#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options true \maintain_unincluded_children false \language slovene \language_package default \inputencoding utf8 \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title Rešen tretji izpit teorije Analize 1 — IŠRM 2023/24 \end_layout \begin_layout Abstract Izpit je potekal v petek, 30. avgusta 2024 od desete \begin_inset Foot status open \begin_layout Plain Layout Avtor tega besedila je na izpit zamudil poldrugo uro. \end_layout \end_inset do dvanajste ure. Nosilec predmeta je \noun on Oliver Dragičević \noun default . Naloge in rešitve sem po spominu spisal \noun on Anton Luka Šijanec \noun default . \end_layout \begin_layout Enumerate \begin_inset Formula $\left[15\right]$ \end_inset \begin_inset Newline newline \end_inset Podaj natančne definicije naslednjih pojmov: \end_layout \begin_deeper \begin_layout Enumerate limita zaporedja, stekališče zaporedja \end_layout \begin_deeper \begin_layout Standard Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset realno zaporedje in \begin_inset Formula $L\in\mathbb{R}$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $L$ \end_inset je limita \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\sim L=\lim_{n\to\infty}a_{n}\Leftrightarrow\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n>n_{0}:\left|a_{n}-L\right|<\varepsilon$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $L$ \end_inset je stekališče \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\Leftrightarrow\forall\varepsilon>0\exists\mathcal{A}\subseteq\mathbb{N},\left|\mathcal{A}\right|=\left|\mathcal{\mathbb{N}}\right|\ni:\left\{ a_{n};n\in\mathcal{A}\right\} \subseteq\left(L-\varepsilon,L+\varepsilon\right)$ \end_inset \end_layout \end_deeper \begin_layout Enumerate vsota (neskončne) konvergentne vrste \end_layout \begin_deeper \begin_layout Standard Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset poljubno zaporedje. \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}\coloneqq\lim_{n\to\infty}\sum_{k=1}^{n}a_{n}$ \end_inset . Če limita obstaja, je vrsta \begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ \end_inset konvergentna in njena vsota je enaka tej limiti. \end_layout \end_deeper \begin_layout Enumerate Cauchyjev pogoj za zaporedja \end_layout \begin_deeper \begin_layout Standard Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset realno zaporedje. Konvergentno je natanko tedaj, ko ustreza Cauchyjevemu pogoju: \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall m,n\geq n_{0}:\left|a_{n}-a_{m}\right|<\varepsilon$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate odprte, zaprte, omejene, kompaktne množice v \begin_inset Formula $\mathbb{R}$ \end_inset \end_layout \begin_deeper \begin_layout Enumerate Množica \begin_inset Formula $\mathcal{A}$ \end_inset je odprta, ko \begin_inset Formula $\forall a\in\mathcal{A}\exists\varepsilon>0\ni:\left(a-\varepsilon,a+\varepsilon\right)\subseteq\mathcal{A}$ \end_inset , ko za vsako točko množice obstaja neka njena okolica, ki je podmnožica množice \begin_inset Formula $\mathcal{A}$ \end_inset . \end_layout \begin_layout Enumerate Množica \begin_inset Formula $\mathcal{A}$ \end_inset je zaprta, ko je \begin_inset Formula $\mathcal{A}^{\mathcal{C}}\coloneqq\mathbb{R}\setminus\mathcal{A}$ \end_inset odprta. \end_layout \begin_layout Enumerate Množica \begin_inset Formula $\mathcal{A}$ \end_inset je omejena, ko \begin_inset Formula $\exists m,M\in\mathbb{R}\forall a\in\mathcal{A}:a\leq M\wedge a\geq m$ \end_inset . \end_layout \begin_layout Enumerate Množica \begin_inset Formula $\mathcal{A}$ \end_inset je kompaktna \begin_inset Formula $\Leftrightarrow\mathcal{A}$ \end_inset zaprta \begin_inset Formula $\wedge$ \end_inset \begin_inset Formula $\mathcal{A}$ \end_inset