From 2f83d9a61bca42d9ef24074beb2b11b19bd4cecd Mon Sep 17 00:00:00 2001 From: ameerj <52414509+ameerj@users.noreply.github.com> Date: Thu, 25 Mar 2021 16:53:51 -0400 Subject: astc_decoder: Refactor for style and more efficient memory use --- src/video_core/textures/astc.cpp | 1710 -------------------------------------- src/video_core/textures/astc.h | 174 ++-- 2 files changed, 51 insertions(+), 1833 deletions(-) delete mode 100644 src/video_core/textures/astc.cpp (limited to 'src/video_core/textures') diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp deleted file mode 100644 index 3625b666c..000000000 --- a/src/video_core/textures/astc.cpp +++ /dev/null @@ -1,1710 +0,0 @@ -// Copyright 2016 The University of North Carolina at Chapel Hill -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// -// Please send all BUG REPORTS to . -// - -#include -#include -#include -#include -#include - -#include - -#include "common/common_types.h" - -#include "video_core/textures/astc.h" - -namespace { - -/// Count the number of bits set in a number. -constexpr u32 Popcnt(u32 n) { - u32 c = 0; - for (; n; c++) { - n &= n - 1; - } - return c; -} - -} // Anonymous namespace - -class InputBitStream { -public: - constexpr explicit InputBitStream(std::span data, size_t start_offset = 0) - : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {} - - constexpr size_t GetBitsRead() const { - return bits_read; - } - - constexpr bool ReadBit() { - if (bits_read >= total_bits * 8) { - return 0; - } - const bool bit = ((*cur_byte >> next_bit) & 1) != 0; - ++next_bit; - while (next_bit >= 8) { - next_bit -= 8; - ++cur_byte; - } - ++bits_read; - return bit; - } - - constexpr u32 ReadBits(std::size_t nBits) { - u32 ret = 0; - for (std::size_t i = 0; i < nBits; ++i) { - ret |= (ReadBit() & 1) << i; - } - return ret; - } - - template - constexpr u32 ReadBits() { - u32 ret = 0; - for (std::size_t i = 0; i < nBits; ++i) { - ret |= (ReadBit() & 1) << i; - } - return ret; - } - -private: - const u8* cur_byte; - size_t total_bits = 0; - size_t next_bit = 0; - size_t bits_read = 0; -}; - -class OutputBitStream { -public: - constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0) - : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {} - - constexpr std::size_t GetBitsWritten() const { - return bits_written; - } - - constexpr void WriteBitsR(u32 val, u32 nBits) { - for (u32 i = 0; i < nBits; i++) { - WriteBit((val >> (nBits - i - 1)) & 1); - } - } - - constexpr void WriteBits(u32 val, u32 nBits) { - for (u32 i = 0; i < nBits; i++) { - WriteBit((val >> i) & 1); - } - } - -private: - constexpr void WriteBit(bool b) { - if (bits_written >= num_bits) { - return; - } - - const u32 mask = 1 << next_bit++; - - // clear the bit - *cur_byte &= static_cast(~mask); - - // Write the bit, if necessary - if (b) - *cur_byte |= static_cast(mask); - - // Next byte? - if (next_bit >= 8) { - cur_byte += 1; - next_bit = 0; - } - } - - u8* cur_byte; - std::size_t num_bits; - std::size_t bits_written = 0; - std::size_t next_bit = 0; -}; - -template -class Bits { -public: - explicit Bits(const IntType& v) : m_Bits(v) {} - - Bits(const Bits&) = delete; - Bits& operator=(const Bits&) = delete; - - u8 operator[](u32 bitPos) const { - return static_cast((m_Bits >> bitPos) & 1); - } - - IntType operator()(u32 start, u32 end) const { - if (start == end) { - return (*this)[start]; - } else if (start > end) { - u32 t = start; - start = end; - end = t; - } - - u64 mask = (1 << (end - start + 1)) - 1; - return (m_Bits >> start) & static_cast(mask); - } - -private: - const IntType& m_Bits; -}; - -enum class IntegerEncoding { JustBits, Qus32, Trit }; - -struct IntegerEncodedValue { - constexpr IntegerEncodedValue() = default; - - constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_) - : encoding{encoding_}, num_bits{num_bits_} {} - - constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const { - return encoding == other.encoding && num_bits == other.num_bits; - } - - // Returns the number of bits required to encode nVals values. - u32 GetBitLength(u32 nVals) const { - u32 totalBits = num_bits * nVals; - if (encoding == IntegerEncoding::Trit) { - totalBits += (nVals * 8 + 4) / 5; - } else if (encoding == IntegerEncoding::Qus32) { - totalBits += (nVals * 7 + 2) / 3; - } - return totalBits; - } - - IntegerEncoding encoding{}; - u32 num_bits = 0; - u32 bit_value = 0; - union { - u32 qus32_value = 0; - u32 trit_value; - }; -}; -using IntegerEncodedVector = boost::container::static_vector< - IntegerEncodedValue, 256, - boost::container::static_vector_options< - boost::container::inplace_alignment, - boost::container::throw_on_overflow>::type>; - -static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) { - // Implement the algorithm in section C.2.12 - std::array m; - std::array t; - u32 T; - - // Read the trit encoded block according to - // table C.2.14 - m[0] = bits.ReadBits(nBitsPerValue); - T = bits.ReadBits<2>(); - m[1] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBits<2>() << 2; - m[2] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBit() << 4; - m[3] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBits<2>() << 5; - m[4] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBit() << 7; - - u32 C = 0; - - Bits Tb(T); - if (Tb(2, 4) == 7) { - C = (Tb(5, 7) << 2) | Tb(0, 1); - t[4] = t[3] = 2; - } else { - C = Tb(0, 4); - if (Tb(5, 6) == 3) { - t[4] = 2; - t[3] = Tb[7]; - } else { - t[4] = Tb[7]; - t[3] = Tb(5, 6); - } - } - - Bits Cb(C); - if (Cb(0, 1) == 3) { - t[2] = 2; - t[1] = Cb[4]; - t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]); - } else if (Cb(2, 3) == 3) { - t[2] = 2; - t[1] = 2; - t[0] = Cb(0, 1); - } else { - t[2] = Cb[4]; - t[1] = Cb(2, 3); - t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]); - } - - for (std::size_t i = 0; i < 5; ++i) { - IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue); - val.bit_value = m[i]; - val.trit_value = t[i]; - } -} - -static void DecodeQus32Block(InputBitStream& bits, IntegerEncodedVector& result, - u32 nBitsPerValue) { - // Implement the algorithm in section C.2.12 - u32 m[3]; - u32 q[3]; - u32 Q; - - // Read the trit encoded block according to - // table C.2.15 - m[0] = bits.ReadBits(nBitsPerValue); - Q = bits.ReadBits<3>(); - m[1] = bits.ReadBits(nBitsPerValue); - Q |= bits.ReadBits<2>() << 3; - m[2] = bits.ReadBits(nBitsPerValue); - Q |= bits.ReadBits<2>() << 5; - - Bits Qb(Q); - if (Qb(1, 2) == 3 && Qb(5, 6) == 0) { - q[0] = q[1] = 4; - q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]); - } else { - u32 C = 0; - if (Qb(1, 2) == 3) { - q[2] = 4; - C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0]; - } else { - q[2] = Qb(5, 6); - C = Qb(0, 4); - } - - Bits Cb(C); - if (Cb(0, 2) == 5) { - q[1] = 4; - q[0] = Cb(3, 4); - } else { - q[1] = Cb(3, 4); - q[0] = Cb(0, 2); - } - } - - for (std::size_t i = 0; i < 3; ++i) { - IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Qus32, nBitsPerValue); - val.bit_value = m[i]; - val.qus32_value = q[i]; - } -} - -// Returns a new instance of this struct that corresponds to the -// can take no more than maxval values -static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) { - while (maxVal > 0) { - u32 check = maxVal + 1; - - // Is maxVal a power of two? - if (!(check & (check - 1))) { - return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal)); - } - - // Is maxVal of the type 3*2^n - 1? - if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) { - return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1)); - } - - // Is maxVal of the type 5*2^n - 1? - if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) { - return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1)); - } - - // Apparently it can't be represented with a bounded integer sequence... - // just iterate. - maxVal--; - } - return IntegerEncodedValue(IntegerEncoding::JustBits, 0); -} - -static constexpr std::array MakeEncodedValues() { - std::array encodings{}; - for (std::size_t i = 0; i < encodings.size(); ++i) { - encodings[i] = CreateEncoding(static_cast(i)); - } - return encodings; -} - -static constexpr std::array EncodingsValues = MakeEncodedValues(); - -// Fills result with the values that are encoded in the given -// bitstream. We must know beforehand what the maximum possible -// value is, and how many values we're decoding. -static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange, - u32 nValues) { - // Determine encoding parameters - IntegerEncodedValue val = EncodingsValues[maxRange]; - - // Start decoding - u32 nValsDecoded = 0; - while (nValsDecoded < nValues) { - switch (val.encoding) { - case IntegerEncoding::Qus32: - DecodeQus32Block(bits, result, val.num_bits); - nValsDecoded += 3; - break; - - case IntegerEncoding::Trit: - DecodeTritBlock(bits, result, val.num_bits); - nValsDecoded += 5; - break; - - case IntegerEncoding::JustBits: - val.bit_value = bits.ReadBits(val.num_bits); - result.push_back(val); - nValsDecoded++; - break; - } - } -} - -namespace ASTCC { - -struct TexelWeightParams { - u32 m_Width = 0; - u32 m_Height = 0; - bool m_bDualPlane = false; - u32 m_MaxWeight = 0; - bool m_bError = false; - bool m_bVoidExtentLDR = false; - bool m_bVoidExtentHDR = false; - - u32 GetPackedBitSize() const { - // How many indices do we have? - u32 nIdxs = m_Height * m_Width; - if (m_bDualPlane) { - nIdxs *= 2; - } - - return EncodingsValues[m_MaxWeight].GetBitLength(nIdxs); - } - - u32 GetNumWeightValues() const { - u32 ret = m_Width * m_Height; - if (m_bDualPlane) { - ret *= 2; - } - return ret; - } -}; - -static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { - TexelWeightParams params; - - // Read the entire block mode all at once - u16 modeBits = static_cast(strm.ReadBits<11>()); - - // Does this match the void extent block mode? - if ((modeBits & 0x01FF) == 0x1FC) { - if (modeBits & 0x200) { - params.m_bVoidExtentHDR = true; - } else { - params.m_bVoidExtentLDR = true; - } - - // Next two bits must be one. - if (!(modeBits & 0x400) || !strm.ReadBit()) { - params.m_bError = true; - } - - return params; - } - - // First check if the last four bits are zero - if ((modeBits & 0xF) == 0) { - params.m_bError = true; - return params; - } - - // If the last two bits are zero, then if bits - // [6-8] are all ones, this is also reserved. - if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) { - params.m_bError = true; - return params; - } - - // Otherwise, there is no error... Figure out the layout - // of the block mode. Layout is determined by a number - // between 0 and 9 corresponding to table C.2.8 of the - // ASTC spec. - u32 layout = 0; - - if ((modeBits & 0x1) || (modeBits & 0x2)) { - // layout is in [0-4] - if (modeBits & 0x8) { - // layout is in [2-4] - if (modeBits & 0x4) { - // layout is in [3-4] - if (modeBits & 0x100) { - layout = 4; - } else { - layout = 3; - } - } else { - layout = 2; - } - } else { - // layout is in [0-1] - if (modeBits & 0x4) { - layout = 1; - } else { - layout = 0; - } - } - } else { - // layout is in [5-9] - if (modeBits & 0x100) { - // layout is in [7-9] - if (modeBits & 0x80) { - // layout is in [7-8] - assert((modeBits & 0x40) == 0U); - if (modeBits & 0x20) { - layout = 8; - } else { - layout = 7; - } - } else { - layout = 9; - } - } else { - // layout is in [5-6] - if (modeBits & 0x80) { - layout = 6; - } else { - layout = 5; - } - } - } - - assert(layout < 10); - - // Determine R - u32 R = !!