From 8c688eb0cf5e1c7ea9704b96b8dc59ef1f91ff59 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anton=20Luka=20=C5=A0ijanec?= Date: Fri, 16 Aug 2024 16:15:10 +0200 Subject: konec teorije --- "\305\241ola/ana1/teor.lyx" | 1282 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1282 insertions(+) diff --git "a/\305\241ola/ana1/teor.lyx" "b/\305\241ola/ana1/teor.lyx" index af865e2..f716983 100644 --- "a/\305\241ola/ana1/teor.lyx" +++ "b/\305\241ola/ana1/teor.lyx" @@ -14424,6 +14424,7 @@ sideways false status open \begin_layout Plain Layout +\align center \begin_inset Tabular @@ -15029,5 +15030,1286 @@ a priori . \end_layout +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Darbouxove vsote. + Imamo torej delitev +\begin_inset Formula $D=\left\{ \left[t_{j-1},t_{j}\right];j\in\left\{ 1..n\right\} ;t_{0}=1,t_{n}=b\right\} $ +\end_inset + + delitev za +\begin_inset Formula $J=\left[a,b\right]$ +\end_inset + + in +\begin_inset Formula $f:J\to\mathbb{R}$ +\end_inset + +. + Imamo tudi množico izbranih točk +\begin_inset Formula $\xi=\left\{ \xi_{j}\in\left[t_{j-1},t_{j}\right];j\in\left\{ 1..n\right\} \right\} $ +\end_inset + + in +\begin_inset Formula $R\left(f,D,\xi\right)=\sum_{j=1}^{n}f\left(\xi_{j}\right)\left(t_{j}-t_{j-1}\right)$ +\end_inset + +. + Ocenimo +\begin_inset Formula $f\left(\xi_{j}\right)$ +\end_inset + +: + +\begin_inset Formula $\inf_{x\in\left[t_{j-1},t_{j}\right]}f\left(x\right)\leq f\left(\xi_{j}\right)\leq\sup_{x\in\left[t_{j-1},t_{j}\right]}f\left(x\right)$ +\end_inset + +. + Definirali smo +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx$ +\end_inset + + kot limito Riemannovih vsot s kakršnokoli delitvijo in izbiro +\begin_inset Formula $\xi$ +\end_inset + +, + zato lahko pišemo +\begin_inset Formula $\forall j\in\left\{ 1..n\right\} :\inf_{x\in\left[t_{j-1},t_{j}\right]}f\left(x\right)=f\left(\xi_{j}\right)=\sup_{x\in\left[t_{j-1},t_{j}\right]}f\left(x\right)$ +\end_inset + +. + Zato lahko limito Riemannovih vsot obravnavamo neodvisno od +\begin_inset Formula $\xi$ +\end_inset + +: +\begin_inset Formula +\[ +s\left(f,D\right)\coloneqq\sum_{j=1}^{n}\left(\inf_{x\in D_{j}}f\left(x\right)\right)\left(t_{j}-t_{j-1}\right)\leq R\left(f,D,\xi\right)\leq\sum_{j=1}^{n}\left(\sup_{x\in D_{j}}f\left(x\right)\right)\left(t_{j}-f_{j-1}\right)\eqqcolon S\left(f,D\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Definition* +Definirali smo dva nova pojma, + spodnjo Darbouxovo vsoto +\begin_inset Formula $s\left(f,D\right)$ +\end_inset + + in zgornjo Darbouxovo vsoto +\begin_inset Formula $S\left(f,D\right)$ +\end_inset + + in velja +\begin_inset Formula $s\left(f,D\right)\leq R\left(f,D,\xi\right)\leq S\left(f,D\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bosta +\begin_inset Formula $D$ +\end_inset + + in +\begin_inset Formula $D'$ +\end_inset + + delitvi za interval +\begin_inset Formula $J$ +\end_inset + +. + Pravimo, + da je +\begin_inset Formula $D'$ +\end_inset + + finejša od +\begin_inset Formula $D$ +\end_inset + +, + če je ima +\begin_inset Formula $D'$ +\end_inset + + vse delilne točke, + ki jih ima +\begin_inset Formula $D$ +\end_inset + + in poleg njih še vsaj kakšno. + Označimo +\begin_inset Formula $D\subset D'$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $D\subset D'$ +\end_inset + + ( +\begin_inset Formula $D'$ +\end_inset + + finejša od +\begin_inset Formula $D$ +\end_inset + +). + Oglejmo si +\begin_inset Formula $s\left(f,D\right)$ +\end_inset + + in +\begin_inset Formula $s\left(f,D'\right)$ +\end_inset + +. + Tedaj velja +\begin_inset Formula $s\left(f,D\right)\leq s\left(f,D'\right)$ +\end_inset + +, + ker je infimum po manjši množici lahko le večji — + s finejšo delitvijo smo vsaj neko množico (delitveni interval) razdelili na dva dela. + Za zgornjo Darbouxovo vsoto velja obratno, + torej +\begin_inset Formula $S\left(f,D\right)\geq S\left(f,D'\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +Za poljubni različni delitvi +\begin_inset Formula $D_{1},D_{2}$ +\end_inset + + intervala +\begin_inset Formula $J$ +\end_inset + + velja +\begin_inset Formula $s\left(f,D_{1}\right)\leq S\left(f,D_{2}\right)$ +\end_inset + + ZDB Katerakoli spodnja Darbouxova vsota je kvečjemu tolikšna kot katerakoli zgornja. +\end_layout + +\begin_layout Proof +Označimo z +\begin_inset Formula $D_{1}\cup D_{2}$ +\end_inset + + delitev, + ki vsebuje vse delilne točke tako +\begin_inset Formula $D_{1}$ +\end_inset + + kot tudi +\begin_inset Formula $D_{2}$ +\end_inset + +. + Očitno velja, + da sta +\begin_inset Formula $D_{1}\subset D_{1}\cup D_{2}$ +\end_inset + + in +\begin_inset Formula $D_{2}\subset D_{1}\cup D_{2}$ +\end_inset + +. + Po prejšnjem izreku veljata leva in desna neenakost, + srednja pa iz definicije (očitno). +\begin_inset Formula +\[ +s\left(f,D_{1}\right)\leq s\left(f,D_{1}\cup D_{2}\right)\leq S\left(f,D_{1}\cup D_{2}\right)\leq S\left(f,D_{2}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $f:J\to\mathbb{R}$ +\end_inset + + omejena. + Označimo +\begin_inset Formula $s\left(f\right)\coloneqq\sup_{\text{vse možne delitve }D}s\left(f,D\right)$ +\end_inset + + in +\begin_inset Formula $S\left(f\right)\coloneqq\inf_{\text{vse možne delitve }D}S\left(f,D\right)$ +\end_inset + +. + Funkcija +\begin_inset Formula $f:J\to\mathbb{R}$ +\end_inset + + je Riemannovo integrabilna, + če +\begin_inset Formula $s\left(f\right)=S\left(f\right)$ +\end_inset + + oziroma če +\begin_inset Formula $\forall\varepsilon>0\exists$ +\end_inset + + delitev +\begin_inset Formula $D$ +\end_inset + + na +\begin_inset Formula $J\ni:S\left(f,D\right)-s\left(f,D\right)<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Note* +Integrabilnost +\begin_inset Formula $f$ +\end_inset + + ne pomeni, + da +\begin_inset Formula $\exists D\ni:s\left(f,D\right)=S\left(f,D\right)$ +\end_inset + +. + Ni namreč nujno, + da množica vsebuje svoj supremum. + Primer: + za +\begin_inset Formula $f\left(x\right)=x$ +\end_inset + + velja +\begin_inset Formula $\forall D:S\left(f,D\right)>s\left(f,D\right)$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Vsaka zvezna funkcija je integrabilna na +\begin_inset Formula $J$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $\varepsilon>0$ +\end_inset + + poljuben. + Po definiciji +\begin_inset Formula $S\left(f,D\right)-s\left(f,D\right)=\sum_{j=1}^{n}\left(\sup_{x\in D_{j}}f\left(x\right)-\inf_{x\in