omejena. \end_layout \end_deeper \begin_layout Enumerate limita funkcije v dani točki \end_layout \begin_deeper \begin_layout Standard Naj bodo \begin_inset Formula $a\in\mathbb{R}$ \end_inset , \begin_inset Formula $\mathcal{D}$ \end_inset okolica \begin_inset Formula $a$ \end_inset in \begin_inset Formula $f:\mathcal{D}\setminus\left\{ a\right\} \to\mathbb{R}$ \end_inset poljubne. \begin_inset Formula $L\in\mathbb{R}$ \end_inset je limita \begin_inset Formula $f$ \end_inset v točki \begin_inset Formula $a\sim L=\lim_{x\to a}f\left(x\right)\Leftrightarrow\forall\varepsilon>0\exists\delta>0\forall x\in\mathcal{D}\setminus\left\{ a\right\} :\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-L\right|<\varepsilon$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate zveznost funkcije \end_layout \begin_deeper \begin_layout Standard Naj bodo \begin_inset Formula $\mathcal{D}\subseteq\mathbb{R}$ \end_inset , \begin_inset Formula $a\in\mathcal{D}$ \end_inset in \begin_inset Formula $f:\mathcal{D}\to\mathbb{R}$ \end_inset poljubne. \begin_inset Formula $f$ \end_inset je zvezna v \begin_inset Formula $a\Leftrightarrow\forall\varepsilon>0\exists\delta>0\forall x\in\mathcal{D}:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset . \begin_inset Formula $f$ \end_inset je zvezna na množici \begin_inset Formula $\mathcal{A}$ \end_inset , če je zvezna na vsaki točki množice \begin_inset Formula $\mathcal{A}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate odvedljivost funkcije \end_layout \begin_deeper \begin_layout Standard Naj bodo \begin_inset Formula $a\in\mathbb{R}$ \end_inset , \begin_inset Formula $\mathcal{D}\subseteq\mathbb{R}$ \end_inset , \begin_inset Formula $f:\mathcal{D}\to\mathbb{R}$ \end_inset poljubne. \begin_inset Formula $f$ \end_inset je odvedljiva v \begin_inset Formula $a\text{\ensuremath{\Leftrightarrow\lim_{h\to0}\frac{f\left(a+h\right)-f\left(a\right)}{h}}}\in\mathbb{R}$ \end_inset , ZDB ko obstaja slednja limita. Tedaj definiramo \begin_inset Quotes eld \end_inset odvod funkcije \begin_inset Formula $f$ \end_inset v točki \begin_inset Formula $a$ \end_inset \begin_inset Quotes erd \end_inset : \begin_inset Formula $f'\left(a\right)=\lim_{h\to0}\frac{f\left(a+h\right)-f\left(a\right)}{h}$ \end_inset . \begin_inset Formula $f$ \end_inset je odvedljiva na množici \begin_inset Formula $\mathcal{A}$ \end_inset , če je odvedljiva na vsaki točki množice \begin_inset Formula $\mathcal{A}$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate določen integral realne funkcije na zaprtem omejenem intervalu. \end_layout \begin_deeper \begin_layout Enumerate Naj bodo \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset in \begin_inset Formula $f:\left[a,b\right]\to\mathbb{R}$ \end_inset poljubne. \end_layout \begin_layout Enumerate Definirajmo pojem delitve \begin_inset Formula $\left[a,b\right]$ \end_inset . Delitev so točke \begin_inset Formula $t_{0},\dots,t_{n}$ \end_inset , da velja \begin_inset Formula $a=t_{0}0\exists\delta>0\forall$ \end_inset delitev \begin_inset Formula $D\forall$ \end_inset izbiro \begin_inset Formula $\xi$ \end_inset , pripadajočo delitvi \begin_inset Formula $D:\left|D_{\infty}\right|<\delta\Rightarrow\left|\sum_{k=1}^{n}\left|D_{k}\right|f\left(\xi\right)-I\right|<\varepsilon$ \end_inset . Tedaj pravimo, da je \begin_inset Formula $I$ \end_inset določen integral \begin_inset Formula $f$ \end_inset na \begin_inset Formula $\left[a,b\right]$ \end_inset in pišemo \begin_inset Formula $I\eqqcolon\int_{a}^{b}f\left(x\right)dx$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Enumerate \begin_inset Formula $\left[15\right]$ \end_inset \end_layout \begin_deeper \begin_layout Enumerate Pojasni princip matematične indukcije. \end_layout \begin_deeper \begin_layout Standard Naj bo \begin_inset Formula $\left(P_{n}\right)_{n\in\mathbb{N}}$ \end_inset zaporedje logičnih vrednosti/izjav/izrazov. Če velja \end_layout \begin_layout Enumerate \begin_inset Formula $P_{1}$ \end_inset drži in hkrati \end_layout \begin_layout Enumerate \begin_inset Formula $\forall n\in\mathbb{N}:P_{n}$ \end_inset drži \begin_inset Formula $\Rightarrow P_{n+1}$ \end_inset drži, \end_layout \begin_layout Standard potem velja \begin_inset Formula $\forall n\in\mathbb{N}:P_{n}$ \end_inset drži. \end_layout \end_deeper \begin_layout Enumerate Z matematično indukcijo dokaži \begin_inset Formula \[ \forall n\in\mathbb{N}:1+2+\cdots+n=\frac{n\left(n+1\right)}{2} \] \end_inset \end_layout \begin_deeper \begin_layout Enumerate Baza \begin_inset Formula $n=1$ \end_inset : \begin_inset Formula $1=\frac{1\left(1+1\right)}{2}$ \end_inset Velja. \end_layout \begin_layout Enumerate Indukcijska predpostavka: \begin_inset Formula $1+2+\cdots+n=\frac{n\left(n+1\right)}{2}$ \end_inset . \end_layout \begin_layout Enumerate Korak \begin_inset Formula $n\to n+1$ \end_inset : \begin_inset Formula \[ 1+2+\cdots+n+\cancel{n+1}\overset{?}{=}\frac{\left(n+1\right)\left(n+1+1\right)}{2}=\frac{n^{2}+2n+n+2}{2}=\frac{n\left(n+1\right)}{2}+\cancel{n+1} \] \end_inset \begin_inset Formula \[ 1+2+\cdots+n\overset{\text{I.P.}}{=}\frac{n\left(n+1\right)}{2} \] \end_inset \end_layout \begin_layout Enumerate Sklep: \begin_inset Formula $\forall n\in\mathbb{N}:1+2+\cdots+n=\frac{n\left(n+1\right)}{2}$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Enumerate \begin_inset Formula $\left[25\right]$ \end_inset \begin_inset Newline newline \end_inset Naj bosta \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset in \begin_inset Formula $\left(b_{n}\right)_{n\in\mathbb{N}}$ \end_inset realni konvergentni zaporedji. Dokaži, da je \begin_inset Formula $c_{n}\coloneqq a_{n}b_{n}$ \end_inset prav tako konvergentno zaporedje. \end_layout \begin_deeper \begin_layout Itemize Označimo \begin_inset Formula $\lim_{n\to\infty}a_{n}\eqqcolon A$ \end_inset in \begin_inset Formula $\lim_{n\to\infty}b_{n}\eqqcolon B$ \end_inset . \end_layout \begin_layout Itemize Uganemo, da je \begin_inset Formula $\lim_{n\to\infty}a_{n}b_{n}=AB$ \end_inset . To moramo sedaj dokazati. \end_layout \begin_layout Itemize Dokazujemo, da \begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:\left|a_{n}b_{n}-AB\right|<\varepsilon\sim\left|a_{n}b_{n}+a_{n}B-a_{n}B-AB\right|=\left|a_{n}\left(b_{n}-B\right)+B\left(a_{n}-A\right)\right|<\varepsilon$ \end_inset \end_layout \begin_layout Itemize Ker po trikotniški neenakosti velja \begin_inset Formula $\left|a_{n}\left(b_{n}-B\right)+B\left(a_{n}-A\right)\right|\leq\left|a_{n}\right|\left|b_{n}-B\right|+\left|B\right|\left|a_{n}-A\right|$ \end_inset , je dovolj za poljuben \begin_inset Formula $\varepsilon>0$ \end_inset dokazati \begin_inset Formula \[ \exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:\left|a_{n}\right|\left|b_{n}-B\right|+\left|B\right|\left|a_{n}-A\right|<\varepsilon \] \end_inset \end_layout \begin_layout Itemize Ker je \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergentno, \begin_inset Formula $\exists n_{1}\in\mathbb{N}\forall n\geq n_{1}:\left|a_{n}-A\right|<\frac{\varepsilon}{2\left|a\right|}$ \end_inset , kjer je \begin_inset Formula $a$ \end_inset zgornja meja zaporedja \begin_inset Formula $a_{n}$ \end_inset . Slednje je omejeno, ker je konvergentno. \end_layout \begin_layout Itemize Ker je \begin_inset Formula $\left(b_{n}\right)_{n\in\mathbb{N}}$ \end_inset konvergentno, \begin_inset Formula $\exists n_{2}\in\mathbb{N}\forall n\geq n_{1}:\left|b_{n}-B\right|<\frac{\varepsilon}{2\left|B\right|}$ \end_inset . \end_layout \begin_layout Itemize Tedaj za \begin_inset Formula $n_{0}\coloneqq\max\left\{ n_{1},n_{2}\right\} $ \end_inset velja \begin_inset Formula \[ \left|a_{n}\right|\left|b_{n}-B\right|+\left|B\right|\left|a_{n}-A\right|<\frac{\varepsilon\left|a\right|}{2\left|a_{n}\right|}+\frac{\varepsilon}{2}\leq\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \] \end_inset in izrek je dokazan. \end_layout \end_deeper \begin_layout Enumerate \begin_inset Formula $\left[?