(modeBits & 0x10); - if (layout < 5) { - R |= (modeBits & 0x3) << 1; - } else { - R |= (modeBits & 0xC) >> 1; - } - assert(2 <= R && R <= 7); - - // Determine width & height - switch (layout) { - case 0: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x3; - params.m_Width = B + 4; - params.m_Height = A + 2; - break; - } - - case 1: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x3; - params.m_Width = B + 8; - params.m_Height = A + 2; - break; - } - - case 2: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x3; - params.m_Width = A + 2; - params.m_Height = B + 8; - break; - } - - case 3: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x1; - params.m_Width = A + 2; - params.m_Height = B + 6; - break; - } - - case 4: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x1; - params.m_Width = B + 2; - params.m_Height = A + 2; - break; - } - - case 5: { - u32 A = (modeBits >> 5) & 0x3; - params.m_Width = 12; - params.m_Height = A + 2; - break; - } - - case 6: { - u32 A = (modeBits >> 5) & 0x3; - params.m_Width = A + 2; - params.m_Height = 12; - break; - } - - case 7: { - params.m_Width = 6; - params.m_Height = 10; - break; - } - - case 8: { - params.m_Width = 10; - params.m_Height = 6; - break; - } - - case 9: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 9) & 0x3; - params.m_Width = A + 6; - params.m_Height = B + 6; - break; - } - - default: - assert(false && "Don't know this layout..."); - params.m_bError = true; - break; - } - - // Determine whether or not we're using dual planes - // and/or high precision layouts. - bool D = (layout != 9) && (modeBits & 0x400); - bool H = (layout != 9) && (modeBits & 0x200); - - if (H) { - const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31}; - params.m_MaxWeight = maxWeights[R - 2]; - } else { - const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7}; - params.m_MaxWeight = maxWeights[R - 2]; - } - - params.m_bDualPlane = D; - - return params; -} - -static void FillVoidExtentLDR(InputBitStream& strm, std::span outBuf, u32 blockWidth, - u32 blockHeight) { - // Don't actually care about the void extent, just read the bits... - for (s32 i = 0; i < 4; ++i) { - strm.ReadBits<13>(); - } - - // Decode the RGBA components and renormalize them to the range [0, 255] - u16 r = static_cast(strm.ReadBits<16>()); - u16 g = static_cast(strm.ReadBits<16>()); - u16 b = static_cast(strm.ReadBits<16>()); - u16 a = static_cast(strm.ReadBits<16>()); - - u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast(b) & 0xFF00) << 8 | - (static_cast(a) & 0xFF00) << 16; - - for (u32 j = 0; j < blockHeight; j++) { - for (u32 i = 0; i < blockWidth; i++) { - outBuf[j * blockWidth + i] = rgba; - } - } -} - -static void FillError(std::span outBuf, u32 blockWidth, u32 blockHeight) { - for (u32 j = 0; j < blockHeight; j++) { - for (u32 i = 0; i < blockWidth; i++) { - outBuf[j * blockWidth + i] = 0xFFFF00FF; - } - } -} - -// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)] -// is the same as [(numBits - 1):0] and repeats all the way down. -template -static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) { - if (numBits == 0) { - return 0; - } - if (toBit == 0) { - return 0; - } - const IntType v = val & static_cast((1 << numBits) - 1); - IntType res = v; - u32 reslen = numBits; - while (reslen < toBit) { - u32 comp = 0; - if (numBits > toBit - reslen) { - u32 newshift = toBit - reslen; - comp = numBits - newshift; - numBits = newshift; - } - res = static_cast(res << numBits); - res = static_cast(res | (v >> comp)); - reslen += numBits; - } - return res; -} - -static constexpr std::size_t NumReplicateEntries(u32 num_bits) { - return std::size_t(1) << num_bits; -} - -template -static constexpr auto MakeReplicateTable() { - std::array table{}; - for (IntType value = 0; value < static_cast(std::size(table)); ++value) { - table[value] = Replicate(value, num_bits, to_bit); - } - return table; -} - -static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable(); -static constexpr u32 ReplicateByteTo16(std::size_t value) { - return REPLICATE_BYTE_TO_16_TABLE[value]; -} - -static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable(); -static constexpr u32 ReplicateBitTo7(std::size_t value) { - return REPLICATE_BIT_TO_7_TABLE[value]; -} - -static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable(); -static constexpr u32 ReplicateBitTo9(std::size_t value) { - return REPLICATE_BIT_TO_9_TABLE[value]; -} - -static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable(); -/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback -/// to the runtime implementation -static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_8_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_8_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_8_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_8_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_8_TABLE[value]; - case 6: - return REPLICATE_6_BIT_TO_8_TABLE[value]; - case 7: - return REPLICATE_7_BIT_TO_8_TABLE[value]; - case 8: - return REPLICATE_8_BIT_TO_8_TABLE[value]; - default: - return Replicate(value, num_bits, 8); - } -} - -static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_6_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_6_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_6_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_6_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_6_TABLE[value]; - default: - return Replicate(value, num_bits, 6); - } -} - -class Pixel { -protected: - using ChannelType = s16; - u8 m_BitDepth[4] = {8, 8, 8, 8}; - s16 color[4] = {}; - -public: - Pixel() = default; - Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8) - : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)}, - color{static_cast(a), static_cast(r), - static_cast(g), static_cast(b)} {} - - // Changes the depth of each pixel. This scales the values to - // the appropriate bit depth by either truncating the least - // significant bits when going from larger to smaller bit depth - // or by repeating the most significant bits when going from - // smaller to larger bit depths. - void ChangeBitDepth() { - for (u32 i = 0; i < 4; i++) { - Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i]); - m_BitDepth[i] = 8; - } - } - - template - static float ConvertChannelToFloat(IntType channel, u8 bitDepth) { - float denominator = static_cast((1 << bitDepth) - 1); - return static_cast(channel) / denominator; - } - - // Changes the bit depth of a single component. See the comment - // above for how we do this. - static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth) { - assert(oldDepth <= 8); - - if (oldDepth == 8) { - // Do nothing - return val; - } else if (oldDepth == 0) { - return static_cast((1 << 8) - 1); - } else if (8 > oldDepth) { - return static_cast(FastReplicateTo8(static_cast(val), oldDepth)); - } else { - // oldDepth > newDepth - const u8 bitsWasted = static_cast(oldDepth - 8); - u16 v = static_cast(val); - v = static_cast((v + (1 << (bitsWasted - 1))) >> bitsWasted); - v = ::std::min(::std::max(0, v), static_cast((1 << 8) - 1)); - return static_cast(v); - } - - assert(false && "We shouldn't get here."); - return 0; - } - - const ChannelType& A() const { - return color[0]; - } - ChannelType& A() { - return color[0]; - } - const ChannelType& R() const { - return color[1]; - } - ChannelType& R() { - return color[1]; - } - const ChannelType& G() const { - return color[2]; - } - ChannelType& G() { - return color[2]; - } - const ChannelType& B() const { - return color[3]; - } - ChannelType& B() { - return color[3]; - } - const ChannelType& Component(u32 idx) const { - return color[idx]; - } - ChannelType& Component(u32 idx) { - return color[idx]; - } - - void GetBitDepth(u8 (&outDepth)[4]) const { - for (s32 i = 0; i < 4; i++) { - outDepth[i] = m_BitDepth[i]; - } - } - - // Take all of the components, transform them to their 8-bit variants, - // and then pack each channel into an R8G8B8A8 32-bit integer. We assume - // that the architecture is little-endian, so the alpha channel will end - // up in the most-significant byte. - u32 Pack() const { - Pixel eightBit(*this); - eightBit.ChangeBitDepth(); - - u32 r = 0; - r |= eightBit.A(); - r <<= 8; - r |= eightBit.B(); - r <<= 8; - r |= eightBit.G(); - r <<= 8; - r |= eightBit.R(); - return r; - } - - // Clamps the pixel to the range [0,255] - void ClampByte() { - for (u32 i = 0; i < 4; i++) { - color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]); - } - } - - void MakeOpaque() { - A() = 255; - } -}; - -static void DecodeColorValues(u32* out, std::span data, const u32* modes, const u32 nPartitions, - const u32 nBitsForColorData) { - // First figure out how many color values we have - u32 nValues = 0; - for (u32 i = 0; i < nPartitions; i++) { - nValues += ((modes[i] >> 2) + 1) << 1; - } - - // Then based on the number of values and the remaining number of bits, - // figure out the max value for each of them... - u32 range = 256; - while (--range > 0) { - IntegerEncodedValue val = EncodingsValues[range]; - u32 bitLength = val.GetBitLength(nValues); - if (bitLength <= nBitsForColorData) { - // Find the smallest possible range that matches the given encoding - while (--range > 0) { - IntegerEncodedValue newval = EncodingsValues[range]; - if (!newval.MatchesEncoding(val)) { - break; - } - } - - // Return to last matching range. - range++; - break; - } - } - - // We now have enough to decode our integer sequence. - IntegerEncodedVector decodedColorValues; - - InputBitStream colorStream(data, 0); - DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues); - - // Once we have the decoded values, we need to dequantize them to the 0-255 range - // This procedure is outlined in ASTC spec C.2.13 - u32 outIdx = 0; - for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) { - // Have we already decoded all that we need? - if (outIdx >= nValues) { - break; - } - - const IntegerEncodedValue& val = *itr; - u32 bitlen = val.num_bits; - u32 bitval = val.bit_value; - - assert(bitlen >= 1); - - u32 A = 0, B = 0, C = 0, D = 0; - // A is just the lsb replicated 9 times. - A = ReplicateBitTo9(bitval & 1); - - switch (val.encoding) { - // Replicate bits - case IntegerEncoding::JustBits: - out[outIdx++] = FastReplicateTo8(bitval, bitlen); - break; - - // Use algorithm in C.2.13 - case IntegerEncoding::Trit: { - - D = val.trit_value; - - switch (bitlen) { - case 1: { - C = 204; - } break; - - case 2: { - C = 93; - // B = b000b0bb0 - u32 b = (bitval >> 1) & 1; - B = (b << 8) | (b << 4) | (b << 2) | (b << 1); - } break; - - case 3: { - C = 44; - // B = cb000cbcb - u32 cb = (bitval >> 1) & 3; - B = (cb << 7) | (cb << 2) | cb; - } break; - - case 4: { - C = 22; - // B = dcb000dcb - u32 dcb = (bitval >> 1) & 7; - B = (dcb << 6) | dcb; - } break; - - case 5: { - C = 11; - // B = edcb000ed - u32 edcb = (bitval >> 1) & 0xF; - B = (edcb << 5) | (edcb >> 2); - } break; - - case 6: { - C = 5; - // B = fedcb000f - u32 fedcb = (bitval >> 1) & 0x1F; - B = (fedcb << 4) | (fedcb >> 4); - } break; - - default: - assert(false && "Unsupported trit encoding for color values!"); - break; - } // switch(bitlen) - } // case IntegerEncoding::Trit - break; - - case IntegerEncoding::Qus32: { - - D = val.qus32_value; - - switch (bitlen) { - case 1: { - C = 113; - } break; - - case 2: { - C = 54; - // B = b0000bb00 - u32 b = (bitval >> 1) & 1; - B = (b << 8) | (b << 3) | (b << 2); - } break; - - case 3: { - C = 26; - // B = cb0000cbc - u32 cb = (bitval >> 1) & 3; - B = (cb << 7) | (cb << 1) | (cb >> 1); - } break; - - case 4: { - C = 13; - // B = dcb0000dc - u32 dcb = (bitval >> 1) & 7; - B = (dcb << 6) | (dcb >> 1); - } break; - - case 5: { - C = 6; - // B = edcb0000e - u32 edcb = (bitval >> 1) & 0xF; - B = (edcb << 5) | (edcb >> 3); - } break; - - default: - assert(false && "Unsupported quint encoding for color values!"); - break; - } // switch(bitlen) - } // case IntegerEncoding::Qus32 - break; - } // switch(val.encoding) - - if (val.encoding != IntegerEncoding::JustBits) { - u32 T = D * C + B; - T ^= A; - T = (A & 0x80) | (T >> 2); - out[outIdx++] = T; - } - } - - // Make sure that each of our values is in the proper range... - for (u32 i = 0; i < nValues; i++) { - assert(out[i] <= 255); - } -} - -static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) { - u32 bitval = val.bit_value; - u32 bitlen = val.num_bits; - - u32 A = ReplicateBitTo7(bitval & 1); - u32 B = 0, C = 0, D = 0; - - u32 result = 0; - switch (val.encoding) { - case IntegerEncoding::JustBits: - result = FastReplicateTo6(bitval, bitlen); - break; - - case IntegerEncoding::Trit: { - D = val.trit_value; - assert(D < 3); - - switch (bitlen) { - case 0: { - u32 results[3] = {0, 32, 63}; - result = results[D]; - } break; - - case 1: { - C = 50; - } break; - - case 2: { - C = 23; - u32 b = (bitval >> 1) & 1; - B = (b << 6) | (b << 2) | b; - } break; - - case 3: { - C = 11; - u32 cb = (bitval >> 1) & 3; - B = (cb << 5) | cb; - } break; - - default: - assert(false && "Invalid trit encoding for texel weight"); - break; - } - } break; - - case IntegerEncoding::Qus32: { - D = val.qus32_value; - assert(D < 5); - - switch (bitlen) { - case 0: { - u32 results[5] = {0, 16, 32, 47, 63}; - result = results[D]; - } break; - - case 1: { - C = 28; - } break; - - case 2: { - C = 13; - u32 b = (bitval >> 1) & 1; - B = (b << 6) | (b << 1); - } break; - - default: - assert(false && "Invalid quint encoding for texel weight"); - break; - } - } break; - } - - if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) { - // Decode the value... - result = D * C + B; - result ^= A; - result = (A & 0x20) | (result >> 2); - } - - assert(result < 64); - - // Change from [0,63] to [0,64] - if (result > 32) { - result += 1; - } - - return result; -} - -static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights, - const TexelWeightParams& params, const u32 blockWidth, - const u32 blockHeight) { - u32 weightIdx = 0; - u32 unquantized[2][144]; - - for (auto itr = weights.begin(); itr != weights.end(); ++itr) { - unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr); - - if (params.m_bDualPlane) { - ++itr; - unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr); - if (itr == weights.end()) { - break; - } - } - - if (++weightIdx >= (params.m_Width * params.m_Height)) - break; - } - - // Do infill if necessary (Section C.2.18) ... - u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1); - u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1); - - const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U; - for (u32 plane = 0; plane < kPlaneScale; plane++) - for (u32 t = 0; t < blockHeight; t++) - for (u32 s = 0; s < blockWidth; s++) { - u32 cs = Ds * s; - u32 ct = Dt * t; - - u32 gs = (cs * (params.m_Width - 1) + 32) >> 6; - u32 gt = (ct * (params.m_Height - 1) + 32) >> 6; - - u32 js = gs >> 4; - u32 fs = gs & 0xF; - - u32 jt = gt >> 4; - u32 ft = gt & 0x0F; - - u32 w11 = (fs * ft + 8) >> 4; - u32 w10 = ft - w11; - u32 w01 = fs - w11; - u32 w00 = 16 - fs - ft + w11; - - u32 v0 = js + jt * params.m_Width; - -#define FIND_TEXEL(tidx, bidx) \ - u32 p##bidx = 0; \ - do { \ - if ((tidx) < (params.m_Width * params.m_Height)) { \ - p##bidx = unquantized[plane][(tidx)]; \ - } \ - } while (0) - - FIND_TEXEL(v0, 00); - FIND_TEXEL(v0 + 1, 01); - FIND_TEXEL(v0 + params.m_Width, 10); - FIND_TEXEL(v0 + params.m_Width + 1, 11); - -#undef FIND_TEXEL - - out[plane][t * blockWidth + s] = - (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4; - } -} - -// Transfers a bit as described in C.2.14 -static inline void BitTransferSigned(s32& a, s32& b) { - b >>= 1; - b |= a & 0x80; - a >>= 1; - a &= 0x3F; - if (a & 0x20) - a -= 0x40; -} - -// Adds more precision to the blue channel as described -// in C.2.14 -static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) { - return Pixel(static_cast(a), static_cast((r + b) >> 1), - static_cast((g + b) >> 1), static_cast(b)); -} - -// Partition selection functions as specified in -// C.2.21 -static inline u32 hash52(u32 p) { - p ^= p >> 15; - p -= p << 17; - p += p << 7; - p += p << 4; - p ^= p >> 5; - p += p << 16; - p ^= p >> 7; - p ^= p >> 3; - p ^= p << 6; - p ^= p >> 17; - return p; -} - -static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) { - if (1 == partitionCount) - return 0; - - if (smallBlock) { - x <<= 1; - y <<= 1; - z <<= 1; - } - - seed += (partitionCount - 1) * 1024; - - u32 rnum = hash52(static_cast(seed)); - u8 seed1 = static_cast(rnum & 0xF); - u8 seed2 = static_cast((rnum >> 4) & 0xF); - u8 seed3 = static_cast((rnum >> 8) & 0xF); - u8 seed4 = static_cast((rnum >> 12) & 0xF); - u8 seed5 = static_cast((rnum >> 16) & 0xF); - u8 seed6 = static_cast((rnum >> 20) & 0xF); - u8 seed7 = static_cast((rnum >> 24) & 0xF); - u8 seed8 = static_cast((rnum >> 28) & 0xF); - u8 seed9 = static_cast((rnum >> 18) & 0xF); - u8 seed10 = static_cast((rnum >> 22) & 0xF); - u8 seed11 = static_cast((rnum >> 26) & 0xF); - u8 seed12 = static_cast(((rnum >> 30) | (rnum << 2)) & 0xF); - - seed1 = static_cast(seed1 * seed1); - seed2 = static_cast(seed2 * seed2); - seed3 = static_cast(seed3 * seed3); - seed4 = static_cast(seed4 * seed4); - seed5 = static_cast(seed5 * seed5); - seed6 = static_cast(seed6 * seed6); - seed7 = static_cast(seed7 * seed7); - seed8 = static_cast(seed8 * seed8); - seed9 = static_cast(seed9 * seed9); - seed10 = static_cast(seed10 * seed10); - seed11 = static_cast(seed11 * seed11); - seed12 = static_cast(seed12 * seed12); - - s32 sh1, sh2, sh3; - if (seed & 1) { - sh1 = (seed & 2) ? 4 : 5; - sh2 = (partitionCount == 3) ? 6 : 5; - } else { - sh1 = (partitionCount == 3) ? 6 : 5; - sh2 = (seed & 2) ? 4 : 5; - } - sh3 = (seed & 0x10) ? sh1 : sh2; - - seed1 = static_cast(seed1 >> sh1); - seed2 = static_cast(seed2 >> sh2); - seed3 = static_cast(seed3 >> sh1); - seed4 = static_cast(seed4 >> sh2); - seed5 = static_cast(seed5 >> sh1); - seed6 = static_cast(seed6 >> sh2); - seed7 = static_cast(seed7 >> sh1); - seed8 = static_cast(seed8 >> sh2); - seed9 = static_cast(seed9 >> sh3); - seed10 = static_cast(seed10 >> sh3); - seed11 = static_cast(seed11 >> sh3); - seed12 = static_cast(seed12 >> sh3); - - s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); - s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); - s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); - s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); - - a &= 0x3F; - b &= 0x3F; - c &= 0x3F; - d &= 0x3F; - - if (partitionCount < 4) - d = 0; - if (partitionCount < 3) - c = 0; - - if (a >= b && a >= c && a >= d) - return 0; - else if (b >= c && b >= d) - return 1; - else if (c >= d) - return 2; - return 3; -} - -static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) { - return SelectPartition(seed, x, y, 0, partitionCount, smallBlock); -} - -// Section C.2.14 -static void ComputeEndpos32s(Pixel& ep1, Pixel& ep2, const u32*& colorValues, - u32 colorEndpos32Mode) { -#define READ_UINT_VALUES(N) \ - u32 v[N]; \ - for (u32 i = 0; i < N; i++) { \ - v[i] = *(colorValues++); \ - } - -#define READ_INT_VALUES(N) \ - s32 v[N]; \ - for (u32 i = 0; i < N; i++) { \ - v[i] = static_cast(*(colorValues++)); \ - } - - switch (colorEndpos32Mode) { - case 0: { - READ_UINT_VALUES(2) - ep1 = Pixel(0xFF, v[0], v[0], v[0]); - ep2 = Pixel(0xFF, v[1], v[1], v[1]); - } break; - - case 1: { - READ_UINT_VALUES(2) - u32 L0 = (v[0] >> 2) | (v[1] & 0xC0); - u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU); - ep1 = Pixel(0xFF, L0, L0, L0); - ep2 = Pixel(0xFF, L1, L1, L1); - } break; - - case 4: { - READ_UINT_VALUES(4) - ep1 = Pixel(v[2], v[0], v[0], v[0]); - ep2 = Pixel(v[3], v[1], v[1], v[1]); - } break; - - case 5: { - READ_INT_VALUES(4) - BitTransferSigned(v[1], v[0]); - BitTransferSigned(v[3], v[2]); - ep1 = Pixel(v[2], v[0], v[0], v[0]); - ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]); - ep1.ClampByte(); - ep2.ClampByte(); - } break; - - case 6: { - READ_UINT_VALUES(4) - ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8); - ep2 = Pixel(0xFF, v[0], v[1], v[2]); - } break; - - case 8: { - READ_UINT_VALUES(6) - if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) { - ep1 = Pixel(0xFF, v[0], v[2], v[4]); - ep2 = Pixel(0xFF, v[1], v[3], v[5]); - } else { - ep1 = BlueContract(0xFF, v[1], v[3], v[5]); - ep2 = BlueContract(0xFF, v[0], v[2], v[4]); - } - } break; - - case 9: { - READ_INT_VALUES(6) - BitTransferSigned(v[1], v[0]); - BitTransferSigned(v[3], v[2]); - BitTransferSigned(v[5], v[4]); - if (v[1] + v[3] + v[5] >= 0) { - ep1 = Pixel(0xFF, v[0], v[2], v[4]); - ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]); - } else { - ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]); - ep2 = BlueContract(0xFF, v[0], v[2], v[4]); - } - ep1.ClampByte(); - ep2.ClampByte(); - } break; - - case 10: { - READ_UINT_VALUES(6) - ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8); - ep2 = Pixel(v[5], v[0], v[1], v[2]); - } break; - - case 12: { - READ_UINT_VALUES(8) - if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) { - ep1 = Pixel(v[6], v[0], v[2], v[4]); - ep2 = Pixel(v[7], v[1], v[3], v[5]); - } else { - ep1 = BlueContract(v[7], v[1], v[3], v[5]); - ep2 = BlueContract(v[6], v[0], v[2], v[4]); - } - } break; - - case 13: { - READ_INT_VALUES(8) - BitTransferSigned(v[1], v[0]); - BitTransferSigned(v[3], v[2]); - BitTransferSigned(v[5], v[4]); - BitTransferSigned(v[7], v[6]); - if (v[1] + v[3] + v[5] >= 0) { - ep1 = Pixel(v[6], v[0], v[2], v[4]); - ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]); - } else { - ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]); - ep2 = BlueContract(v[6], v[0], v[2], v[4]); - } - ep1.ClampByte(); - ep2.ClampByte(); - } break; - - default: - assert(false && "Unsupported color endpoint mode (is it HDR?)"); - break; - } - -#undef READ_UINT_VALUES -#undef READ_INT_VALUES -} - -static void DecompressBlock(std::span inBuf, const u32 blockWidth, - const u32 blockHeight, std::span outBuf) { - InputBitStream strm(inBuf); - TexelWeightParams weightParams = DecodeBlockInfo(strm); - - // Was there an error? - if (weightParams.m_bError) { - assert(false && "Invalid block mode"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_bVoidExtentLDR) { - FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_bVoidExtentHDR) { - assert(false && "HDR void extent blocks are unsupported!"