D_{j}}f\left(x\right)\right)\left(t_{j}-t_{j-1}\right)$ +\end_inset + +. + Ker je +\begin_inset Formula $f$ +\end_inset + + zvezna, + je na zaprtem +\begin_inset Formula $J=\left[a,b\right]$ +\end_inset + + enakomerno zvezna, + torej +\begin_inset Formula $\exists\delta>0\forall x_{1},x_{2}\in J:\left|x_{1}-x_{2}\right|<\delta\Rightarrow\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\frac{\varepsilon}{b-a}$ +\end_inset + +. + Izberimo tako delitev +\begin_inset Formula $D$ +\end_inset + +, + da je +\begin_inset Formula $\forall j\in\left\{ 1..\left|D\right|\right\} :t_{j}-t_{j-1}<\delta$ +\end_inset + +. + Tedaj bo veljalo +\begin_inset Formula $\sum_{j=1}^{n}\left(\sup_{x\in D_{j}}f\left(x\right)-\inf_{x\in D_{j}}f\left(x\right)\right)\left(t_{j}-t_{j-1}\right)<\sum_{j=1}^{n}\frac{\varepsilon}{b-a}\left(t_{j}-t_{j-1}\right)=\frac{\varepsilon\left(b-a\right)}{b-a}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Skratka dokazali smo +\begin_inset Formula $S\left(f,D\right)-s\left(f,D\right)<\varepsilon$ +\end_inset + + za poljuben +\begin_inset Formula $\varepsilon$ +\end_inset + +, + torej je funkcija Riemannovo integrabilna po zgornji definiciji. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $A\subset\mathbb{R}$ +\end_inset + + ima mero +\begin_inset Formula $0$ +\end_inset + +, + če +\begin_inset Formula $\forall\varepsilon>0\exists$ +\end_inset + + družina intervalov +\begin_inset Formula $I_{j}\ni:A\subset\bigcup I_{j}\wedge\sum\left|I_{j}\right|<\varepsilon$ +\end_inset + +. + Primer: + vse števne in končne množice. +\end_layout + +\begin_layout Theorem* +Funkcija +\begin_inset Formula $f$ +\end_inset + + je integrabilna na intervalu +\begin_inset Formula $J\Leftrightarrow\left\{ x\in J;f\text{ ni zvezna v }x\right\} $ +\end_inset + + ima mero +\begin_inset Formula $0$ +\end_inset + +. + ZDB če ima množica točk z definicijskega območja +\begin_inset Formula $f$ +\end_inset + +, + v katerih +\begin_inset Formula $f$ +\end_inset + + ni zvezna, + mero +\begin_inset Formula $0$ +\end_inset + + (recimo če je teh točk končno mnogo), + je +\begin_inset Formula $f$ +\end_inset + + integrabilna. +\end_layout + +\begin_layout Fact* +Označimo z +\begin_inset Formula $I\left(J\right)$ +\end_inset + + množico vseh integrabilnih funkcij na intervalu +\begin_inset Formula $J$ +\end_inset + +. + +\begin_inset Formula $I\left(J\right)$ +\end_inset + + je vektorski prostor za množenje s skalarji iz +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + Naj bodo +\begin_inset Formula $f,g\in I\left(J\right),\lambda\in\mathbb{R}$ +\end_inset + +. + Velja aditivnost +\begin_inset Formula $f\left(x\right)+g\left(x\right)\in J\left(I\right)$ +\end_inset + +, + kajti +\begin_inset Formula $\int_{a}^{b}\left(f\left(x\right)+g\left(x\right)\right)dx=\int_{a}^{b}\left(f\left(x\right)\right)dx+\int_{a}^{b}\left(g\left(x\right)\right)dx$ +\end_inset + + in homogenost +\begin_inset Formula $\int_{a}^{b}\lambda f\left(x\right)dx=\lambda\int_{a}^{b}f\left(x\right)dx$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Če je +\begin_inset Formula $f$ +\end_inset + + integrabilna na +\begin_inset Formula $J=\left[a,b\right]$ +\end_inset + + in je +\begin_inset Formula $c\in J$ +\end_inset + +, + tedaj je +\begin_inset Formula $f$ +\end_inset + + integrabilna na +\begin_inset Formula $\left[a,c\right]$ +\end_inset + + in +\begin_inset Formula $\left[c,b\right]$ +\end_inset + + in velja +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx=\int_{a}^{c}f\left(x\right)dx+\int_{c}^{b}f\left(x\right)dx$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +Če sta +\begin_inset Formula $f,g$ +\end_inset + + na +\begin_inset Formula $J$ +\end_inset + + integrabilni funkciji in če je +\begin_inset Formula $\forall x\in J:f\left(x\right)\leq g\left(x\right)$ +\end_inset + +, + tedaj +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx\leq\int_{a}^{b}f\left(x\right)dx$ +\end_inset + +. + Posledično velja ob isti predpostavki +\begin_inset Formula $\left|\int_{a}^{b}f\left(x\right)dx\right|\leq\int_{a}^{b}\left|f\left(x\right)\right|dx$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Če je +\begin_inset Formula $f$ +\end_inset + + integrabilna na +\begin_inset Formula $J=\left[a,b\right]$ +\end_inset + +, + definiramo povprečje +\begin_inset Formula $f$ +\end_inset + + na +\begin_inset Formula $J$ +\end_inset + + s predpisom +\begin_inset Formula +\[ +\left\langle f\right\rangle _{J}\coloneqq\frac{\int_{a}^{b}f\left(x\right)dx}{b-a}\in\mathbb{R}. +\] + +\end_inset + + +\end_layout + +\begin_layout Theorem* +Velja +\begin_inset Formula $\inf_{x\in J}f\left(x\right)\leq\left\langle f\right\rangle _{J}\leq\sup_{x\in J}f\left(x\right)$ +\end_inset + +. + Če je +\begin_inset Formula $f:J\to\mathbb{R}$ +\end_inset + + zvezna, + +\begin_inset Formula $\exists\xi\in J\ni:f\left(\xi\right)=\left\langle f\right\rangle _{J}$ +\end_inset + + (izrek o vmesni vrednosti). +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $f:J\to\mathbb{R}$ +\end_inset + + dana funkcija. + Nedoločeni integral +\begin_inset Formula $f$ +\end_inset + + je takšna funkcija +\begin_inset Formula $F$ +\end_inset + +, + če obstaja, + +\begin_inset Formula $\ni:F'=f\sim\forall x\in J:F'\left(x\right)=f\left(x\right)$ +\end_inset + +. + Pišemo tudi +\begin_inset Formula $Pf$ +\end_inset + + ali +\begin_inset Formula $\mathbb{P}f$ +\end_inset + + in pravimo, + da je +\begin_inset Formula $F=Pf$ +\end_inset + + primitivna funkcija za +\begin_inset Formula $f$ +\end_inset + +. + Velja +\begin_inset Formula $P\left(f+g\right)=Pf+Pg$ +\end_inset + + (aditivnost odvoda) in +\begin_inset Formula $P\left(\lambda f\right)=\lambda Pf$ +\end_inset + + (homogenost odvoda). +\end_layout + +\begin_layout Definition* +Nedoločeni integral je na intervalu določen do aditivne konstante natančno. + Če je +\begin_inset Formula $F'_{1}=f=F_{2}'$ +\end_inset + + na intervalu +\begin_inset Formula $J$ +\end_inset + + oziroma če na +\begin_inset Formula $J$ +\end_inset + + velja +\begin_inset Formula $\left(F_{1}-F_{2}\right)'=0$ +\end_inset + +, + potem +\begin_inset Formula $F_{1}-F_{2}=c$ +\end_inset + + oziroma +\begin_inset Formula $F_{1}=F_{2}+c$ +\end_inset + + za neko konstanto +\begin_inset Formula $c\in\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Označimo +\begin_inset Formula $F\left(x\right)=Pf\left(x\right)=\int f\left(x\right)dx$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Integracija po delih +\begin_inset Formula $\sim$ +\end_inset + + per partes. + Velja +\begin_inset Formula $\int f\left(x\right)g'\left(x\right)dx=f\left(x\right)g\left(x\right)-\int f'\left(x\right)g\left(x\right)dx$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Izhaja iz odvoda produkza +\begin_inset Formula $\left(fg\right)'=f'g+fg'$ +\end_inset + +. +\end_layout + +\begin_layout Claim* +Naj bo +\begin_inset Formula $f$ +\end_inset + + integrabilna na +\begin_inset Formula $J$ +\end_inset + +. + Definirajmo +\begin_inset Formula $F\left(x\right)=\int_{a}^{x}f\left(t\right)dt$ +\end_inset + +. + Velja +\begin_inset Formula $\left|F\left(x_{1}\right)-F\left(x_{2}\right)\right|=$ +\end_inset + + +\begin_inset Formula +\[ +=\left|\int_{a}^{x_{1}}f\left(t\right)dt-\int_{a}^{x_{2}}f\left(t\right)dt\right|=\left|\int_{a}^{x_{1}}f\left(t\right)dt+\int_{x_{2}}^{a}f\left(t\right)dt\right|=\left|\int_{x_{2}}^{x_{1}}f\left(t\right)dt\right|=\left|\int_{x_{1}}^{x_{2}}f\left(t\right)dt\right|\leq\int_{x_{1}}^{x_{2}}f\left(t\right)dt +\] + +\end_inset + + +\end_layout + +\begin_layout Theorem* +Osnovni izrek analize/fundamental theorem of calcusus. + Naj bo +\begin_inset Formula $f:\left[a,b\right]\to\mathbb{R}$ +\end_inset + + zvezna in +\begin_inset Formula $F\left(x\right)=\int_{a}^{x}f\left(t\right)dt$ +\end_inset + +. + Tedaj je +\begin_inset Formula $F$ +\end_inset + + odvedljiva na +\begin_inset Formula $J$ +\end_inset + + in velja +\begin_inset Formula $F'\left(x\right)=f\left(x\right)$ +\end_inset + +. +\end_layout + +\begin_layout Proof +\begin_inset Formula +\[ +F\left(x+h\right)-F\left(x\right)=\int_{x}^{x+h}f\left(t\right)dt\quad\quad\quad\quad/:h +\] + +\end_inset + + +\begin_inset Formula +\[ +\frac{F\left(x+h\right)-F\left(x\right)}{h}=\frac{\int_{x}^{x+h}f\left(t\right)dt}{h}=\left\langle f\right\rangle _{\left[x,x+h\right]} +\] + +\end_inset + + +\begin_inset Formula +\[ +F'\left(x\right)=\lim_{h\to0}\left\langle f\right\rangle _{x,x+h}=f\left(x\right). +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +glej ANA1P FMF 2024-01-15.pdf/str. + 5 za dokaz, + ki ga ne razumem, + zakaj je +\begin_inset Formula $\lim_{h\to0}\left\langle f\right\rangle _{\left[x,x+h\right]}-f\left(x\right)=0$ +\end_inset + +... + ampak sej to je nekak očitno +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Corollary* +Naj bo +\begin_inset Formula $f:\left[a,b\right]\to\mathbb{R}$ +\end_inset + + zvezna in +\begin_inset Formula $G=Pf$ +\end_inset + + ( +\begin_inset Formula $G'=f$ +\end_inset + +). + Tedaj je +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx=G\left(b\right)-G\left(a\right)$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $F\left(x\right)=\int_{a}^{x}f\left(t\right)dt$ +\end_inset + +. + Ker je +\begin_inset Formula $F'=f=G'$ +\end_inset + +, + je +\begin_inset Formula $\left(F-G\right)'=0\Rightarrow F-G=c\in\mathbb{R}$ +\end_inset + +, + torej +\begin_inset Formula $G\left(x\right)=F\left(x\right)+c$ +\end_inset + +, + sledi +\begin_inset Formula $G\left(a\right)=F\left(a\right)=0$ +\end_inset + + po definiciji +\begin_inset Formula $F$ +\end_inset + +, + torej je +\begin_inset Formula $G\left(a\right)=c$ +\end_inset + +. + Sledi +\begin_inset Formula $F\left(x\right)=G\left(x\right)-G\left(a\right)$ +\end_inset + + in +\begin_inset Formula $F\left(b\right)=G\left(b\right)-G\left(a\right)$ +\end_inset + + in zato +\begin_inset Formula $F\left(b\right)=\int_{a}^{b}f\left(t\right)dt$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Iskanje primitivne funkcije +\end_layout + +\begin_layout Itemize +Uganemo jo +\end_layout + +\begin_layout Itemize +\begin_inset Formula $P\left(x^{n}\right)=\frac{x^{n+1}}{n+1}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $P\left(e^{x}\right)=e^{x}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $P\left(\sin x\right)=-\cos x$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $P\left(\ln x\right)=x\left(\ln x-1\right)$ +\end_inset + + +\end_layout + +\begin_layout Theorem* +Substitucija/uvedba nove spremenljivke +\begin_inset Foot +status open + +\begin_layout Plain Layout +ne razumem. + mogoče bom v naslednjem življenju. +\end_layout + +\end_inset + +. + Naj bo +\begin_inset Formula $F\left(x\right)$ +\end_inset + + nedoločeni integral funkcije +\begin_inset Formula $f\left(x\right)$ +\end_inset + + ter +\begin_inset Formula $\phi\left(x\right)$ +\end_inset + + odvedljiva funkcija. + Potem velja +\begin_inset Formula +\[ +F\left(\phi\left(t\right)\right)=\int f\left(\phi\left(t\right)\right)\phi'\left(t\right)dx +\] + +\end_inset + + +\end_layout + +\begin_layout Proof +Formula je posledica odvoda kompozituma: +\begin_inset Formula +\[ +\left(F\left(\phi\left(t\right)\right)\right)'=F'\left(\phi\left(t\right)\right)\phi'\left(t\right)=f\left(\phi\left(t\right)\right)\phi'\left(t\right) +\] + +\end_inset + +integrirajmo levo in desno stran: +\begin_inset Formula +\[ +\int\left(F\left(\phi\left(t\right)\right)\right)'dt=\int f\left(\phi\left(t\right)\right)\phi'\left(t\right)dt. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Subsection +Izlimitirani integrali +\end_layout + +\begin_layout Standard +Doslej smo računali določene integrale omejene funkcije na omejenem intervalu, + torej +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx$ +\end_inset + +. + Kaj pa neomejen interval, + torej +\begin_inset Formula $\lim_{b\to\infty}\int_{a}^{b}f\left(x\right)dx$ +\end_inset + +? +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $f:[a,\infty)\to\mathbb{R}$ +\end_inset + + in naj bo +\begin_inset Formula $\forall m>a:f$ +\end_inset + + integrabilna na +\begin_inset Formula $\left[a,-m\right]$ +\end_inset + +. + Če +\begin_inset Formula $\exists\lim_{m\to\infty}\int_{a}^{m}f\left(x\right)dx$ +\end_inset + +, + pracimo, + da integral +\begin_inset Formula $\int_{a}^{\infty}f\left(x\right)dx$ +\end_inset + + konvergira, + sicer pa divergira. + Označimo +\begin_inset Formula $\int_{a}^{\infty}f\left(x\right)dx\coloneqq\lim_{m\to\infty}\int_{a}^{m}f\left(x\right)dx$ +\end_inset + +. + Podobno definiramo +\begin_inset Formula $\int_{-\infty}^{a}f\left(x\right)dx$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Pomemben primer. + +\begin_inset Formula $\int_{1}^{\infty}x^{\alpha}dx=?