall x:P +\backslash +left(x +\backslash +right)&& +\backslash +text{univerzalna generalizacija} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{align*} +\end_layout + +\end_inset + + +\begin_inset Formula $R\subseteq A\times B:aR\oplus Sb\sim\left(a,b\right)\in R\backslash S\vee\left(a,b\right)\in S\backslash R\sim aRb\oplus aSb$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $R^{-1}\coloneqq\left\{ \left(b,a\right);\left(a,b\right)\in R\right\} :\quad aRb\sim bR^{-1}a$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $R*S\coloneqq\left\{ \left(a,c\right);\exists b:\left(aRb\wedge bSc\right)\right\} :R^{2}\coloneqq R*R,R^{n+1}\coloneqq R^{n}*R$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $\left(R^{-1}\right)^{-1}=R,\left(R\cup S\right)^{-1}=R^{-1}\cup S^{-1},\left(R\cap S\right)^{-1}=R^{-1}\cap S^{-1}$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $\left(R*S\right)=R^{-1}*S^{-1}$ +\end_inset + +. + +\begin_inset Formula $*\cup$ +\end_inset + + in +\begin_inset Formula $\cup*$ +\end_inset + + sta distributivni. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R^{+}=R\cup R^{2}\cup R^{3}\cup\dots,\quad R^{*}=I\cup R^{+}$ +\end_inset + + +\begin_inset Newline newline +\end_inset + +Ovojnica +\begin_inset Formula $R^{L}\supseteq R$ +\end_inset + + je najmanjša razširitev +\begin_inset Formula $R$ +\end_inset + +, ki ima lastnost +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $R^{\text{ref}}\coloneqq I\cup R,R^{\text{sim}}\coloneqq R\cup R^{-1},R^{\text{tranz}}=R^{+},R^{\text{tranz+ref}}=R^{*}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Ekvivalenčna rel. + je simetrična, tranzitivna in refleksivna. +\end_layout + +\begin_layout Standard +Ekvivalenčni razred: +\begin_inset Formula $R\left[x\right]\coloneqq\left\{ y;xRy\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +Faktorska množica: +\begin_inset Formula $A/R\coloneqq\left\{ R\left[x\right];x\in A\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\vec{\mathcal{B}}\text{ razbitje}A\Longleftrightarrow\bigcup_{i}\mathcal{B}_{i}=A\wedge\forall i\mathcal{B}_{i}\not=\emptyset\wedge\mathcal{B}_{i}\cap\mathcal{B}_{j}=\emptyset,i\not=j$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Urejenosti +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(M,\preccurlyeq\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Delna: refl., antisim. + in tranz. + Linearna: delna, sovisna +\end_layout + +\begin_layout Standard +def.: +\begin_inset Formula $x\prec y\Longleftrightarrow x\preccurlyeq y\wedge x\not=y$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $x\text{ je nepo. predh. }y\Longleftrightarrow x\prec y\wedge\neg\exists z\in M:\left(x\prec z\wedge z\prec y\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je minimalen}\Longleftrightarrow\forall x\in M\left(x\preccurlyeq a\Rightarrow x=a\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je maksimalen}\Longleftrightarrow\forall x\in M\left(a\preccurlyeq x\Rightarrow x=a\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je prvi}\Longleftrightarrow\forall x\in M:\left(a\preccurlyeq x\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\in M\text{ je zadnji}\Longleftrightarrow\forall x\in M:\left(x\preccurlyeq a\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $M_{1}\times M_{2}$ +\end_inset + +: +\begin_inset Formula $\left(a_{1},b_{1}\right)\preccurlyeq\left(a_{2},b_{2}\right)\coloneqq a_{1}\preccurlyeq a_{2}\wedge b_{1}\preccurlyeq b_{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Srečno! +\end_layout + +\begin_layout Paragraph +Funkcijska polnost +\end_layout + +\begin_layout Standard +\begin_inset Formula $T_{0},$ +\end_inset + + +\begin_inset Formula $T_{1}$ +\end_inset + +, +\begin_inset Formula $S$ +\end_inset + + – +\begin_inset Formula $f\left(\vec{x}\right)=\neg f\left(\vec{x}\oplus\vec{1}\right)$ +\end_inset + +, +\begin_inset Formula $L$ +\end_inset + +, +\begin_inset Formula $M$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $L$ +\end_inset + + – +\begin_inset Formula $f\left(\vec{x}\right)=\left[\begin{array}{ccc} +a_{0} & \dots & a_{n}\end{array}\right]^{T}\oplus\wedge\left[\begin{array}{cccc} +1 & x_{1} & \dots & x_{n}\end{array}\right]$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $M$ +\end_inset + + – +\begin_inset Formula $\forall i,j:\vec{w_{i}}<\vec{w_{j}}\Rightarrow f\left(\vec{w_{i}}\right)\leq f\left(\vec{w_{j}}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Paragraph +Supermum in infimum +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sup\left(a,b\right)$ +\end_inset + + in +\begin_inset Formula $\inf\left(a,b\right)$ +\end_inset + + v +\begin_inset Formula $\left(M,\preceq\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sup\left(a,b\right)\coloneqq j\ni:a\preceq j\wedge b\preceq j\wedge\forall x:a\preceq x\wedge b\preceq x\Rightarrow j\preceq x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\inf\left(a,b\right)\coloneqq j\ni:j\preceq a\wedge j\preceq b\wedge\forall x:x\preceq a\wedge x\preceq b\Rightarrow x\preceq j$ +\end_inset + + +\end_layout + +\begin_layout Standard +Relacijska +\series bold +def. + mreže +\series default +: Delna urejenost je mreža +\begin_inset Formula $\Leftrightarrow\forall a,b\in M:\exists\sup\left(a,b\right)\wedge\exists\inf\left(a,b\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Algebrajska +\series bold +def. + mreže +\series default +: +\begin_inset Formula $\left(M,\wedge,\vee\right)$ +\end_inset + + je mreža, če veljata idempotentnosti +\begin_inset Formula $a\vee a=a\wedge a=a$ +\end_inset + +, komutativnosti, asociativnosti in absorpciji. +\end_layout + +\begin_layout Standard +Mreža je +\series bold +omejena +\series default + +\begin_inset Formula $\Leftrightarrow\exists0,1\in M\ni:\forall x\in M:0\preceq x\preceq1$ +\end_inset + + +\end_layout + +\begin_layout Standard +Mreža je +\series bold +komplementarna +\series default + +\begin_inset Formula $\Leftrightarrow\forall a\in M\exists a^{-1}\in M\ni:a\wedge a^{-1}\sim0\text{ in }a\vee a^{-1}\sim1$ +\end_inset + + +\end_layout + +\begin_layout Standard +V +\series bold +distributivni mreži +\series default + veljata obe distributivnosti. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sup\left(a,b\right)\sim a\wedge b,\quad\inf\left(a,b\right)\sim a\vee b$ +\end_inset + + +\end_layout + +\begin_layout Standard +V delni urejenosti velja: +\begin_inset Formula $a\preceq b\Leftrightarrow a=\inf\left(a,b\right)\Leftrightarrow b=\sup\left(a,b\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $M_{5},N_{5}$ +\end_inset + + nista distributivni. +\end_layout + +\begin_layout Standard + +\series bold +\begin_inset Formula $\left(N,\wedge,\vee\right)$ +\end_inset + + +\series default +je +\series bold + podmreža +\series default + +\begin_inset Formula $\left(M,\wedge,\vee\right)\Leftrightarrow\emptyset\not=N\subseteq M,\forall a,b\in N:a\vee b\in N\text{ in }a\wedge b\in N$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Boolova algebra +\series default + je komplementarna distributivna mreža. + Tedaj ima vsak element natanko en komplement in velja dualnost ter De Morganova + zakona. +\end_layout + +\begin_layout Paragraph +Funkcije +\end_layout + +\begin_layout Standard +Funkcija +\begin_inset Formula $f$ +\end_inset + + je preslikava, če je +\begin_inset Formula $D_{f}$ +\end_inset + + domena. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $f,g\text{ injekciji }\Rightarrow g\circ f\text{ injekcija}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $f,g\text{ surjekciji }\Rightarrow g\circ f\text{ surjekcija}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $g\circ f\text{ injekcija }\Rightarrow f\text{ injekcija}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $g\circ f\text{ surjekcija }\Rightarrow g\text{ surjekcija}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Slika množice +\begin_inset Formula $A_{1}\subseteq A$ +\end_inset + +: +\begin_inset Formula $f\left(A_{1}\right)\coloneqq\left\{ y\in B;\exists x\in A_{1}\ni:f\left(x\right)=y\right\} $ +\end_inset + +. + Praslika +\begin_inset Formula $B_{1}\subseteq B$ +\end_inset + +: +\begin_inset Formula $f^{-1}\left(B_{1}\right)=\left\{ x\in A:\exists y\in B_{1}\ni:f\left(x\right)=y\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Permutacije +\end_layout + +\begin_layout Standard +\begin_inset Formula $\pi=\pi^{-1}\Leftrightarrow\pi$ +\end_inset + + je konvolucija. +\end_layout + +\begin_layout Standard +V disjunktnih ciklih velja: +\begin_inset Formula $C_{1}C_{2}=C_{2}C_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +V ciklih velja: +\begin_inset Formula $C_{2}^{-1}C_{1}^{-1}=\left(C_{1}C_{2}\right)^{-1}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Razcep na disjunktne cikle je enoličen. +\end_layout + +\begin_layout Standard +Neenolično razbitje cikla dolžine +\begin_inset Formula $n$ +\end_inset + + na produkt +\begin_inset Formula $n-1$ +\end_inset + + transpozicij: +\begin_inset Formula $\left(a_{1}a_{2}a_{3}a_{4}a_{5}\right)=\left(a_{1}a_{2}\right)\left(a_{1}a_{3}\right)\left(a_{1}a_{4}\right)\left(a_{1}a_{5}\right)$ +\end_inset + +. + Parnost števila transpozicij je enolična. + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newcommand +\backslash +red{ +\backslash +text{red}} +\backslash +newcommand +\backslash +sgn{ +\backslash +text{sgn}} +\backslash +newcommand +\backslash +lcm{ +\backslash +text{lcm}} +\end_layout + +\end_inset + + +\begin_inset Formula $\sgn\pi=\sgn\pi^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\red\pi$ +\end_inset + + je najmanjše +\begin_inset Formula $k\ni:\pi^{k}=id$ +\end_inset + + +\end_layout + +\begin_layout Standard +Za cikel +\begin_inset Formula $C$ +\end_inset + + dolžine +\begin_inset Formula $n$ +\end_inset + + velja: +\begin_inset Formula $C^{n}=id$ +\end_inset + + — +\begin_inset Formula $\red C=n$ +\end_inset + + +\end_layout + +\begin_layout Standard +Red produkta disjunktnih ciklov dolžin +\begin_inset Formula $\vec{n}$ +\end_inset + + je +\begin_inset Formula $\lcm\left(\vec{n}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Moči končnih množic +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left|A\times B\right|=\left|A\right|\left|B\right|$ +\end_inset + +, +\begin_inset Formula $\left|\mathcal{P}\left(A\right)\right|=2^{\left|A\right|}$ +\end_inset + +, +\begin_inset Formula $\left|B^{A}\right|=\left|B\right|^{\left|A\right|}$ +\end_inset + +, +\begin_inset Formula $\left|B\backslash A\right|=\left|B\right|-\left|A\cap B\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +Princip vključitve in izključitve: +\begin_inset Formula $\left|A_{1}\cup A_{2}\cup\cdots\cup A_{n}\right|=\sum_{i=1}^{n}\left(-1\right)^{i+1}S_{i}$ +\end_inset + +, kjer +\begin_inset Formula $S_{k}\coloneqq\sum_{I\subseteq\left\{ 1,\dots,n\right\} ,\left|I\right|=k}\bigcap_{i\in I}A_{i}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Neskončne množice +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + in +\begin_inset Formula $B$ +\end_inset + + sta enakomočni: +\begin_inset Formula $A\sim B\Leftrightarrow\exists\text{bijekcija }f:A\to B$ +\end_inset + +. + +\begin_inset Formula $\sim$ +\end_inset + + je ekvivalenčna relacija. +\end_layout + +\begin_layout Standard +Ekvivalenčni razredi: +\begin_inset Formula $0,1,2,\dots,\aleph_{0},c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + je neskončna +\begin_inset Formula $\Leftrightarrow\exists B\subset A\ni:A\sim B$ +\end_inset + +, drugače je končna. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + ima manjšo ali enako moč kot +\begin_inset Formula $B$ +\end_inset + + zapišemo: +\begin_inset Formula $A\leq B\Leftrightarrow\exists\text{injekcija }f:A\to B$ +\end_inset + +. + Označimo +\begin_inset Formula $A<B\Leftrightarrow A\leq B\wedge A\not\sim B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A\leq B\wedge B\leq A\Leftrightarrow A\sim B,\quad\forall A,B:A<B\vee B<A\vee A\sim B$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall A\not=\emptyset,B:A\leq B\Leftrightarrow\exists\text{surjekcija }g:B\to A$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall$ +\end_inset + +neskončna množica vsebuje števno neskončno podmnožico. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A<\mathcal{P}\left(A\right)$ +\end_inset + +, posledično +\begin_inset Formula $A<\mathcal{P}\left(A\right)<\mathcal{P}^{2}\left(A\right)<\mathcal{P}^{2}\left(A\right)<\cdots$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{N}<\mathcal{P}\left(\mathbb{N}\right)=c<\mathcal{P}^{2}\left(\mathbb{N}\right)<\cdots$ +\end_inset + + +\end_layout + +\begin_layout Standard +Za neskončno +\begin_inset Formula $A$ +\end_inset + + in končno +\begin_inset Formula $B$ +\end_inset + + velja +\begin_inset Formula $A\backslash B\sim A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Za neskončno +\begin_inset Formula $A$ +\end_inset + + in števno neskončno +\begin_inset Formula $B$ +\end_inset + + velja +\begin_inset Formula $A\sim A\cup B$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Teorija števil +\end_layout + +\begin_layout Standard +\begin_inset Formula $-\lfloor-x\rfloor=\lceil x\rceil,\quad-\lceil-x\rceil=\lfloor x\rfloor$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\lceil x\rceil=\min\left\{ k\in\mathbb{Z};k\geq x\right\} ,\quad\lfloor x\rfloor=\max\left\{ k\in\mathbb{Z};k\leq x\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $m\vert n\Leftrightarrow\exists k\in\mathbb{Z}\ni:n=km$ +\end_inset + +. + +\begin_inset Formula $\vert$ +\end_inset + + je antisimetrična. +\end_layout + +\begin_layout Standard +\begin_inset Formula $m\vert a\wedge m\vert b\Rightarrow m\vert\left(a+b\right)$ +\end_inset + +, +\begin_inset Formula $m\vert a\Rightarrow m\vert ak$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\bot b\Leftrightarrow\gcd\left(a,b\right)=1\Leftrightarrow m\bot\left(a\mod b\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $ab=\gcd\left(a,b\right)\lcm\left(a,b\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + + je praštevilo +\begin_inset Formula $\Leftrightarrow\left|\text{D}\left(p\right)\right|=2$ +\end_inset + + (število deliteljev): +\begin_inset Formula $p\in\mathbb{P}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a,b\in\mathbb{N},p\in\mathbb{P}$ +\end_inset + +: +\begin_inset Formula $a\bot b\vee a\vert b,\quad p\vert ab\Rightarrow p\vert a\vee p\vert b$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $m\vert a-b$ +\end_inset + + označimo +\begin_inset Formula $a\equiv b\pmod m$ +\end_inset + +, +\begin_inset Formula $a\mod m=b\mod m$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\equiv b\pmod m\Rightarrow\forall k\in\mathbb{Z}:a\overset{+}{\cdot}k\equiv b\overset{+}{\cdot}k\pmod m$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a\equiv b\pmod m\wedge c\equiv d\pmod m\Rightarrow a\overset{+}{\overset{-}{\cdot}}c\equiv b\overset{+}{\overset{-}{\cdot}}d\pmod m$ +\end_inset + + +\end_layout + +\begin_layout Standard +Mali fermatov izrek: +\begin_inset Formula $a\in\mathbb{N},p\in\mathbb{P}$ +\end_inset + + velja +\begin_inset Formula $a\equiv a^{p}\pmod p$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $p,q\in\mathbb{P}:a\equiv b\pmod p\wedge a\equiv b\pmod p\Rightarrow a\equiv b\pmod{pq}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Eulerjeva funkcija +\begin_inset Formula $\varphi\left(n\right)\coloneqq\left|\left\{ k\in n;1\leq k<n\wedge k\bot n\right\} \right|$ +\end_inset + + — število tujih števil, manjših od n. + +\begin_inset Formula $p\in\mathbb{P}\Rightarrow\varphi\left(p\right)=p-1$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $p\in\mathbb{P},n\in\mathbb{N}\Rightarrow\varphi\left(p\right)=p^{n}-p^{n-1},\quad\varphi\left(a\right)\varphi\left(b\right)=\varphi\left(ab\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +REA: +\begin_inset Formula $ax+by=d$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |