From 731a9a322e5b0623a5700cccc52307163c51c564 Mon Sep 17 00:00:00 2001 From: ReinUsesLisp Date: Fri, 13 Mar 2020 22:22:27 -0300 Subject: astc: Use common types instead of stdint.h integer types --- src/video_core/textures/astc.cpp | 566 +++++++++++++++++++-------------------- 1 file changed, 282 insertions(+), 284 deletions(-) (limited to 'src/video_core/textures') diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp index af5a6c4ce..dcfab4dad 100644 --- a/src/video_core/textures/astc.cpp +++ b/src/video_core/textures/astc.cpp @@ -21,6 +21,8 @@ #include #include +#include "common/common_types.h" + #include "video_core/textures/astc.h" class InputBitStream { @@ -123,20 +125,20 @@ public: Bits(const Bits&) = delete; Bits& operator=(const Bits&) = delete; - uint8_t operator[](uint32_t bitPos) const { - return static_cast((m_Bits >> bitPos) & 1); + u8 operator[](u32 bitPos) const { + return static_cast((m_Bits >> bitPos) & 1); } - IntType operator()(uint32_t start, uint32_t end) const { + IntType operator()(u32 start, u32 end) const { if (start == end) { return (*this)[start]; } else if (start > end) { - uint32_t t = start; + u32 t = start; start = end; end = t; } - uint64_t mask = (1 << (end - start + 1)) - 1; + u64 mask = (1 << (end - start + 1)) - 1; return (m_Bits >> start) & static_cast(mask); } @@ -149,11 +151,11 @@ enum class IntegerEncoding { JustBits, Quint, Trit }; class IntegerEncodedValue { private: const IntegerEncoding m_Encoding; - const uint32_t m_NumBits; - uint32_t m_BitValue; + const u32 m_NumBits; + u32 m_BitValue; union { - uint32_t m_QuintValue; - uint32_t m_TritValue; + u32 m_QuintValue; + u32 m_TritValue; }; public: @@ -164,34 +166,34 @@ public: return *this; } - IntegerEncodedValue(IntegerEncoding encoding, uint32_t numBits) + IntegerEncodedValue(IntegerEncoding encoding, u32 numBits) : m_Encoding(encoding), m_NumBits(numBits) {} IntegerEncoding GetEncoding() const { return m_Encoding; } - uint32_t BaseBitLength() const { + u32 BaseBitLength() const { return m_NumBits; } - uint32_t GetBitValue() const { + u32 GetBitValue() const { return m_BitValue; } - void SetBitValue(uint32_t val) { + void SetBitValue(u32 val) { m_BitValue = val; } - uint32_t GetTritValue() const { + u32 GetTritValue() const { return m_TritValue; } - void SetTritValue(uint32_t val) { + void SetTritValue(u32 val) { m_TritValue = val; } - uint32_t GetQuintValue() const { + u32 GetQuintValue() const { return m_QuintValue; } - void SetQuintValue(uint32_t val) { + void SetQuintValue(u32 val) { m_QuintValue = val; } @@ -200,8 +202,8 @@ public: } // Returns the number of bits required to encode nVals values. - uint32_t GetBitLength(uint32_t nVals) const { - uint32_t totalBits = m_NumBits * nVals; + u32 GetBitLength(u32 nVals) const { + u32 totalBits = m_NumBits * nVals; if (m_Encoding == IntegerEncoding::Trit) { totalBits += (nVals * 8 + 4) / 5; } else if (m_Encoding == IntegerEncoding::Quint) { @@ -211,8 +213,8 @@ public: } // Count the number of bits set in a number. - static inline uint32_t Popcnt(uint32_t n) { - uint32_t c; + static inline u32 Popcnt(u32 n) { + u32 c; for (c = 0; n; c++) { n &= n - 1; } @@ -221,9 +223,9 @@ public: // Returns a new instance of this struct that corresponds to the // can take no more than maxval values - static IntegerEncodedValue CreateEncoding(uint32_t maxVal) { + static IntegerEncodedValue CreateEncoding(u32 maxVal) { while (maxVal > 0) { - uint32_t check = maxVal + 1; + u32 check = maxVal + 1; // Is maxVal a power of two? if (!(check & (check - 1))) { @@ -251,12 +253,12 @@ public: // bitstream. We must know beforehand what the maximum possible // value is, and how many values we're decoding. static void DecodeIntegerSequence(std::vector& result, - InputBitStream& bits, uint32_t maxRange, uint32_t nValues) { + InputBitStream& bits, u32 maxRange, u32 nValues) { // Determine encoding parameters IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange); // Start decoding - uint32_t nValsDecoded = 0; + u32 nValsDecoded = 0; while (nValsDecoded < nValues) { switch (val.GetEncoding()) { case IntegerEncoding::Quint: @@ -280,11 +282,11 @@ public: private: static void DecodeTritBlock(InputBitStream& bits, std::vector& result, - uint32_t nBitsPerValue) { + u32 nBitsPerValue) { // Implement the algorithm in section C.2.12 - uint32_t m[5]; - uint32_t t[5]; - uint32_t T; + u32 m[5]; + u32 t[5]; + u32 T; // Read the trit encoded block according to // table C.2.14 @@ -299,9 +301,9 @@ private: m[4] = bits.ReadBits(nBitsPerValue); T |= bits.ReadBit() << 7; - uint32_t C = 0; + u32 C = 0; - Bits Tb(T); + Bits Tb(T); if (Tb(2, 4) == 7) { C = (Tb(5, 7) << 2) | Tb(0, 1); t[4] = t[3] = 2; @@ -316,7 +318,7 @@ private: } } - Bits Cb(C); + Bits Cb(C); if (Cb(0, 1) == 3) { t[2] = 2; t[1] = Cb[4]; @@ -331,7 +333,7 @@ private: t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]); } - for (uint32_t i = 0; i < 5; i++) { + for (u32 i = 0; i < 5; i++) { IntegerEncodedValue val(IntegerEncoding::Trit, nBitsPerValue); val.SetBitValue(m[i]); val.SetTritValue(t[i]); @@ -340,11 +342,11 @@ private: } static void DecodeQuintBlock(InputBitStream& bits, std::vector& result, - uint32_t nBitsPerValue) { + u32 nBitsPerValue) { // Implement the algorithm in section C.2.12 - uint32_t m[3]; - uint32_t q[3]; - uint32_t Q; + u32 m[3]; + u32 q[3]; + u32 Q; // Read the trit encoded block according to // table C.2.15 @@ -355,12 +357,12 @@ private: m[2] = bits.ReadBits(nBitsPerValue); Q |= bits.ReadBits(2) << 5; - Bits Qb(Q); + Bits Qb(Q); if (Qb(1, 2) == 3 && Qb(5, 6) == 0) { q[0] = q[1] = 4; q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]); } else { - uint32_t C = 0; + u32 C = 0; if (Qb(1, 2) == 3) { q[2] = 4; C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0]; @@ -369,7 +371,7 @@ private: C = Qb(0, 4); } - Bits Cb(C); + Bits Cb(C); if (Cb(0, 2) == 5) { q[1] = 4; q[0] = Cb(3, 4); @@ -379,7 +381,7 @@ private: } } - for (uint32_t i = 0; i < 3; i++) { + for (u32 i = 0; i < 3; i++) { IntegerEncodedValue val(IntegerEncoding::Quint, nBitsPerValue); val.m_BitValue = m[i]; val.m_QuintValue = q[i]; @@ -391,17 +393,17 @@ private: namespace ASTCC { struct TexelWeightParams { - uint32_t m_Width = 0; - uint32_t m_Height = 0; + u32 m_Width = 0; + u32 m_Height = 0; bool m_bDualPlane = false; - uint32_t m_MaxWeight = 0; + u32 m_MaxWeight = 0; bool m_bError = false; bool m_bVoidExtentLDR = false; bool m_bVoidExtentHDR = false; - uint32_t GetPackedBitSize() const { + u32 GetPackedBitSize() const { // How many indices do we have? - uint32_t nIdxs = m_Height * m_Width; + u32 nIdxs = m_Height * m_Width; if (m_bDualPlane) { nIdxs *= 2; } @@ -409,8 +411,8 @@ struct TexelWeightParams { return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs); } - uint32_t GetNumWeightValues() const { - uint32_t ret = m_Width * m_Height; + u32 GetNumWeightValues() const { + u32 ret = m_Width * m_Height; if (m_bDualPlane) { ret *= 2; } @@ -422,7 +424,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { TexelWeightParams params; // Read the entire block mode all at once - uint16_t modeBits = static_cast(strm.ReadBits(11)); + u16 modeBits = static_cast(strm.ReadBits(11)); // Does this match the void extent block mode? if ((modeBits & 0x01FF) == 0x1FC) { @@ -457,7 +459,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { // of the block mode. Layout is determined by a number // between 0 and 9 corresponding to table C.2.8 of the // ASTC spec. - uint32_t layout = 0; + u32 layout = 0; if ((modeBits & 0x1) || (modeBits & 0x2)) { // layout is in [0-4] @@ -509,7 +511,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { assert(layout < 10); // Determine R - uint32_t R = !!(modeBits & 0x10); + u32 R = !!(modeBits & 0x10); if (layout < 5) { R |= (modeBits & 0x3) << 1; } else { @@ -520,54 +522,54 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { // Determine width & height switch (layout) { case 0: { - uint32_t A = (modeBits >> 5) & 0x3; - uint32_t B = (modeBits >> 7) & 0x3; + u32 A = (modeBits >> 5) & 0x3; + u32 B = (modeBits >> 7) & 0x3; params.m_Width = B + 4; params.m_Height = A + 2; break; } case 1: { - uint32_t A = (modeBits >> 5) & 0x3; - uint32_t B = (modeBits >> 7) & 0x3; + u32 A = (modeBits >> 5) & 0x3; + u32 B = (modeBits >> 7) & 0x3; params.m_Width = B + 8; params.m_Height = A + 2; break; } case 2: { - uint32_t A = (modeBits >> 5) & 0x3; - uint32_t B = (modeBits >> 7) & 0x3; + u32 A = (modeBits >> 5) & 0x3; + u32 B = (modeBits >> 7) & 0x3; params.m_Width = A + 2; params.m_Height = B + 8; break; } case 3: { - uint32_t A = (modeBits >> 5) & 0x3; - uint32_t B = (modeBits >> 7) & 0x1; + u32 A = (modeBits >> 5) & 0x3; + u32 B = (modeBits >> 7) & 0x1; params.m_Width = A + 2; params.m_Height = B + 6; break; } case 4: { - uint32_t A = (modeBits >> 5) & 0x3; - uint32_t B = (modeBits >> 7) & 0x1; + u32 A = (modeBits >> 5) & 0x3; + u32 B = (modeBits >> 7) & 0x1; params.m_Width = B + 2; params.m_Height = A + 2; break; } case 5: { - uint32_t A = (modeBits >> 5) & 0x3; + u32 A = (modeBits >> 5) & 0x3; params.m_Width = 12; params.m_Height = A + 2; break; } case 6: { - uint32_t A = (modeBits >> 5) & 0x3; + u32 A = (modeBits >> 5) & 0x3; params.m_Width = A + 2; params.m_Height = 12; break; @@ -586,8 +588,8 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { } case 9: { - uint32_t A = (modeBits >> 5) & 0x3; - uint32_t B = (modeBits >> 9) & 0x3; + u32 A = (modeBits >> 5) & 0x3; + u32 B = (modeBits >> 9) & 0x3; params.m_Width = A + 6; params.m_Height = B + 6; break; @@ -605,10 +607,10 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { bool H = (layout != 9) && (modeBits & 0x200); if (H) { - const uint32_t maxWeights[6] = {9, 11, 15, 19, 23, 31}; + const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31}; params.m_MaxWeight = maxWeights[R - 2]; } else { - const uint32_t maxWeights[6] = {1, 2, 3, 4, 5, 7}; + const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7}; params.m_MaxWeight = maxWeights[R - 2]; } @@ -617,32 +619,32 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { return params; } -static void FillVoidExtentLDR(InputBitStream& strm, uint32_t* const outBuf, uint32_t blockWidth, - uint32_t blockHeight) { +static void FillVoidExtentLDR(InputBitStream& strm, u32* const outBuf, u32 blockWidth, + u32 blockHeight) { // Don't actually care about the void extent, just read the bits... for (int i = 0; i < 4; ++i) { strm.ReadBits(13); } // Decode the RGBA components and renormalize them to the range [0, 255] - uint16_t r = static_cast(strm.ReadBits(16)); - uint16_t g = static_cast(strm.ReadBits(16)); - uint16_t b = static_cast(strm.ReadBits(16)); - uint16_t a = static_cast(strm.ReadBits(16)); + u16 r = static_cast(strm.ReadBits(16)); + u16 g = static_cast(strm.ReadBits(16)); + u16 b = static_cast(strm.ReadBits(16)); + u16 a = static_cast(strm.ReadBits(16)); - uint32_t rgba = (r >> 8) | (g & 0xFF00) | (static_cast(b) & 0xFF00) << 8 | - (static_cast(a) & 0xFF00) << 16; + u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast(b) & 0xFF00) << 8 | + (static_cast(a) & 0xFF00) << 16; - for (uint32_t j = 0; j < blockHeight; j++) { - for (uint32_t i = 0; i < blockWidth; i++) { + for (u32 j = 0; j < blockHeight; j++) { + for (u32 i = 0; i < blockWidth; i++) { outBuf[j * blockWidth + i] = rgba; } } } -static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeight) { - for (uint32_t j = 0; j < blockHeight; j++) { - for (uint32_t i = 0; i < blockWidth; i++) { +static void FillError(u32* outBuf, u32 blockWidth, u32 blockHeight) { + for (u32 j = 0; j < blockHeight; j++) { + for (u32 i = 0; i < blockWidth; i++) { outBuf[j * blockWidth + i] = 0xFFFF00FF; } } @@ -651,18 +653,18 @@ static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeigh // Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)] // is the same as [(numBits - 1):0] and repeats all the way down. template -static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) { +static IntType Replicate(const IntType& val, u32 numBits, u32 toBit) { if (numBits == 0) return 0; if (toBit == 0) return 0; IntType v = val & static_cast((1 << numBits) - 1); IntType res = v; - uint32_t reslen = numBits; + u32 reslen = numBits; while (reslen < toBit) { - uint32_t comp = 0; + u32 comp = 0; if (numBits > toBit - reslen) { - uint32_t newshift = toBit - reslen; + u32 newshift = toBit - reslen; comp = numBits - newshift; numBits = newshift; } @@ -675,14 +677,14 @@ static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) { class Pixel { protected: - using ChannelType = int16_t; - uint8_t m_BitDepth[4] = {8, 8, 8, 8}; - int16_t color[4] = {}; + using ChannelType = s16; + u8 m_BitDepth[4] = {8, 8, 8, 8}; + s16 color[4] = {}; public: Pixel() = default; - Pixel(uint32_t a, uint32_t r, uint32_t g, uint32_t b, unsigned bitDepth = 8) - : m_BitDepth{uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth)}, + Pixel(u32 a, u32 r, u32 g, u32 b, unsigned bitDepth = 8) + : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)}, color{static_cast(a), static_cast(r), static_cast(g), static_cast(b)} {} @@ -691,22 +693,22 @@ public: // significant bits when going from larger to smaller bit depth // or by repeating the most significant bits when going from // smaller to larger bit depths. - void ChangeBitDepth(const uint8_t (&depth)[4]) { - for (uint32_t i = 0; i < 4; i++) { + void ChangeBitDepth(const u8 (&depth)[4]) { + for (u32 i = 0; i < 4; i++) { Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]); m_BitDepth[i] = depth[i]; } } template - static float ConvertChannelToFloat(IntType channel, uint8_t bitDepth) { + static float ConvertChannelToFloat(IntType channel, u8 bitDepth) { float denominator = static_cast((1 << bitDepth) - 1); return static_cast(channel) / denominator; } // Changes the bit depth of a single component. See the comment // above for how we do this. - static ChannelType ChangeBitDepth(Pixel::ChannelType val, uint8_t oldDepth, uint8_t newDepth) { + static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth, u8 newDepth) { assert(newDepth <= 8); assert(oldDepth <= 8); @@ -722,12 +724,11 @@ public: if (newDepth == 0) { return 0xFF; } else { - uint8_t bitsWasted = static_cast(oldDepth - newDepth); - uint16_t v = static_cast(val); - v = static_cast((v + (1 << (bitsWasted - 1))) >> bitsWasted); - v = ::std::min(::std::max(0, v), - static_cast((1 << newDepth) - 1)); - return static_cast(v); + u8 bitsWasted = static_cast(oldDepth - newDepth); + u16 v = static_cast(val); + v = static_cast((v + (1 << (bitsWasted - 1))) >> bitsWasted); + v = ::std::min(::std::max(0, v), static_cast((1 << newDepth) - 1)); + return