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_Width > blockWidth) { - assert(false && "Texel weight grid width should be smaller than block width"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_Height > blockHeight) { - assert(false && "Texel weight grid height should be smaller than block height"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - // Read num partitions - u32 nPartitions = strm.ReadBits<2>() + 1; - assert(nPartitions <= 4); - - if (nPartitions == 4 && weightParams.m_bDualPlane) { - assert(false && "Dual plane mode is incompatible with four partition blocks"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - // Based on the number of partitions, read the color endpos32 mode for - // each partition. - - // Determine partitions, partition index, and color endpos32 modes - s32 planeIdx = -1; - u32 partitionIndex; - u32 colorEndpos32Mode[4] = {0, 0, 0, 0}; - - // Define color data. - u8 colorEndpos32Data[16]; - memset(colorEndpos32Data, 0, sizeof(colorEndpos32Data)); - OutputBitStream colorEndpos32Stream(colorEndpos32Data, 16 * 8, 0); - - // Read extra config data... - u32 baseCEM = 0; - if (nPartitions == 1) { - colorEndpos32Mode[0] = strm.ReadBits<4>(); - partitionIndex = 0; - } else { - partitionIndex = strm.ReadBits<10>(); - baseCEM = strm.ReadBits<6>(); - } - u32 baseMode = (baseCEM & 3); - - // Remaining bits are color endpos32 data... - u32 nWeightBits = weightParams.GetPackedBitSize(); - s32 remainingBits = 128 - nWeightBits - static_cast(strm.GetBitsRead()); - - // Consider extra bits prior to texel data... - u32 extraCEMbits = 0; - if (baseMode) { - switch (nPartitions) { - case 2: - extraCEMbits += 2; - break; - case 3: - extraCEMbits += 5; - break; - case 4: - extraCEMbits += 8; - break; - default: - assert(false); - break; - } - } - remainingBits -= extraCEMbits; - - // Do we have a dual plane situation? - u32 planeSelectorBits = 0; - if (weightParams.m_bDualPlane) { - planeSelectorBits = 2; - } - remainingBits -= planeSelectorBits; - - // Read color data... - u32 colorDataBits = remainingBits; - while (remainingBits > 0) { - u32 nb = std::min(remainingBits, 8); - u32 b = strm.ReadBits(nb); - colorEndpos32Stream.WriteBits(b, nb); - remainingBits -= 8; - } - - // Read the plane selection bits - planeIdx = strm.ReadBits(planeSelectorBits); - - // Read the rest of the CEM - if (baseMode) { - u32 extraCEM = strm.ReadBits(extraCEMbits); - u32 CEM = (extraCEM << 6) | baseCEM; - CEM >>= 2; - - bool C[4] = {0}; - for (u32 i = 0; i < nPartitions; i++) { - C[i] = CEM & 1; - CEM >>= 1; - } - - u8 M[4] = {0}; - for (u32 i = 0; i < nPartitions; i++) { - M[i] = CEM & 3; - CEM >>= 2; - assert(M[i] <= 3); - } - - for (u32 i = 0; i < nPartitions; i++) { - colorEndpos32Mode[i] = baseMode; - if (!(C[i])) - colorEndpos32Mode[i] -= 1; - colorEndpos32Mode[i] <<= 2; - colorEndpos32Mode[i] |= M[i]; - } - } else if (nPartitions > 1) { - u32 CEM = baseCEM >> 2; - for (u32 i = 0; i < nPartitions; i++) { - colorEndpos32Mode[i] = CEM; - } - } - - // Make sure everything up till here is sane. - for (u32 i = 0; i < nPartitions; i++) { - assert(colorEndpos32Mode[i] < 16); - } - assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128); - - // Decode both color data and texel weight data - u32 colorValues[32]; // Four values, two endpos32s, four maximum paritions - DecodeColorValues(colorValues, colorEndpos32Data, colorEndpos32Mode, nPartitions, - colorDataBits); - - Pixel endpos32s[4][2]; - const u32* colorValuesPtr = colorValues; - for (u32 i = 0; i < nPartitions; i++) { - ComputeEndpos32s(endpos32s[i][0], endpos32s[i][1], colorValuesPtr, colorEndpos32Mode[i]); - } - - // Read the texel weight data.. - std::array texelWeightData; - std::ranges::copy(inBuf, texelWeightData.begin()); - - // Reverse everything - for (u32 i = 0; i < 8; i++) { -// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits -#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32 - u8 a = static_cast(REVERSE_BYTE(texelWeightData[i])); - u8 b = static_cast(REVERSE_BYTE(texelWeightData[15 - i])); -#undef REVERSE_BYTE - - texelWeightData[i] = b; - texelWeightData[15 - i] = a; - } - - // Make sure that higher non-texel bits are set to zero - const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1; - if (clearByteStart > 0 && clearByteStart <= texelWeightData.size()) { - texelWeightData[clearByteStart - 1] &= - static_cast((1 << (weightParams.GetPackedBitSize() % 8)) - 1); - std::memset(texelWeightData.data() + clearByteStart, 0, - std::min(16U - clearByteStart, 16U)); - } - - IntegerEncodedVector texelWeightValues; - - InputBitStream weightStream(texelWeightData); - - DecodeIntegerSequence(texelWeightValues, weightStream, weightParams.m_MaxWeight, - weightParams.GetNumWeightValues()); - - // Blocks can be at most 12x12, so we can have as many as 144 weights - u32 weights[2][144]; - UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight); - - // Now that we have endpos32s and weights, we can s32erpolate and generate - // the proper decoding... - for (u32 j = 0; j < blockHeight; j++) - for (u32 i = 0; i < blockWidth; i++) { - u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions, - (blockHeight * blockWidth) < 32); - assert(partition < nPartitions); - - Pixel p; - for (u32 c = 0; c < 4; c++) { - u32 C0 = endpos32s[partition][0].Component(c); - C0 = ReplicateByteTo16(C0); - u32 C1 = endpos32s[partition][1].Component(c); - C1 = ReplicateByteTo16(C1); - - u32 plane = 0; - if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) { - plane = 1; - } - - u32 weight = weights[plane][j * blockWidth + i]; - u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64; - if (C == 65535) { - p.Component(c) = 255; - } else { - double Cf = static_cast(C); - p.Component(c) = static_cast(255.0 * (Cf / 65536.0) + 0.5); - } - } - - outBuf[j * blockWidth + i] = p.Pack(); - } -} - -} // namespace ASTCC - -namespace Tegra::Texture::ASTC { - -void Decompress(std::span data, uint32_t width, uint32_t height, uint32_t