From 5248fa926dd53948b0df4f93c50107dc30ae2305 Mon Sep 17 00:00:00 2001 From: Ameer J <52414509+ameerj@users.noreply.github.com> Date: Tue, 1 Aug 2023 17:22:03 -0400 Subject: const, pack result_vector and replicate tables, undo amd opts --- src/video_core/host_shaders/astc_decoder.comp | 487 ++++++++++++++------------ 1 file changed, 260 insertions(+), 227 deletions(-) (limited to 'src') diff --git a/src/video_core/host_shaders/astc_decoder.comp b/src/video_core/host_shaders/astc_decoder.comp index 90b40c55f..e8801b0ff 100644 --- a/src/video_core/host_shaders/astc_decoder.comp +++ b/src/video_core/host_shaders/astc_decoder.comp @@ -57,20 +57,40 @@ const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT; const uint BYTES_PER_BLOCK_LOG2 = 4; -const int JUST_BITS = 0; -const int QUINT = 1; -const int TRIT = 2; +const uint JUST_BITS = 0u; +const uint QUINT = 1u; +const uint TRIT = 2u; // ASTC Encodings data, sorted in ascending order based on their BitLength value // (see GetBitLength() function) -const EncodingData encoding_values[22] = EncodingData[]( - EncodingData(JUST_BITS), EncodingData(JUST_BITS | (1u << 8u)), EncodingData(TRIT), EncodingData(JUST_BITS | (2u << 8u)), - EncodingData(QUINT), EncodingData(TRIT | (1u << 8u)), EncodingData(JUST_BITS | (3u << 8u)), EncodingData(QUINT | (1u << 8u)), - EncodingData(TRIT | (2u << 8u)), EncodingData(JUST_BITS | (4u << 8u)), EncodingData(QUINT | (2u << 8u)), EncodingData(TRIT | (3u << 8u)), - EncodingData(JUST_BITS | (5u << 8u)), EncodingData(QUINT | (3u << 8u)), EncodingData(TRIT | (4u << 8u)), EncodingData(JUST_BITS | (6u << 8u)), - EncodingData(QUINT | (4u << 8u)), EncodingData(TRIT | (5u << 8u)), EncodingData(JUST_BITS | (7u << 8u)), EncodingData(QUINT | (5u << 8u)), - EncodingData(TRIT | (6u << 8u)), EncodingData(JUST_BITS | (8u << 8u)) -); +const uvec4 encoding_values[6] = uvec4[]( + uvec4((JUST_BITS), (JUST_BITS | (1u << 8u)), (TRIT), (JUST_BITS | (2u << 8u))), + uvec4((QUINT), (TRIT | (1u << 8u)), (JUST_BITS | (3u << 8u)), (QUINT | (1u << 8u))), + uvec4((TRIT | (2u << 8u)), (JUST_BITS | (4u << 8u)), (QUINT | (2u << 8u)), (TRIT | (3u << 8u))), + uvec4((JUST_BITS | (5u << 8u)), (QUINT | (3u << 8u)), (TRIT | (4u << 8u)), (JUST_BITS | (6u << 8u))), + uvec4((QUINT | (4u << 8u)), (TRIT | (5u << 8u)), (JUST_BITS | (7u << 8u)), (QUINT | (5u << 8u))), + uvec4((TRIT | (6u << 8u)), (JUST_BITS | (8u << 8u)), 0u, 0u)); + +// Input ASTC texture globals +int total_bitsread = 0; +uvec4 local_buff; + +// Color data globals +uvec4 color_endpoint_data; +int color_bitsread = 0; + +// Global "vector" to be pushed into when decoding +// At most will require BLOCK_WIDTH x BLOCK_HEIGHT in single plane mode +// At most will require BLOCK_WIDTH x BLOCK_HEIGHT x 2 in dual plane mode +// So the maximum would be 144 (12 x 12) elements, x 2 for two planes +#define DIVCEIL(number, divisor) (number + divisor - 1) / divisor +#define ARRAY_NUM_ELEMENTS 144 +#define VECTOR_ARRAY_SIZE DIVCEIL(ARRAY_NUM_ELEMENTS * 2, 4) +uvec4 result_vector[VECTOR_ARRAY_SIZE]; + +int result_index = 0; +uint result_vector_max_index; +bool result_limit_reached = false; // EncodingData helpers uint Encoding(EncodingData val) { @@ -104,78 +124,17 @@ EncodingData CreateEncodingData(uint encoding, uint num_bits, uint bit_val, uint ((bit_val) << 16u) | ((quint_trit_val) << 24u)); } -// The following constants are expanded variants of the Replicate() -// function calls corresponding to the following arguments: -// value: index into the generated table -// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4. -// to_bit: the integer after "TO_" -const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127); -const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511); - -const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255); -const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255); -const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255); -const uint REPLICATE_4_BIT_TO_8_TABLE[16] = - uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255); -const uint REPLICATE_5_BIT_TO_8_TABLE[32] = - uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, - 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255); -const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63); -const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63); -const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63); -const uint REPLICATE_4_BIT_TO_6_TABLE[16] = - uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63); -const uint REPLICATE_5_BIT_TO_6_TABLE[32] = - uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45, - 47, 49, 51, 53, 55, 57, 59, 61, 63); -const uint REPLICATE_6_BIT_TO_8_TABLE[64] = - uint[](0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 69, 73, 77, 81, 85, 89, - 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, - 166, 170, 174, 178, 182, 186, 190, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, - 239, 243, 247, 251, 255); -const uint REPLICATE_7_BIT_TO_8_TABLE[128] = - uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, - 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, - 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, - 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, - 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, - 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, - 237, 239, 241, 243, 245, 247, 249, 251, 253, 255); - -// Input ASTC texture globals -int total_bitsread = 0; -uvec4 local_buff; - -// Color data globals -uvec4 color_endpoint_data; -int color_bitsread = 0; - -// Four values, two endpoints, four maximum partitions -uint color_values[32]; -int colvals_index = 0; - -// Global "vectors" to be pushed into when decoding -EncodingData result_vector[144]; -int result_index = 0; -// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)] -// is the same as [(num_bits - 1):0] and repeats all the way down. -uint Replicate(uint val, uint num_bits, uint to_bit) { - const uint v = val & uint((1 << num_bits) - 1); - uint res = v; - uint reslen = num_bits; - while (reslen < to_bit) { - uint comp = 0; - if (num_bits > to_bit - reslen) { - uint newshift = to_bit - reslen; - comp = num_bits - newshift; - num_bits = newshift; - } - res = uint(res << num_bits); - res = uint(res | (v >> comp)); - reslen += num_bits; +void ResultEmplaceBack(EncodingData val) { + if (result_index >= result_vector_max_index) { + // Alert callers to avoid decoding more than needed by this phase + result_limit_reached = true; + return; } - return res; + const uint array_index = result_index / 4; + const uint vector_index = result_index % 4; + result_vector[array_index][vector_index] = val.data; + ++result_index; } uvec4 ReplicateByteTo16(uvec4 value) { @@ -183,64 +142,105 @@ uvec4 ReplicateByteTo16(uvec4 value) { } uint ReplicateBitTo7(uint value) { - return REPLICATE_BIT_TO_7_TABLE[value]; + return value * 127; } uint ReplicateBitTo9(uint value) { - return REPLICATE_1_BIT_TO_9_TABLE[value]; + return value * 511; } -uint FastReplicate(uint value, uint num_bits, uint to_bit) { - if (num_bits == 0) { +uint FastReplicateTo8(uint value, uint num_bits) { + if (value == 0) { return 0; } - if (num_bits == to_bit) { - return value; + const uint array_index = value / 4; + const uint vector_index = value % 4; + switch (num_bits) { + case 1: + return 255; + case 2: { + const uvec4 REPLICATE_2_BIT_TO_8_TABLE = (uvec4(0, 85, 170, 255)); + return REPLICATE_2_BIT_TO_8_TABLE[vector_index]; } - if (to_bit == 6) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_6_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_6_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_6_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_6_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_6_TABLE[value]; - default: - break; - } - } else { /* if (to_bit == 8) */ - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_8_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_8_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_8_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_8_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_8_TABLE[value]; - case 6: - return REPLICATE_6_BIT_TO_8_TABLE[value]; - case 7: - return REPLICATE_7_BIT_TO_8_TABLE[value]; - default: - break; - } + case 3: { + const uvec4 REPLICATE_3_BIT_TO_8_TABLE[2] = + uvec4[](uvec4(0, 36, 73, 109), uvec4(146, 182, 219, 255)); + return REPLICATE_3_BIT_TO_8_TABLE[array_index][vector_index]; } - return Replicate(value, num_bits, to_bit); -} - -uint FastReplicateTo8(uint value, uint num_bits) { - return FastReplicate(value, num_bits, 8); + case 4: { + const uvec4 REPLICATE_4_BIT_TO_8_TABLE[4] = + uvec4[](uvec4(0, 17, 34, 51), uvec4(68, 85, 102, 119), uvec4(136, 153, 170, 187), + uvec4(204, 221, 238, 255)); + return REPLICATE_4_BIT_TO_8_TABLE[array_index][vector_index]; + } + case 5: { + const uvec4 REPLICATE_5_BIT_TO_8_TABLE[8] = + uvec4[](uvec4(0, 8, 16, 24), uvec4(33, 41, 49, 57), uvec4(66, 74, 82, 90), + uvec4(99, 107, 115, 123), uvec4(132, 140, 148, 156), uvec4(165, 173, 181, 189), + uvec4(198, 206, 214, 222), uvec4(231, 239, 247, 255)); + return REPLICATE_5_BIT_TO_8_TABLE[array_index][vector_index]; + } + case 6: { + const uvec4 REPLICATE_6_BIT_TO_8_TABLE[16] = uvec4[]( + uvec4(0, 4, 8, 12), uvec4(16, 20, 24, 28), uvec4(32, 36, 40, 44), uvec4(48, 52, 56, 60), + uvec4(65, 69, 73, 77), uvec4(81, 85, 89, 93), uvec4(97, 101, 105, 109), + uvec4(113, 117, 121, 125), uvec4(130, 134, 138, 142), uvec4(146, 150, 154, 158), + uvec4(162, 166, 170, 174), uvec4(178, 182, 186, 190), uvec4(195, 199, 203, 207), + uvec4(211, 215, 219, 223), uvec4(227, 231, 235, 239), uvec4(243, 247, 251, 255)); + return REPLICATE_6_BIT_TO_8_TABLE[array_index][vector_index]; + } + case 7: { + const uvec4 REPLICATE_7_BIT_TO_8_TABLE[32] = + uvec4[](uvec4(0, 2, 4, 6), uvec4(8, 10, 12, 14), uvec4(16, 18, 20, 22), + uvec4(24, 26, 28, 30), uvec4(32, 34, 36, 38), uvec4(40, 42, 44, 46), + uvec4(48, 50, 52, 54), uvec4(56, 58, 60, 62), uvec4(64, 66, 68, 70), + uvec4(72, 74, 76, 78), uvec4(80, 82, 84, 86), uvec4(88, 90, 92, 94), + uvec4(96, 98, 100, 102), uvec4(104, 106, 108, 110), uvec4(112, 114, 116, 118), + uvec4(120, 122, 124, 126), uvec4(129, 131, 133, 135), uvec4(137, 139, 141, 143), + uvec4(145, 147, 149, 151), uvec4(153, 155, 157, 159), uvec4(161, 163, 165, 167), + uvec4(169, 171, 173, 175), uvec4(177, 179, 181, 183), uvec4(185, 187, 189, 191), + uvec4(193, 195, 197, 199), uvec4(201, 203, 205, 207), uvec4(209, 211, 213, 215), + uvec4(217, 219, 221, 223), uvec4(225, 227, 229, 231), uvec4(233, 235, 237, 239), + uvec4(241, 243, 245, 247), uvec4(249, 251, 253, 255)); + return REPLICATE_7_BIT_TO_8_TABLE[array_index][vector_index]; + } + } + return value; } uint FastReplicateTo6(uint value, uint num_bits) { - return FastReplicate(value, num_bits, 6); + if (value == 0) { + return 0; + } + const uint array_index = value / 4; + const uint vector_index = value % 4; + switch (num_bits) { + case 1: + return 63; + case 2: { + const uvec4 REPLICATE_2_BIT_TO_6_TABLE = uvec4(0, 21, 42, 63); + return REPLICATE_2_BIT_TO_6_TABLE[vector_index]; + } + case 3: { + const uvec4 REPLICATE_3_BIT_TO_6_TABLE[2] = + uvec4[](uvec4(0, 9, 18, 27), uvec4(36, 45, 54, 63)); + return REPLICATE_3_BIT_TO_6_TABLE[array_index][vector_index]; + } + case 4: { + const uvec4 REPLICATE_4_BIT_TO_6_TABLE[4] = + uvec4[](uvec4(0, 4, 8, 12), uvec4(17, 21, 25, 29), uvec4(34, 38, 42, 46), + uvec4(51, 55, 59, 63)); + return REPLICATE_4_BIT_TO_6_TABLE[array_index][vector_index]; + } + case 5: { + const uvec4 REPLICATE_5_BIT_TO_6_TABLE[8] = + uvec4[](uvec4(0, 2, 4, 6), uvec4(8, 10, 12, 14), uvec4(16, 18, 20, 22), + uvec4(24, 26, 28, 30), uvec4(33, 35, 37, 39), uvec4(41, 43, 45, 47), + uvec4(49, 51, 53, 55), uvec4(57, 59, 61, 63)); + return REPLICATE_5_BIT_TO_6_TABLE[array_index][vector_index]; + } + } + return value; } uint Div3Floor(uint v) { @@ -281,7 +281,7 @@ uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool sma seed += (partition_count - 1) * 1024; - uint rnum = Hash52(uint(seed)); + const uint rnum = Hash52(uint(seed)); uint seed1 = uint(rnum & 0xF); uint seed2 = uint((rnum >> 4) & 0xF); uint seed3 = uint((rnum >> 8) & 0xF); @@ -364,8 +364,8 @@ uint ExtractBits(uvec4 payload, int offset, int bits) { } uint StreamBits(uint num_bits) { - int int_bits = int(num_bits); - uint ret = ExtractBits(local_buff, total_bitsread, int_bits); + const int int_bits = int(num_bits); + const uint ret = ExtractBits(local_buff, total_bitsread, int_bits); total_bitsread += int_bits; return ret; } @@ -382,14 +382,18 @@ uint StreamColorBits(uint num_bits) { return ret; } -void ResultEmplaceBack(EncodingData val) { - result_vector[result_index] = val; - ++result_index; +EncodingData GetEncodingFromVector(uint index) { + const uint array_index = index / 4; + const uint vector_index = index % 4; + + const uint data = result_vector[array_index][vector_index]; + return EncodingData(data); } // Returns the number of bits required to encode n_vals values. uint GetBitLength(uint n_vals, uint encoding_index) { - const EncodingData encoding_value = encoding_values[encoding_index]; + const EncodingData encoding_value = + EncodingData(encoding_values[encoding_index / 4][encoding_index % 4]); const uint encoding = Encoding(encoding_value); uint total_bits = NumBits(encoding_value) * n_vals; if (encoding == TRIT) { @@ -409,7 +413,7 @@ uint GetNumWeightValues(uvec2 size, bool dual_plane) { } uint GetPackedBitSize(uvec2 size, bool dual_plane, uint max_weight) { - uint n_vals = GetNumWeightValues(size, dual_plane); + const uint n_vals = GetNumWeightValues(size, dual_plane); return GetBitLength(n_vals, max_weight); } @@ -418,13 +422,13 @@ uint BitsBracket(uint bits, uint pos) { } uint BitsOp(uint bits, uint start, uint end) { - uint mask = (1 << (end - start + 1)) - 1; + const uint mask = (1 << (end - start + 1)) - 1; return ((bits >> start) & mask); } void DecodeQuintBlock(uint num_bits) { - uint m[3]; - uint q[3]; + uvec3 m; + uvec3 q; uint Q; m[0] = StreamColorBits(num_bits); Q = StreamColorBits(3); @@ -433,25 +437,25 @@ void DecodeQuintBlock(uint num_bits) { m[2] = StreamColorBits(num_bits); Q |= StreamColorBits(2) << 5; if (BitsOp(Q, 1, 2) == 3 && BitsOp(Q, 5, 6) == 0) { - q[0] = 4; - q[1] = 4; - q[2] = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) | - (BitsBracket(Q, 3) & ~BitsBracket(Q, 0)); + q.x = 4; + q.y = 4; + q.z = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) | + (BitsBracket(Q, 3) & ~BitsBracket(Q, 0)); } else { uint C = 0; if (BitsOp(Q, 1, 2) == 3) { - q[2] = 4; + q.z = 4; C = (BitsOp(Q, 3, 4) << 3) | ((~BitsOp(Q, 5, 6) & 3) << 1) | BitsBracket(Q, 0); } else { - q[2] = BitsOp(Q, 5, 6); + q.z = BitsOp(Q, 5, 6); C = BitsOp(Q, 0, 4); } if (BitsOp(C, 0, 2) == 5) { - q[1] = 4; - q[0] = BitsOp(C, 3, 4); + q.y = 4; + q.x = BitsOp(C, 3, 4); } else { - q[1] = BitsOp(C, 3, 4); - q[0] = BitsOp(C, 0, 2); + q.y = BitsOp(C, 3, 4); + q.x = BitsOp(C, 0, 2); } } for (uint i = 0; i < 3; i++) { @@ -509,11 +513,11 @@ void DecodeTritBlock(uint num_bits) { } void DecodeIntegerSequence(uint max_range, uint num_values) { - EncodingData val = encoding_values[max_range]; + EncodingData val = EncodingData(encoding_values[max_range / 4][max_range % 4]); const uint encoding = Encoding(val); const uint num_bits = NumBits(val); uint vals_decoded = 0; - while (vals_decoded < num_values) { + while (vals_decoded < num_values && !result_limit_reached) { switch (encoding) { case QUINT: DecodeQuintBlock(num_bits); @@ -532,7 +536,8 @@ void DecodeIntegerSequence(uint max_range, uint num_values) { } } -void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { +void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits, + out uvec4 color_values[8]) { uint num_values = 0; for (uint i = 0; i < num_partitions; i++) { num_values += ((modes[i] >> 2) + 1) << 1; @@ -540,8 +545,8 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { // Find the largest encoding that's within color_data_bits // TODO(ameerj): profile with binary search int range = 0; - while (++range < encoding_values.length()) { - uint bit_length = GetBitLength(num_values, range); + while (++range < ((encoding_values.length() * 4) - 2)) { + const uint bit_length = GetBitLength(num_values, range); if (bit_length > color_data_bits) { break; } @@ -552,7 +557,7 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { if (out_index >= num_values) { break; } - const EncodingData val = result_vector[itr]; + const EncodingData val = GetEncodingFromVector(itr); const uint encoding = Encoding(val); const uint bitlen = NumBits(val); const uint bitval = BitValue(val); @@ -560,7 +565,8 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { A = ReplicateBitTo9((bitval & 1)); switch (encoding) { case JUST_BITS: - color_values[out_index++] = FastReplicateTo8(bitval, bitlen); + color_values[out_index / 4][out_index % 4] = FastReplicateTo8(bitval, bitlen); + ++out_index; break; case TRIT: { D = QuintTritValue(val); @@ -570,31 +576,31 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { break; case 2: { C = 93; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 8) | (b << 4) | (b << 2) | (b << 1); break; } case 3: { C = 44; - uint cb = (bitval >> 1) & 3; + const uint cb = (bitval >> 1) & 3; B = (cb << 7) | (cb << 2) | cb; break; } case 4: { C = 22; - uint dcb = (bitval >> 1) & 7; + const uint dcb = (bitval >> 1) & 7; B = (dcb << 6) | dcb; break; } case 5: { C = 11; - uint edcb = (bitval >> 1) & 0xF; + const uint edcb = (bitval >> 1) & 0xF; B = (edcb << 5) | (edcb >> 2); break; } case 6: { C = 5; - uint fedcb = (bitval >> 1) & 0x1F; + const uint fedcb = (bitval >> 1) & 0x1F; B = (fedcb << 4) | (fedcb >> 4); break; } @@ -609,25 +615,25 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { break; case 2: { C = 54; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 8) | (b << 3) | (b << 2); break; } case 3: { C = 26; - uint cb = (bitval >> 1) & 3; + const uint cb = (bitval >> 1) & 3; B = (cb << 7) | (cb << 1) | (cb >> 1); break; } case 4: { C = 13; - uint dcb = (bitval >> 1) & 7; + const uint dcb = (bitval >> 1) & 7; B = (dcb << 6) | (dcb >> 1); break; } case 5: { C = 6; - uint edcb = (bitval >> 1) & 0xF; + const uint edcb = (bitval >> 1) & 0xF; B = (edcb << 5) | (edcb >> 3); break; } @@ -639,7 +645,8 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { uint T = (D * C) + B; T ^= A; T = (A & 0x80) | (T >> 2); - color_values[out_index++] = T; + color_values[out_index / 4][out_index % 4] = T; + ++out_index; } } } @@ -657,25 +664,30 @@ ivec2 BitTransferSigned(int a, int b) { } uvec4 ClampByte(ivec4 color) { - const uvec4 clamped = uvec4(clamp(color, 0, 255)); - return clamped; + for (uint i = 0; i < 4; ++i) { + color[i] = clamp(color[i], 0, 