static_cast(v); } } @@ -759,14 +760,14 @@ public: ChannelType& B() { return color[3]; } - const ChannelType& Component(uint32_t idx) const { + const ChannelType& Component(u32 idx) const { return color[idx]; } - ChannelType& Component(uint32_t idx) { + ChannelType& Component(u32 idx) { return color[idx]; } - void GetBitDepth(uint8_t (&outDepth)[4]) const { + void GetBitDepth(u8 (&outDepth)[4]) const { for (int i = 0; i < 4; i++) { outDepth[i] = m_BitDepth[i]; } @@ -776,12 +777,12 @@ public: // and then pack each channel into an R8G8B8A8 32-bit integer. We assume // that the architecture is little-endian, so the alpha channel will end // up in the most-significant byte. - uint32_t Pack() const { + u32 Pack() const { Pixel eightBit(*this); - const uint8_t eightBitDepth[4] = {8, 8, 8, 8}; + const u8 eightBitDepth[4] = {8, 8, 8, 8}; eightBit.ChangeBitDepth(eightBitDepth); - uint32_t r = 0; + u32 r = 0; r |= eightBit.A(); r <<= 8; r |= eightBit.B(); @@ -794,7 +795,7 @@ public: // Clamps the pixel to the range [0,255] void ClampByte() { - for (uint32_t i = 0; i < 4; i++) { + for (u32 i = 0; i < 4; i++) { color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]); } } @@ -804,20 +805,20 @@ public: } }; -static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* modes, - const uint32_t nPartitions, const uint32_t nBitsForColorData) { +static void DecodeColorValues(u32* out, u8* data, const u32* modes, const u32 nPartitions, + const u32 nBitsForColorData) { // First figure out how many color values we have - uint32_t nValues = 0; - for (uint32_t i = 0; i < nPartitions; i++) { + u32 nValues = 0; + for (u32 i = 0; i < nPartitions; i++) { nValues += ((modes[i] >> 2) + 1) << 1; } // Then based on the number of values and the remaining number of bits, // figure out the max value for each of them... - uint32_t range = 256; + u32 range = 256; while (--range > 0) { IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range); - uint32_t bitLength = val.GetBitLength(nValues); + u32 bitLength = val.GetBitLength(nValues); if (bitLength <= nBitsForColorData) { // Find the smallest possible range that matches the given encoding while (--range > 0) { @@ -840,7 +841,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode // Once we have the decoded values, we need to dequantize them to the 0-255 range // This procedure is outlined in ASTC spec C.2.13 - uint32_t outIdx = 0; + u32 outIdx = 0; for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) { // Have we already decoded all that we need? if (outIdx >= nValues) { @@ -848,12 +849,12 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode } const IntegerEncodedValue& val = *itr; - uint32_t bitlen = val.BaseBitLength(); - uint32_t bitval = val.GetBitValue(); + u32 bitlen = val.BaseBitLength(); + u32 bitval = val.GetBitValue(); assert(bitlen >= 1); - uint32_t A = 0, B = 0, C = 0, D = 0; + u32 A = 0, B = 0, C = 0, D = 0; // A is just the lsb replicated 9 times. A = Replicate(bitval & 1, 1, 9); @@ -876,35 +877,35 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode case 2: { C = 93; // B = b000b0bb0 - uint32_t b = (bitval >> 1) & 1; + u32 b = (bitval >> 1) & 1; B = (b << 8) | (b << 4) | (b << 2) | (b << 1); } break; case 3: { C = 44; // B = cb000cbcb - uint32_t cb = (bitval >> 1) & 3; + u32 cb = (bitval >> 1) & 3; B = (cb << 7) | (cb << 2) | cb; } break; case 4: { C = 22; // B = dcb000dcb - uint32_t dcb = (bitval >> 1) & 7; + u32 dcb = (bitval >> 1) & 7; B = (dcb << 6) | dcb; } break; case 5: { C = 11; // B = edcb000ed - uint32_t edcb = (bitval >> 1) & 0xF; + u32 edcb = (bitval >> 1) & 0xF; B = (edcb << 5) | (edcb >> 2); } break; case 6: { C = 5; // B = fedcb000f - uint32_t fedcb = (bitval >> 1) & 0x1F; + u32 fedcb = (bitval >> 1) & 0x1F; B = (fedcb << 4) | (fedcb >> 4); } break; @@ -927,28 +928,28 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode case 2: { C = 54; // B = b0000bb00 - uint32_t b = (bitval >> 1) & 1; + u32 b = (bitval >> 1) & 1; B = (b << 8) | (b << 3) | (b << 2); } break; case 3: { C = 26; // B = cb0000cbc - uint32_t cb = (bitval >> 1) & 3; + u32 cb = (bitval >> 1) & 3; B = (cb << 7) | (cb << 1) | (cb >> 1); } break; case 4: { C = 13; // B = dcb0000dc - uint32_t dcb = (bitval >> 1) & 7; + u32 dcb = (bitval >> 1) & 7; B = (dcb << 6) | (dcb >> 1); } break; case 5: { C = 6; // B = edcb0000e - uint32_t edcb = (bitval >> 1) & 0xF; + u32 edcb = (bitval >> 1) & 0xF; B = (edcb << 5) | (edcb >> 3); } break; @@ -961,7 +962,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode } // switch(val.GetEncoding()) if (val.GetEncoding() != IntegerEncoding::JustBits) { - uint32_t T = D * C + B; + u32 T = D * C + B; T ^= A; T = (A & 0x80) | (T >> 2); out[outIdx++] = T; @@ -969,19 +970,19 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode } // Make sure that each of our values is in the proper range... - for (uint32_t i = 0; i < nValues; i++) { + for (u32 i = 0; i < nValues; i++) { assert(out[i] <= 255); } } -static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { - uint32_t bitval = val.GetBitValue(); - uint32_t bitlen = val.BaseBitLength(); +static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) { + u32 bitval = val.GetBitValue(); + u32 bitlen = val.BaseBitLength(); - uint32_t A = Replicate(bitval & 1, 1, 7); - uint32_t B = 0, C = 0, D = 0; + u32 A = Replicate(bitval & 1, 1, 7); + u32 B = 0, C = 0, D = 0; - uint32_t result = 0; + u32 result = 0; switch (val.GetEncoding()) { case IntegerEncoding::JustBits: result = Replicate(bitval, bitlen, 6); @@ -993,7 +994,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { switch (bitlen) { case 0: { - uint32_t results[3] = {0, 32, 63}; + u32 results[3] = {0, 32, 63}; result = results[D]; } break; @@ -1003,13 +1004,13 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { case 2: { C = 23; - uint32_t b = (bitval >> 1) & 1; + u32 b = (bitval >> 1) & 1; B = (b << 6) | (b << 2) | b; } break; case 3: { C = 11; - uint32_t cb = (bitval >> 1) & 3; + u32 cb = (bitval >> 1) & 3; B = (cb << 5) | cb; } break; @@ -1025,7 +1026,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { switch (bitlen) { case 0: { - uint32_t results[5] = {0, 16, 32, 47, 63}; + u32 results[5] = {0, 16, 32, 47, 63}; result = results[D]; } break; @@ -1035,7 +1036,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { case 2: { C = 13; - uint32_t b = (bitval >> 1) & 1; + u32 b = (bitval >> 1) & 1; B = (b << 6) | (b << 1); } break; @@ -1063,12 +1064,11 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { return result; } -static void UnquantizeTexelWeights(uint32_t out[2][144], - const std::vector& weights, - const TexelWeightParams& params, const uint32_t blockWidth, - const uint32_t blockHeight) { - uint32_t weightIdx = 0; - uint32_t unquantized[2][144]; +static void UnquantizeTexelWeights(u32 out[2][144], const std::vector& weights, + const TexelWeightParams& params, const u32 blockWidth, + const u32 blockHeight) { + u32 weightIdx = 0; + u32 unquantized[2][144]; for (auto itr = weights.begin(); itr != weights.end(); ++itr) { unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr); @@ -1086,34 +1086,34 @@ static void UnquantizeTexelWeights(uint32_t out[2][144], } // Do infill if necessary (Section C.2.18) ... - uint32_t Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1); - uint32_t Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1); + u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1); + u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1); - const uint32_t kPlaneScale = params.m_bDualPlane ? 2U : 1U; - for (uint32_t plane = 0; plane < kPlaneScale; plane++) - for (uint32_t t = 0; t < blockHeight; t++) - for (uint32_t s = 0; s < blockWidth; s++) { - uint32_t cs = Ds * s; - uint32_t ct = Dt * t; + const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U; + for (u32 plane = 0; plane < kPlaneScale; plane++) + for (u32 t = 0; t < blockHeight; t++) + for (u32 s = 0; s < blockWidth; s++) { + u32 cs = Ds * s; + u32 ct = Dt * t; - uint32_t gs = (cs * (params.m_Width - 1) + 32) >> 6; - uint32_t gt = (ct * (params.m_Height - 1) + 32) >> 6; + u32 gs = (cs * (params.m_Width - 1) + 32) >> 6; + u32 gt = (ct * (params.m_Height - 1) + 32) >> 6; - uint32_t js = gs >> 4; - uint32_t fs = gs & 0xF; + u32 js = gs >> 4; + u32 fs = gs & 0xF; - uint32_t jt = gt >> 4; - uint32_t ft = gt & 0x0F; + u32 jt = gt >> 4; + u32 ft = gt & 0x0F; - uint32_t w11 = (fs * ft + 8) >> 4; - uint32_t w10 = ft - w11; - uint32_t w01 = fs - w11; - uint32_t w00 = 16 - fs - ft + w11; + u32 w11 = (fs * ft + 8) >> 4; + u32 w10 = ft - w11; + u32 w01 = fs - w11; + u32 w00 = 16 - fs - ft + w11; - uint32_t v0 = js + jt * params.m_Width; + u32 v0 = js + jt * params.m_Width; #define FIND_TEXEL(tidx, bidx) \ - uint32_t p##bidx = 0; \ + u32 p##bidx = 0; \ do { \ if ((tidx) < (params.m_Width * params.m_Height)) { \ p##bidx = unquantized[plane][(tidx)]; \ @@ -1133,7 +1133,7 @@ static void UnquantizeTexelWeights(uint32_t out[2][144], } // Transfers a bit as described in C.2.14 -static inline void BitTransferSigned(int32_t& a, int32_t& b) { +static inline void BitTransferSigned(s32& a, s32& b) { b >>= 1; b |= a & 0x80; a >>= 1; @@ -1144,14 +1144,14 @@ static inline void BitTransferSigned(int32_t& a, int32_t& b) { // Adds more precision to the blue channel as described // in C.2.14 -static inline Pixel BlueContract(int32_t a, int32_t r, int32_t g, int32_t b) { - return Pixel(static_cast(a), static_cast((r + b) >> 1), - static_cast((g + b) >> 1), static_cast(b)); +static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) { + return Pixel(static_cast(a), static_cast((r + b) >> 1), + static_cast((g + b) >> 1), static_cast(b)); } // Partition selection functions as specified in // C.2.21 -static inline uint32_t