\right]$ \end_inset \begin_inset Newline newline \end_inset Dokaži, da je zvezna realna funkcija na zaprtem intervalu omejena. Natančno navedi vse izreke, ki jih pri tem dokazu uporabiš. \end_layout \begin_deeper \begin_layout Standard Naj bodo \begin_inset Formula $a,b\in\mathbb{R}$ \end_inset in zvezna \begin_inset Formula $f:\left[a,b\right]\to\mathbb{R}$ \end_inset poljubne. \end_layout \begin_layout Itemize Dokaz, da je \begin_inset Formula $f$ \end_inset omejena navzgor. \end_layout \begin_deeper \begin_layout Itemize PDDRAA \begin_inset Formula $f$ \end_inset ni navzgor omejena. Tedaj \begin_inset Formula $\forall n\in\mathbb{N}\exists x_{n}\in\left[a,b\right]\ni:f\left(x_{n}\right)\geq n$ \end_inset . \end_layout \begin_layout Itemize Ker je \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset na zaprti množici, je omejeno zaporedje, torej ima stekališče. Recimo mu \begin_inset Formula $s\in\mathbb{R}$ \end_inset . \end_layout \begin_layout Itemize Ker je \begin_inset Formula $\left[a,b\right]$ \end_inset zaprta, je \begin_inset Formula $s\in\left[a,b\right]$ \end_inset . \end_layout \begin_layout Itemize Ker je \begin_inset Formula $f$ \end_inset zvezna na \begin_inset Formula $\left[a,b\right]$ \end_inset in s tem v \begin_inset Formula $s$ \end_inset , velja \begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=f\left(s\right)$ \end_inset . \end_layout \begin_layout Itemize Po konstrukciji \begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ \end_inset velja \begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=\infty$ \end_inset , torej \begin_inset Formula $f\left(s\right)=\infty$ \end_inset , kar ni mogoče, saj \begin_inset Formula $f\left(s\right)\in\mathbb{R}$ \end_inset po predpostavki. \begin_inset Formula $\rightarrow\!\leftarrow$ \end_inset . \end_layout \begin_layout Standard Predpostavka \begin_inset Quotes eld \end_inset \begin_inset Formula $f$ \end_inset ni navzgor omejena \begin_inset Quotes erd \end_inset ne velja, torej smo dokazali, da je \begin_inset Formula $f$ \end_inset navzgor omejena. \end_layout \end_deeper \begin_layout Itemize Dokaz, da je \begin_inset Formula $f$ \end_inset omejena navzdol. \end_layout \begin_deeper \begin_layout Itemize PDDRAA \begin_inset Formula $f$ \end_inset ni navzdol omejena. Tedaj \begin_inset Formula $\forall n\in\mathbb{N}\exists x_{n}\in\left[a,b\right]\ni:f\left(x_{n}\right)\leq-n$ \end_inset . \end_layout \begin_layout Itemize Ker je \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{\mathbb{N}}}$ \end_inset na zaprti množici, je omejeno zaporedje, torej ima stekališče. Recimo mu \begin_inset Formula $s\in\mathbb{R}$ \end_inset . \end_layout \begin_layout Itemize Ker je \begin_inset Formula $\left[a,b\right]$ \end_inset zaprta, je \begin_inset Formula $s\in\left[a,b\right]$ \end_inset . \end_layout \begin_layout Itemize Ker je \begin_inset Formula $f$ \end_inset zvezna na \begin_inset Formula $\left[a,b\right]$ \end_inset in s tem v \begin_inset Formula $s$ \end_inset , velja \begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=f\left(s\right)$ \end_inset . \end_layout \begin_layout Itemize Po konstrukciji \begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ \end_inset velja \begin_inset Formula $\lim_{n\to\infty}f\left(x_{n}\right)=-\infty$ \end_inset , torej \begin_inset Formula $f\left(s\right)=-\infty$ \end_inset , kar ni mogoče, saj \begin_inset Formula $f\left(s\right)\in\mathbb{R}$ \end_inset po predpostavki. \begin_inset Formula $\rightarrow\!