255); + } + return uvec4(color); } ivec4 BlueContract(int a, int r, int g, int b) { return ivec4(a, (r + b) >> 1, (g + b) >> 1, b); } -void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) { +void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode, + in uvec4 color_values[8], inout uint colvals_index) { #define READ_UINT_VALUES(N) \ uint v[N]; \ for (uint i = 0; i < N; i++) { \ - v[i] = color_values[colvals_index++]; \ + v[i] = color_values[colvals_index / 4][colvals_index % 4]; \ + ++colvals_index; \ } #define READ_INT_VALUES(N) \ int v[N]; \ for (uint i = 0; i < N; i++) { \ - v[i] = int(color_values[colvals_index++]); \ + v[i] = int(color_values[colvals_index / 4][colvals_index % 4]); \ + ++colvals_index; \ } switch (color_endpoint_mode) { @@ -687,8 +699,8 @@ void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) { } case 1: { READ_UINT_VALUES(2) - uint L0 = (v[0] >> 2) | (v[1] & 0xC0); - uint L1 = min(L0 + (v[1] & 0x3F), 0xFFU); + const uint L0 = (v[0] >> 2) | (v[1] & 0xC0); + const uint L1 = min(L0 + (v[1] & 0x3F), 0xFFU); ep1 = uvec4(0xFF, L0, L0, L0); ep2 = uvec4(0xFF, L1, L1, L1); break; @@ -817,7 +829,7 @@ uint UnquantizeTexelWeight(EncodingData val) { D = QuintTritValue(val); switch (bitlen) { case 0: { - uint results[3] = {0, 32, 63}; + const uint results[3] = {0, 32, 63}; result = results[D]; break; } @@ -827,13 +839,13 @@ uint UnquantizeTexelWeight(EncodingData val) { } case 2: { C = 23; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 6) | (b << 2) | b; break; } case 3: { C = 11; - uint cb = (bitval >> 1) & 3; + const uint cb = (bitval >> 1) & 3; B = (cb << 5) | cb; break; } @@ -846,7 +858,7 @@ uint UnquantizeTexelWeight(EncodingData val) { D = QuintTritValue(val); switch (bitlen) { case 0: { - uint results[5] = {0, 16, 32, 47, 63}; + const uint results[5] = {0, 16, 32, 47, 63}; result = results[D]; break; } @@ -856,7 +868,7 @@ uint UnquantizeTexelWeight(EncodingData val) { } case 2: { C = 13; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 6) | (b << 1); break; } @@ -875,15 +887,18 @@ uint UnquantizeTexelWeight(EncodingData val) { return result; } -void UnquantizeTexelWeights(bool is_dual_plane, uvec2 size, out uint unquantized_texel_weights[2 * 144]) { +void UnquantizeTexelWeights(uvec2 size, bool is_dual_plane, + out uvec4 unquantized_texel_weights[VECTOR_ARRAY_SIZE]) { const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1)); const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1)); const uint num_planes = is_dual_plane ? 2 : 1; const uint area = size.x * size.y; const uint loop_count = min(result_index, area * num_planes); - uint unquantized[2 * 144]; for (uint itr = 0; itr < loop_count; ++itr) { - unquantized[itr] = UnquantizeTexelWeight(result_vector[itr]); + const uint array_index = itr / 4; + const uint vector_index = itr % 4; + result_vector[array_index][vector_index] = + UnquantizeTexelWeight(GetEncodingFromVector(itr)); } for (uint plane = 0; plane < num_planes; ++plane) { for (uint t = 0; t < block_dims.y; t++) { @@ -907,28 +922,33 @@ void UnquantizeTexelWeights(bool is_dual_plane, uvec2 size, out uint unquantized #define VectorIndicesFromBase(offset_base) \ const uint offset = is_dual_plane ? 