hash52(uint32_t p) { +static inline u32 hash52(u32 p) { p ^= p >> 15; p -= p << 17; p += p << 7; @@ -1165,8 +1165,7 @@ static inline uint32_t hash52(uint32_t p) { return p; } -static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z, - int32_t partitionCount, int32_t smallBlock) { +static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) { if (1 == partitionCount) return 0; @@ -1178,34 +1177,34 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z, seed += (partitionCount - 1) * 1024; - uint32_t rnum = hash52(static_cast(seed)); - uint8_t seed1 = static_cast(rnum & 0xF); - uint8_t seed2 = static_cast((rnum >> 4) & 0xF); - uint8_t seed3 = static_cast((rnum >> 8) & 0xF); - uint8_t seed4 = static_cast((rnum >> 12) & 0xF); - uint8_t seed5 = static_cast((rnum >> 16) & 0xF); - uint8_t seed6 = static_cast((rnum >> 20) & 0xF); - uint8_t seed7 = static_cast((rnum >> 24) & 0xF); - uint8_t seed8 = static_cast((rnum >> 28) & 0xF); - uint8_t seed9 = static_cast((rnum >> 18) & 0xF); - uint8_t seed10 = static_cast((rnum >> 22) & 0xF); - uint8_t seed11 = static_cast((rnum >> 26) & 0xF); - uint8_t seed12 = static_cast(((rnum >> 30) | (rnum << 2)) & 0xF); - - seed1 = static_cast(seed1 * seed1); - seed2 = static_cast(seed2 * seed2); - seed3 = static_cast(seed3 * seed3); - seed4 = static_cast(seed4 * seed4); - seed5 = static_cast(seed5 * seed5); - seed6 = static_cast(seed6 * seed6); - seed7 = static_cast(seed7 * seed7); - seed8 = static_cast(seed8 * seed8); - seed9 = static_cast(seed9 * seed9); - seed10 = static_cast(seed10 * seed10); - seed11 = static_cast(seed11 * seed11); - seed12 = static_cast(seed12 * seed12); - - int32_t sh1, sh2, sh3; + u32 rnum = hash52(static_cast(seed)); + u8 seed1 = static_cast(rnum & 0xF); + u8 seed2 = static_cast((rnum >> 4) & 0xF); + u8 seed3 = static_cast((rnum >> 8) & 0xF); + u8 seed4 = static_cast((rnum >> 12) & 0xF); + u8 seed5 = static_cast((rnum >> 16) & 0xF); + u8 seed6 = static_cast((rnum >> 20) & 0xF); + u8 seed7 = static_cast((rnum >> 24) & 0xF); + u8 seed8 = static_cast((rnum >> 28) & 0xF); + u8 seed9 = static_cast((rnum >> 18) & 0xF); + u8 seed10 = static_cast((rnum >> 22) & 0xF); + u8 seed11 = static_cast((rnum >> 26) & 0xF); + u8 seed12 = static_cast(((rnum >> 30) | (rnum << 2)) & 0xF); + + seed1 = static_cast(seed1 * seed1); + seed2 = static_cast(seed2 * seed2); + seed3 = static_cast(seed3 * seed3); + seed4 = static_cast(seed4 * seed4); + seed5 = static_cast(seed5 * seed5); + seed6 = static_cast(seed6 * seed6); + seed7 = static_cast(seed7 * seed7); + seed8 = static_cast(seed8 * seed8); + seed9 = static_cast(seed9 * seed9); + seed10 = static_cast(seed10 * seed10); + seed11 = static_cast(seed11 * seed11); + seed12 = static_cast(seed12 * seed12); + + s32 sh1, sh2, sh3; if (seed & 1) { sh1 = (seed & 2) ? 4 : 5; sh2 = (partitionCount == 3) ? 6 : 5; @@ -1215,23 +1214,23 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z, } sh3 = (seed & 0x10) ? sh1 : sh2; - seed1 = static_cast(seed1 >> sh1); - seed2 = static_cast(seed2 >> sh2); - seed3 = static_cast(seed3 >> sh1); - seed4 = static_cast(seed4 >> sh2); - seed5 = static_cast(seed5 >> sh1); - seed6 = static_cast(seed6 >> sh2); - seed7 = static_cast(seed7 >> sh1); - seed8 = static_cast(seed8 >> sh2); - seed9 = static_cast(seed9 >> sh3); - seed10 = static_cast(seed10 >> sh3); - seed11 = static_cast(seed11 >> sh3); - seed12 = static_cast(seed12 >> sh3); - - int32_t a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); - int32_t b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); - int32_t c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); - int32_t d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); + seed1 = static_cast(seed1 >> sh1); + seed2 = static_cast(seed2 >> sh2); + seed3 = static_cast(seed3 >> sh1); + seed4 = static_cast(seed4 >> sh2); + seed5 = static_cast(seed5 >> sh1); + seed6 = static_cast(seed6 >> sh2); + seed7 = static_cast(seed7 >> sh1); + seed8 = static_cast(seed8 >> sh2); + seed9 = static_cast(seed9 >> sh3); + seed10 = static_cast(seed10 >> sh3); + seed11 = static_cast(seed11 >> sh3); + seed12 = static_cast(seed12 >> sh3); + + s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); + s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); + s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); + s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); a &= 0x3F; b &= 0x3F; @@ -1252,24 +1251,23 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z, return 3; } -static inline uint32_t Select2DPartition(int32_t seed, int32_t x, int32_t y, int32_t partitionCount, - int32_t smallBlock) { +static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) { return SelectPartition(seed, x, y, 0, partitionCount, smallBlock); } // Section C.2.14 -static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValues, - uint32_t colorEndpointMode) { +static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const