// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/alignment.h" #include "common/assert.h" #include "core/memory.h" #include "video_core/gpu.h" #include "video_core/textures/decoders.h" #include "video_core/textures/texture.h" namespace Tegra::Texture { /** * This table represents the internal swizzle of a gob, * in format 16 bytes x 2 sector packing. * Calculates the offset of an (x, y) position within a swizzled texture. * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188 */ template struct alignas(64) SwizzleTable { static_assert(M * Align == 64, "Swizzle Table does not align to GOB"); constexpr SwizzleTable() { for (u32 y = 0; y < N; ++y) { for (u32 x = 0; x < M; ++x) { const u32 x2 = x * Align; values[y][x] = static_cast(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16)); } } } const std::array& operator[](std::size_t index) const { return values[index]; } std::array, N> values{}; }; constexpr auto legacy_swizzle_table = SwizzleTable<8, 64, 1>(); constexpr auto fast_swizzle_table = SwizzleTable<8, 4, 16>(); static void LegacySwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) { std::array data_ptrs; const std::size_t stride = width * bytes_per_pixel; const std::size_t gobs_in_x = 64; const std::size_t gobs_in_y = 8; const std::size_t gobs_size = gobs_in_x * gobs_in_y; const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x}; for (std::size_t y = 0; y < height; ++y) { const std::size_t gob_y_address = (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs + (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size; const auto& table = legacy_swizzle_table[y % gobs_in_y]; for (std::size_t x = 0; x < width; ++x) { const std::size_t gob_address = gob_y_address + (x * bytes_per_pixel / gobs_in_x) * gobs_size * block_height; const std::size_t x2 = x * bytes_per_pixel; const std::size_t swizzle_offset = gob_address + table[x2 % gobs_in_x]; const std::size_t pixel_index = (x + y * width) * out_bytes_per_pixel; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel); } } } static void FastSwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) { std::array data_ptrs; const std::size_t stride{width * bytes_per_pixel}; const std::size_t gobs_in_x = 64; const std::size_t gobs_in_y = 8; const std::size_t gobs_size = gobs_in_x * gobs_in_y; const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x}; const std::size_t copy_size{16}; for (std::size_t y = 0; y < height; ++y) { const std::size_t initial_gob = (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs + (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size; const std::size_t pixel_base{y * width * out_bytes_per_pixel}; const auto& table = fast_swizzle_table[y % gobs_in_y]; for (std::size_t xb = 0; xb < stride; xb += copy_size) { const std::size_t gob_address{initial_gob + (xb / gobs_in_x) * gobs_size * block_height}; const std::size_t swizzle_offset{gob_address + table[(xb / 16) % 4]}; const std::size_t out_x = xb * out_bytes_per_pixel / bytes_per_pixel; const std::size_t pixel_index{out_x + pixel_base}; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], copy_size); } } } void CopySwizzledData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) { if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % 16 == 0) { FastSwizzleData(width, height, bytes_per_pixel, out_bytes_per_pixel, swizzled_data, unswizzled_data, unswizzle, block_height); } else { LegacySwizzleData(width, height, bytes_per_pixel, out_bytes_per_pixel, swizzled_data, unswizzled_data, unswizzle, block_height); } } u32 BytesPerPixel(TextureFormat format) { switch (format) { case TextureFormat::DXT1: case TextureFormat::DXN1: // In this case a 'pixel' actually refers to a 4x4 tile. return 8; case TextureFormat::DXT23: case TextureFormat::DXT45: case TextureFormat::DXN2: case TextureFormat::BC7U: case TextureFormat::BC6H_UF16: case TextureFormat::BC6H_SF16: // In this case a 'pixel' actually refers to a 4x4 tile. return 16; case TextureFormat::R32_G32_B32: return 12; case TextureFormat::ASTC_2D_4X4: case TextureFormat::ASTC_2D_8X8: case TextureFormat::A8R8G8B8: case TextureFormat::A2B10G10R10: case TextureFormat::BF10GF11RF11: case TextureFormat::R32: case TextureFormat::R16_G16: return 4; case TextureFormat::A1B5G5R5: case TextureFormat::B5G6R5: case TextureFormat::G8R8: case TextureFormat::R16: return 2; case TextureFormat::R8: return 1; case TextureFormat::R16_G16_B16_A16: return 8; case TextureFormat::R32_G32_B32_A32: return 16; case TextureFormat::R32_G32: return 8; default: UNIMPLEMENTED_MSG("Format not implemented"); break; } } std::vector UnswizzleTexture(VAddr address, u32 tile_size, u32 bytes_per_pixel, u32 width, u32 height, u32 block_height) { std::vector unswizzled_data(width * height * bytes_per_pixel); CopySwizzledData(width / tile_size, height / tile_size, bytes_per_pixel, bytes_per_pixel, Memory::GetPointer(address), unswizzled_data.data(), true, block_height); return unswizzled_data; } std::vector DecodeTexture(const std::vector& texture_data, TextureFormat format, u32 width, u32 height) { std::vector rgba_data; // TODO(Subv): Implement. switch (format) { case TextureFormat::DXT1: case TextureFormat::DXT23: case TextureFormat::DXT45: case TextureFormat::DXN1: case TextureFormat::DXN2: case TextureFormat::BC7U: case TextureFormat::BC6H_UF16: case TextureFormat::BC6H_SF16: case TextureFormat::ASTC_2D_4X4: case TextureFormat::ASTC_2D_8X8: case TextureFormat::A8R8G8B8: case TextureFormat::A2B10G10R10: case TextureFormat::A1B5G5R5: case TextureFormat::B5G6R5: case TextureFormat::R8: case TextureFormat::G8R8: case TextureFormat::BF10GF11RF11: case TextureFormat::R32_G32_B32_A32: case TextureFormat::R32_G32: case TextureFormat::R32: case TextureFormat::R16: case TextureFormat::R16_G16: case TextureFormat::R32_G32_B32: // TODO(Subv): For the time being just forward the same data without any decoding. rgba_data = texture_data; break; default: UNIMPLEMENTED_MSG("Format not implemented"); break; } return rgba_data; } std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth) { if (tiled) { const u32 gobs_in_x = 64 / bytes_per_pixel; const u32 gobs_in_y = 8; const u32 gobs_in_z = 1; const u32 aligned_width = Common::AlignUp(width, gobs_in_x); const u32 aligned_height = Common::AlignUp(height, gobs_in_y * block_height); const u32 aligned_depth = Common::AlignUp(depth, gobs_in_z * block_depth); return aligned_width * aligned_height * aligned_depth * bytes_per_pixel; } else { return width * height * depth * bytes_per_pixel; } } } // namespace Tegra::Texture