2 * offset_base + plane : offset_base; \ + const uint array_index = offset / 4; \ + const uint vector_index = offset % 4; if (v0 < area) { const uint offset_base = v0; VectorIndicesFromBase(offset_base); - p.x = unquantized[offset]; + p.x = result_vector[array_index][vector_index]; } if ((v0 + 1) < (area)) { const uint offset_base = v0 + 1; VectorIndicesFromBase(offset_base); - p.y = unquantized[offset]; + p.y = result_vector[array_index][vector_index]; } if ((v0 + size.x) < (area)) { const uint offset_base = v0 + size.x; VectorIndicesFromBase(offset_base); - p.z = unquantized[offset]; + p.z = result_vector[array_index][vector_index]; } if ((v0 + size.x + 1) < (area)) { const uint offset_base = v0 + size.x + 1; VectorIndicesFromBase(offset_base); - p.w = unquantized[offset]; + p.w = result_vector[array_index][vector_index]; } - unquantized_texel_weights[plane * 144 + t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4; + const uint offset = (t * block_dims.x + s) + ARRAY_NUM_ELEMENTS * plane; + const uint array_index = offset / 4; + const uint vector_index = offset % 4; + unquantized_texel_weights[array_index][vector_index] = (uint(dot(p, w)) + 8) >> 4; } } } @@ -1050,6 +1070,7 @@ TexelWeightParams DecodeBlockInfo() { weight_index += 6; } params.max_weight = weight_index + 1; + return params; } @@ -1079,7 +1100,7 @@ void FillVoidExtentLDR(ivec3 coord) { } void DecompressBlock(ivec3 coord) { - TexelWeightParams params = DecodeBlockInfo(); + const TexelWeightParams params = DecodeBlockInfo(); if (params.error_state) { FillError(coord); return; @@ -1096,12 +1117,11 @@ void DecompressBlock(ivec3 coord) { FillError(coord); return; } - uint num_partitions = StreamBits(2) + 1; + const uint num_partitions = StreamBits(2) + 1; if (num_partitions > 4 || (num_partitions == 4 && params.dual_plane)) { FillError(coord); return; } - int plane_index = -1; uint partition_index = 1; uvec4 color_endpoint_mode = uvec4(0); uint ced_pointer = 0; @@ -1113,8 +1133,8 @@ void DecompressBlock(ivec3 coord) { partition_index = StreamBits(10); base_cem = StreamBits(6); } - uint base_mode = base_cem & 3; - uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight); + const uint base_mode = base_cem & 3; + const uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight); uint remaining_bits = 128 - weight_bits - total_bitsread; uint extra_cem_bits = 0; if (base_mode > 0) { @@ -1133,10 +1153,7 @@ void DecompressBlock(ivec3 coord) { } } remaining_bits -= extra_cem_bits; - uint plane_selector_bits = 0; - if (params.dual_plane) { - plane_selector_bits = 2; - } + const uint plane_selector_bits = params.dual_plane ? 2 : 0; remaining_bits -= plane_selector_bits; if (remaining_bits > 128) { // Bad data, more remaining bits than 4 bytes @@ -1144,17 +1161,17 @@ void DecompressBlock(ivec3 coord) { return; } // Read color data... - uint color_data_bits = remaining_bits; + const uint color_data_bits = remaining_bits; while (remaining_bits > 0) { - int nb = int(min(remaining_bits, 32U)); - uint b = StreamBits(nb); + const int nb = int(min(remaining_bits, 32U)); + const uint b = StreamBits(nb); color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb)); ++ced_pointer; remaining_bits -= nb; } - plane_index = int(StreamBits(plane_selector_bits)); + const uint plane_index = uint(StreamBits(plane_selector_bits)); if (base_mode > 0) { - uint extra_cem = StreamBits(extra_cem_bits); + const uint extra_cem = StreamBits(extra_cem_bits); uint cem = (extra_cem << 6) | base_cem; cem >>= 2; uvec4 C = uvec4(0); @@ -1176,43 +1193,54 @@ void DecompressBlock(ivec3 coord) { color_endpoint_mode[i] |= M[i]; } } else if (num_partitions > 1) { - uint cem = base_cem >> 2; + const uint cem = base_cem >> 2; for (uint i = 0; i < num_partitions; i++) { color_endpoint_mode[i] = cem; } } - DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits); - uvec4 endpoints[4][2]; - for (uint i = 0; i < num_partitions; i++) { - ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]); - } + uvec4 endpoints0[4]; + uvec4 endpoints1[4]; + { + // This decode phase should at most push 32 elements into the vector + result_vector_max_index = 32; + uvec4 color_values[8]; + uint colvals_index = 0; + DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits, color_values); + for (uint i = 0; i < num_partitions; i++) { + ComputeEndpoints(endpoints0[i], endpoints1[i], color_endpoint_mode[i], color_values, + colvals_index); + } + } color_endpoint_data = local_buff; color_endpoint_data = bitfieldReverse(color_endpoint_data).wzyx; - uint clear_byte_start = - (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1; - - uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) & - uint( - ((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1)); - uint vec_index = (clear_byte_start - 1) >> 2; - color_endpoint_data[vec_index] = - bitfieldInsert(color_endpoint_data[vec_index], byte_insert, int((clear_byte_start - 1) % 4) * 8, 8); + const uint clear_byte_start = (weight_bits >> 3) + 1; + + const uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) & + uint(((1 << (weight_bits % 8)) - 1)); + const uint vec_index = (clear_byte_start - 1) >> 2; + color_endpoint_data[vec_index] = bitfieldInsert(color_endpoint_data[vec_index], byte_insert, + int((clear_byte_start - 1) % 4) * 8, 8); for (uint i = clear_byte_start; i < 16; ++i) { - uint idx = i >> 2; + const uint idx = i >> 2; color_endpoint_data[idx] = bitfieldInsert(color_endpoint_data[idx], 0, int(i % 4) * 8, 8); } // Re-init vector variables for next decode phase result_index = 0; color_bitsread = 0; + result_limit_reached = false; + // The limit for the Unquantize phase, avoids decoding more data than needed. + result_vector_max_index = params.size.x * params.size.y; + if (params.dual_plane) { + result_vector_max_index *= 2; + } DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane)); - uint unquantized_texel_weights[2 * 144]; - UnquantizeTexelWeights(params.dual_plane, params.size, unquantized_texel_weights); - + uvec4 unquantized_texel_weights[VECTOR_ARRAY_SIZE]; + UnquantizeTexelWeights(params.size, params.dual_plane, unquantized_texel_weights); for (uint j = 0; j < block_dims.y; j++) { for (uint i = 0; i < block_dims.x; i++) { uint local_partition = 0; @@ -1220,13 +1248,19 @@ void DecompressBlock(ivec3 coord) { local_partition = Select2DPartition(partition_index, i, j, num_partitions, (block_dims.y * block_dims.x) < 32); } - const uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]); - const uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]); + const uvec4 C0 = ReplicateByteTo16(endpoints0[local_partition]); + const uvec4 C1 = ReplicateByteTo16(endpoints1[local_partition]); const uint weight_offset = (j * block_dims.x + i); - const uint primary_weight = unquantized_texel_weights[weight_offset]; + const uint array_index = weight_offset / 4; + const uint vector_index = weight_offset % 4; + const uint primary_weight = unquantized_texel_weights[array_index][vector_index]; uvec4 weight_vec = uvec4(primary_weight); if (params.dual_plane) { - const uint secondary_weight = unquantized_texel_weights[weight_offset + 144]; + const uint secondary_weight_offset = (j * block_dims.x + i) + ARRAY_NUM_ELEMENTS; + const uint secondary_array_index = secondary_weight_offset / 4; + const uint secondary_vector_index = secondary_weight_offset % 4; + const uint secondary_weight = + unquantized_texel_weights[secondary_array_index][secondary_vector_index]; for (uint c = 0; c < 4; c++) { const bool is_secondary = ((plane_index + 1u) & 3u) == c; weight_vec[c] = is_secondary ? secondary_weight : primary_weight; @@ -1240,12 +1274,11 @@ void DecompressBlock(ivec3 coord) { } } - uint SwizzleOffset(uvec2 pos) { - uint x = pos.x; - uint y = pos.y; - return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 + - (y % 2) * 16 + (x % 16); + const uint x = pos.x; + const uint y = pos.y; + return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + + ((x % 32) / 16) * 32 + (y % 2) * 16 + (x % 16); } void main() { -- cgit v1.2.3