\leftarrow$ \end_inset . \end_layout \begin_layout Standard Predpostavka \begin_inset Quotes eld \end_inset \begin_inset Formula $f$ \end_inset ni navzdol omejena \begin_inset Quotes erd \end_inset ne velja, torej smo dokazali, da je \begin_inset Formula $f$ \end_inset navzdol omejena. \end_layout \end_deeper \begin_layout Itemize Ker je \begin_inset Formula $f$ \end_inset omejena navzgor in navzdol, je omejena. \end_layout \begin_layout Itemize Uporabljeni izreki. \end_layout \begin_deeper \begin_layout Itemize Zaporedje \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset s členi na kompaktni množici je omejeno. \end_layout \begin_layout Itemize Omejeno zaporedje ima stekališče. \end_layout \begin_layout Itemize Če je \begin_inset Formula $s\in\mathbb{R}$ \end_inset stekališče zaporedja \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset , obstaja konvergentno podzaporedje \begin_inset Formula $\left(a_{n_{k}}\right)_{k\in\mathbb{N}}$ \end_inset , da je \begin_inset Formula $s$ \end_inset njegova limita. \end_layout \begin_layout Itemize Množica je kompaktna natanko tedaj, ko vsebuje limite vseh konvergentnih zaporedij s členi v njej. \end_layout \begin_layout Itemize Funkcija \begin_inset Formula $f$ \end_inset je zvezna v \begin_inset Formula $s$ \end_inset , če za vsako k \begin_inset Formula $s$ \end_inset konvergentno zaporedje velja, da njegovi s \begin_inset Formula $f$ \end_inset preslikani členi konvergirajo v \begin_inset Formula $f\left(s\right)$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Enumerate \begin_inset Formula $\left[?\right]$ \end_inset \begin_inset Newline newline \end_inset Za realno funkcijo ene spremenljivke dokaži verižno pravilo. \end_layout \begin_deeper \begin_layout Itemize Naj bodo \begin_inset Formula $\mathcal{D},\mathcal{E},\mathcal{F}\subseteq\mathbb{R}$ \end_inset , \begin_inset Formula $x\in\mathcal{D}$ \end_inset in \begin_inset Formula $f:\mathcal{D}\to\mathcal{E}$ \end_inset , \begin_inset Formula $g:\mathcal{E}\to\mathcal{F}$ \end_inset poljubne. Naj bo \begin_inset Formula $f$ \end_inset odvedljiva v \begin_inset Formula $x$ \end_inset in \begin_inset Formula $g$ \end_inset odvedljiva v \begin_inset Formula $f\left(x\right)$ \end_inset . \end_layout \begin_layout Itemize Dokažimo, da je \begin_inset Formula $g\circ f$ \end_inset odvedljiva v \begin_inset Formula $x$ \end_inset in da velja \begin_inset Formula \[ \left(g\circ f\right)'\left(x\right)=g'\left(f\left(x\right)\right)f'\left(x\right). \] \end_inset \end_layout \begin_layout Itemize Označimo \begin_inset Formula $a\coloneqq f\left(x\right)$ \end_inset in \begin_inset Formula $\delta_{h}\coloneqq f\left(x+h\right)-f\left(x\right)$ \end_inset . Potemtakem \begin_inset Formula $f\left(x+h\right)=\delta_{h}+a$ \end_inset . \begin_inset Formula \[ \left(g\circ f\right)'\left(x\right)=\lim_{h\to0}\frac{g\left(f\left(x+h\right)\right)-g\left(f\left(x\right)\right)=g\left(\delta_{h}+a\right)-g\left(a\right)}{h}= \] \end_inset \begin_inset Formula \[ =\lim_{h\to0}\frac{g\left(\delta_{h}+a\right)-g\left(a\right)}{\delta_{h}}\cdot\frac{\delta_{h}}{h}=\lim_{h\to0}\frac{g\left(\delta_{h}+a\right)-g\left(a\right)}{\delta_{h}}\cdot\frac{f\left(x+h\right)-f\left(x\right)}{h}=\cdots \] \end_inset Ker je \begin_inset Formula $f$ \end_inset v \begin_inset Formula $x$ \end_inset odvedljiva, je v \begin_inset Formula $x$ \end_inset zvezna, zato sledi \begin_inset Formula $h\to0\Rightarrow\delta_{h}\to0$ \end_inset . \begin_inset Formula \[ \cdots=g'\left(a\right)\cdot f'\left(x\right)=g'\left(f\left(x\right)\right)\cdot f'\left(x\right) \] \end_inset \end_layout \end_deeper \end_body \end_document