u32*& colorValues, + u32 colorEndpointMode) { #define READ_UINT_VALUES(N) \ - uint32_t v[N]; \ - for (uint32_t i = 0; i < N; i++) { \ + u32 v[N]; \ + for (u32 i = 0; i < N; i++) { \ v[i] = *(colorValues++); \ } #define READ_INT_VALUES(N) \ - int32_t v[N]; \ - for (uint32_t i = 0; i < N; i++) { \ - v[i] = static_cast(*(colorValues++)); \ + s32 v[N]; \ + for (u32 i = 0; i < N; i++) { \ + v[i] = static_cast(*(colorValues++)); \ } switch (colorEndpointMode) { @@ -1281,8 +1279,8 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue case 1: { READ_UINT_VALUES(2) - uint32_t L0 = (v[0] >> 2) | (v[1] & 0xC0); - uint32_t L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU); + u32 L0 = (v[0] >> 2) | (v[1] & 0xC0); + u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU); ep1 = Pixel(0xFF, L0, L0, L0); ep2 = Pixel(0xFF, L1, L1, L1); } break; @@ -1379,8 +1377,8 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue #undef READ_INT_VALUES } -static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, - const uint32_t blockHeight, uint32_t* outBuf) { +static void DecompressBlock(const u8 inBuf[16], const u32 blockWidth, const u32 blockHeight, + u32* outBuf) { InputBitStream strm(inBuf); TexelWeightParams weightParams = DecodeBlockInfo(strm); @@ -1415,7 +1413,7 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, } // Read num partitions - uint32_t nPartitions = strm.ReadBits(2) + 1; + u32 nPartitions = strm.ReadBits(2) + 1; assert(nPartitions <= 4); if (nPartitions == 4 && weightParams.m_bDualPlane) { @@ -1428,17 +1426,17 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, // each partition. // Determine partitions, partition index, and color endpoint modes - int32_t planeIdx = -1; - uint32_t partitionIndex; - uint32_t colorEndpointMode[4] = {0, 0, 0, 0}; + s32 planeIdx = -1; + u32 partitionIndex; + u32 colorEndpointMode[4] = {0, 0, 0, 0}; // Define color data. - uint8_t colorEndpointData[16]; + u8 colorEndpointData[16]; memset(colorEndpointData, 0, sizeof(colorEndpointData)); OutputBitStream colorEndpointStream(colorEndpointData, 16 * 8, 0); // Read extra config data... - uint32_t baseCEM = 0; + u32 baseCEM = 0; if (nPartitions == 1) { colorEndpointMode[0] = strm.ReadBits(4); partitionIndex = 0; @@ -1446,14 +1444,14 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, partitionIndex = strm.ReadBits(10); baseCEM = strm.ReadBits(6); } - uint32_t baseMode = (baseCEM & 3); + u32 baseMode = (baseCEM & 3); // Remaining bits are color endpoint data... - uint32_t nWeightBits = weightParams.GetPackedBitSize(); - int32_t remainingBits = 128 - nWeightBits - strm.GetBitsRead(); + u32 nWeightBits = weightParams.GetPackedBitSize(); + s32 remainingBits = 128 - nWeightBits - strm.GetBitsRead(); // Consider extra bits prior to texel data... - uint32_t extraCEMbits = 0; + u32 extraCEMbits = 0; if (baseMode) { switch (nPartitions) { case 2: @@ -1473,17 +1471,17 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, remainingBits -= extraCEMbits; // Do we have a dual plane situation? - uint32_t planeSelectorBits = 0; + u32 planeSelectorBits = 0; if (weightParams.m_bDualPlane) { planeSelectorBits = 2; } remainingBits -= planeSelectorBits; // Read color data... - uint32_t colorDataBits = remainingBits; + u32 colorDataBits = remainingBits; while (remainingBits > 0) { - uint32_t nb = std::min(remainingBits, 8); - uint32_t b = strm.ReadBits(nb); + u32 nb = std::min(remainingBits, 8); + u32 b = strm.ReadBits(nb); colorEndpointStream.WriteBits(b, nb); remainingBits -= 8; } @@ -1493,24 +1491,24 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, // Read the rest of the CEM if (baseMode) { - uint32_t extraCEM = strm.ReadBits(extraCEMbits); - uint32_t CEM = (extraCEM << 6) | baseCEM; + u32 extraCEM = strm.ReadBits(extraCEMbits); + u32 CEM = (extraCEM << 6) | baseCEM; CEM >>= 2; bool C[4] = {0}; - for (uint32_t i = 0; i < nPartitions; i++) { + for (u32 i = 0; i < nPartitions; i++) { C[i] = CEM & 1; CEM >>= 1; } - uint8_t M[4] = {0}; - for (uint32_t i = 0; i < nPartitions; i++) { + u8 M[4] = {0}; + for (u32 i = 0; i < nPartitions; i++) { M[i] = CEM & 3; CEM >>= 2; assert(M[i] <= 3); } - for (uint32_t i = 0; i < nPartitions; i++) { + for (u32 i = 0; i < nPartitions; i++) { colorEndpointMode[i] = baseMode; if (!(C[i])) colorEndpointMode[i] -= 1; @@ -1518,35 +1516,35 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, colorEndpointMode[i] |= M[i]; } } else if (nPartitions > 1) { - uint32_t CEM = baseCEM >> 2; - for (uint32_t i = 0; i < nPartitions; i++) { + u32 CEM = baseCEM >> 2; + for (u32 i = 0; i < nPartitions; i++) { colorEndpointMode[i] = CEM; } } // Make sure everything up till here is sane. - for (uint32_t i = 0; i < nPartitions; i++) { + for (u32 i = 0; i < nPartitions; i++) { assert(colorEndpointMode[i] < 16); } assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128); // Decode both color data and texel weight data - uint32_t colorValues[32]; // Four values, two endpoints, four maximum paritions + u32 colorValues[32]; // Four values, two endpoints, four maximum paritions DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions, colorDataBits); Pixel endpoints[4][2]; - const uint32_t* colorValuesPtr = colorValues; - for (uint32_t i = 0; i < nPartitions; i++) { + const u32* colorValuesPtr = colorValues; + for (u32 i = 0; i < nPartitions; i++) { ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]); } // Read the texel weight data.. - uint8_t texelWeightData[16]; + u8 texelWeightData[16]; memcpy(texelWeightData, inBuf, sizeof(texelWeightData)); // Reverse everything - for (uint32_t i = 0; i < 8; i++) { + for (u32 i = 0; i < 8; i++) { // Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits #define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32 unsigned char a = static_cast(REVERSE_BYTE(texelWeightData[i])); @@ -1558,10 +1556,10 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, } // Make sure that higher non-texel bits are set to zero - const uint32_t clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1; + const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1; texelWeightData[clearByteStart - 1] = texelWeightData[clearByteStart - 1] & - static_cast((1 << (weightParams.GetPackedBitSize() % 8)) - 1); + static_cast((1 << (weightParams.GetPackedBitSize() % 8)) - 1); memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart); std::vector texelWeightValues; @@ -1572,36 +1570,36 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, weightParams.GetNumWeightValues()); // Blocks can be at most 12x12, so we can have as many as 144 weights - uint32_t weights[2][144]; + u32 weights[2][144]; UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight); // Now that we have endpoints and weights, we can interpolate and generate // the proper decoding... - for (uint32_t j = 0; j < blockHeight; j++) - for (uint32_t i = 0; i < blockWidth; i++) { - uint32_t partition = Select2DPartition(partitionIndex, i, j, nPartitions, - (blockHeight * blockWidth) < 32); + for (u32 j = 0; j < blockHeight; j++) + for (u32 i = 0; i < blockWidth; i++) { + u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions, + (blockHeight * blockWidth) < 32); assert(partition < nPartitions); Pixel p; - for (uint32_t c = 0; c < 4; c++) { - uint32_t C0 = endpoints[partition][0].Component(c); + for (u32 c = 0; c < 4; c++) { + u32 C0 = endpoints[partition][0].Component(c); C0 = Replicate(C0, 8, 16); - uint32_t C1 = endpoints[partition][1].Component(c); + u32 C1 = endpoints[partition][1].Component(c); C1 = Replicate(C1, 8, 16); - uint32_t plane = 0; + u32 plane = 0; if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) { plane = 1; } - uint32_t weight = weights[plane][j * blockWidth + i]; - uint32_t C = (C0 * (64 - weight) + C1 * weight + 32) / 64; + u32 weight = weights[plane][j * blockWidth + i]; + u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64; if (C == 65535) { p.Component(c) = 255; } else { double Cf = static_cast(C); - p.Component(c) = static_cast(255.0 * (Cf / 65536.0) + 0.5); + p.Component(c) = static_cast(255.0 * (Cf / 65536.0) + 0.5); } } @@ -1613,26 +1611,26 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, namespace Tegra::Texture::ASTC { -std::vector Decompress(const uint8_t* data, uint32_t width, uint32_t height, - uint32_t depth, uint32_t block_width, uint32_t block_height) { - uint32_t blockIdx = 0; +std::vector Decompress(const u8* data, u32 width, u32 height, u32 depth, u32 block_width, + u32 block_height) { + u32 blockIdx = 0; std::size_t depth_offset = 0; - std::vector outData(height * width * depth * 4); - for (uint32_t k = 0; k < depth; k++) { - for (uint32_t j = 0; j < height; j += block_height) { - for (uint32_t i = 0; i < width; i += block_width) { + std::vector outData(height * width * depth * 4); + for (u32 k = 0; k < depth; k++) { + for (u32 j = 0; j < height; j += block_height) { + for (u32 i = 0; i < width; i += block_width) { - const uint8_t* blockPtr = data + blockIdx * 16; + const u8* blockPtr = data + blockIdx * 16; // Blocks can be at most 12x12 - uint32_t uncompData[144]; + u32 uncompData[144]; ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData); - uint32_t decompWidth = std::min(block_width, width - i); - uint32_t decompHeight = std::min(block_height, height - j); + u32 decompWidth = std::min(block_width, width - i); + u32 decompHeight = std::min(block_height, height - j); - uint8_t* outRow = depth_offset + outData.data() + (j * width + i) * 4; - for (uint32_t jj = 0; jj < decompHeight; jj++) { + u8* outRow = depth_offset + outData.data() + (j * width + i) * 4; + for (u32 jj = 0; jj < decompHeight; jj++) { memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4); } -- cgit v1.2.3