$ +\end_inset + +. + +\begin_inset Formula $\int_{1}^{M}x^{\alpha}dx=\frac{M^{\alpha+1}}{\alpha+1}-\frac{1}{\alpha+1}=\frac{M^{\alpha+1}-1}{\alpha+1}$ +\end_inset + +. + Torej +\begin_inset Formula $\exists\lim_{M\to\infty}\int_{1}^{M}x^{\alpha}dx\Leftrightarrow\alpha\not=-1$ +\end_inset + +. + Poglejmo, + kaj se zgodi v +\begin_inset Formula $\alpha=-1$ +\end_inset + +: + +\begin_inset Formula $\int_{1}^{\infty}x^{-1}dx=\ln M-\ln1=\ln M$ +\end_inset + +. + Toda +\begin_inset Formula $\lim_{n\to\infty}\ln M=\infty$ +\end_inset + +, + torej +\begin_inset Formula $\int_{1}^{\infty}x^{-1}dx$ +\end_inset + + divergira. +\end_layout + +\begin_layout Definition* +\begin_inset Formula $\int_{a}^{\infty}f\left(x\right)dx$ +\end_inset + + je absolutno konvergenten, + če je +\begin_inset Formula $\int_{a}^{\infty}\left|f\left(x\right)\right|dx<\infty$ +\end_inset + +. +\end_layout + +\begin_layout Fact* +Velja +\begin_inset Formula $\int_{a}^{\infty}\left|f\left(x\right)\right|dx<0\Rightarrow\int_{a}^{\infty}f\left(x\right)dx<\infty$ +\end_inset + +. + Velja +\begin_inset Formula $\left|\int_{a}^{\infty}f\left(x\right)dx\right|\leq\int_{a}^{\infty}\left|f\left(x\right)\right|dx$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ali je predpostavka, + da je +\begin_inset Formula $f$ +\end_inset + + omejena, + sploh potrebna? +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $f:[a,b)\to\mathbb{R}\ni:\forall c0$ +\end_inset + + (da bo +\begin_inset Formula $\left(\alpha+1\right)\ln\varepsilon\to-\infty$ +\end_inset + +), + torej skupaj s predpostavko +\begin_inset Formula $\alpha\in\left(-1,0\right)$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Torej +\begin_inset Formula $\int_{0}^{1}x^{\alpha}dx=\frac{1}{\alpha+1}$ +\end_inset + + za +\begin_inset Formula $\alpha\in\left(-1,0\right)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Uporaba integrala +\end_layout + +\begin_layout Itemize +Ploščine: + +\begin_inset Formula $f\geq0$ +\end_inset + + na +\begin_inset Formula $J=\left[a,b\right]$ +\end_inset + + in je +\begin_inset Formula $f\in I\left(J\right)$ +\end_inset + +, + je ploščina lika med +\begin_inset Formula $x$ +\end_inset + + osjo in grafom +\begin_inset Formula $f$ +\end_inset + + definirana kot +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx$ +\end_inset + +. + Če +\begin_inset Formula $f$ +\end_inset + + ni pozitivna, + pa je +\begin_inset Formula $\int_{a}^{b}f\left(x\right)dx=pl\left(L_{1}\right)-pl\left(L_{2}\right)$ +\end_inset + +, + kjer je +\begin_inset Formula $L_{1}$ +\end_inset + + lik nad +\begin_inset Formula $x$ +\end_inset + + osjo in +\begin_inset Formula $L_{2}$ +\end_inset + + lik pod +\begin_inset Formula $x$ +\end_inset + + osjo. +\end_layout + +\begin_layout Example* +Ploščina kroga: + Enačba krožnice je +\begin_inset Formula $x^{2}+y^{2}=r^{2}$ +\end_inset + + za +\begin_inset Formula $r>0$ +\end_inset + +. + +\begin_inset Formula $y=\sqrt{r^{2}-x^{2}}$ +\end_inset + +. + Ploščina kroga z radijem +\begin_inset Formula $r$ +\end_inset + + je torej +\begin_inset Formula $2\int_{-r}^{r}\sqrt{r^{2}-x^{2}}dx=\cdots=\pi r^{2}$ +\end_inset + +. +\end_layout + \end_body \end_document -- cgit v1.2.3