depth, - uint32_t block_width, uint32_t block_height, std::span output) { - u32 block_index = 0; - std::size_t depth_offset = 0; - for (u32 z = 0; z < depth; z++) { - for (u32 y = 0; y < height; y += block_height) { - for (u32 x = 0; x < width; x += block_width) { - const std::span blockPtr{data.subspan(block_index * 16, 16)}; - - // Blocks can be at most 12x12 - std::array uncompData; - ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData); - - u32 decompWidth = std::min(block_width, width - x); - u32 decompHeight = std::min(block_height, height - y); - - const std::span outRow = output.subspan(depth_offset + (y * width + x) * 4); - for (u32 jj = 0; jj < decompHeight; jj++) { - std::memcpy(outRow.data() + jj * width * 4, - uncompData.data() + jj * block_width, decompWidth * 4); - } - ++block_index; - } - } - depth_offset += height * width * 4; - } -} - -} // namespace Tegra::Texture::ASTC diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h index bc8bddaec..c1c73fda5 100644 --- a/src/video_core/textures/astc.h +++ b/src/video_core/textures/astc.h @@ -4,20 +4,12 @@ #pragma once -#include +#include +#include "common/common_types.h" namespace Tegra::Texture::ASTC { -/// Count the number of bits set in a number. -constexpr u32 Popcnt(u32 n) { - u32 c = 0; - for (; n; c++) { - n &= n - 1; - } - return c; -} - -enum class IntegerEncoding { JustBits, Qus32, Trit }; +enum class IntegerEncoding { JustBits, Quint, Trit }; struct IntegerEncodedValue { constexpr IntegerEncodedValue() = default; @@ -29,55 +21,55 @@ struct IntegerEncodedValue { return encoding == other.encoding && num_bits == other.num_bits; } - // Returns the number of bits required to encode nVals values. - u32 GetBitLength(u32 nVals) const { - u32 totalBits = num_bits * nVals; + // Returns the number of bits required to encode num_vals values. + u32 GetBitLength(u32 num_vals) const { + u32 total_bits = num_bits * num_vals; if (encoding == IntegerEncoding::Trit) { - totalBits += (nVals * 8 + 4) / 5; - } else if (encoding == IntegerEncoding::Qus32) { - totalBits += (nVals * 7 + 2) / 3; + total_bits += (num_vals * 8 + 4) / 5; + } else if (encoding == IntegerEncoding::Quint) { + total_bits += (num_vals * 7 + 2) / 3; } - return totalBits; + return total_bits; } IntegerEncoding encoding{}; u32 num_bits = 0; u32 bit_value = 0; union { - u32 qus32_value = 0; + u32 quint_value = 0; u32 trit_value; }; }; // Returns a new instance of this struct that corresponds to the -// can take no more than maxval values -static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) { - while (maxVal > 0) { - u32 check = maxVal + 1; +// can take no more than mav_value values +constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) { + while (mav_value > 0) { + u32 check = mav_value + 1; - // Is maxVal a power of two? + // Is mav_value a power of two? if (!(check & (check - 1))) { - return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal)); + return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value)); } - // Is maxVal of the type 3*2^n - 1? + // Is mav_value of the type 3*2^n - 1? if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) { - return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1)); + return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1)); } - // Is maxVal of the type 5*2^n - 1? + // Is mav_value of the type 5*2^n - 1? if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) { - return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1)); + return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1)); } // Apparently it can't be represented with a bounded integer sequence... // just iterate. - maxVal--; + mav_value--; } return IntegerEncodedValue(IntegerEncoding::JustBits, 0); } -static constexpr std::array MakeEncodedValues() { +constexpr std::array MakeEncodedValues() { std::array encodings{}; for (std::size_t i = 0; i < encodings.size(); ++i) { encodings[i] = CreateEncoding(static_cast(i)); @@ -85,41 +77,38 @@ static constexpr std::array MakeEncodedValues() { return encodings; } -static constexpr std::array EncodingsValues = MakeEncodedValues(); +constexpr std::array EncodingsValues = MakeEncodedValues(); -// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)] -// is the same as [(numBits - 1):0] and repeats all the way down. +// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)] +// is the same as [(num_bits - 1):0] and repeats all the way down. template -static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) { - if (numBits == 0) { - return 0; - } - if (toBit == 0) { +constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) { + if (num_bits == 0 || to_bit == 0) { return 0; } - const IntType v = val & static_cast((1 << numBits) - 1); + const IntType v = val & static_cast((1 << num_bits) - 1); IntType res = v; - u32 reslen = numBits; - while (reslen < toBit) { + u32 reslen = num_bits; + while (reslen < to_bit) { u32 comp = 0; - if (numBits > toBit - reslen) { - u32 newshift = toBit - reslen; - comp = numBits - newshift; - numBits = newshift; + if (num_bits > to_bit - reslen) { + u32 newshift = to_bit - reslen; + comp = num_bits - newshift; + num_bits = newshift; } - res = static_cast(res << numBits); + res = static_cast(res << num_bits); res = static_cast(res | (v >> comp)); - reslen += numBits; + reslen += num_bits; } return res; } -static constexpr std::size_t NumReplicateEntries(u32 num_bits) { +constexpr std::size_t NumReplicateEntries(u32 num_bits) { return std::size_t(1) << num_bits; } template -static constexpr auto MakeReplicateTable() { +constexpr auto MakeReplicateTable() { std::array table{}; for (IntType value = 0; value < static_cast(std::size(table)); ++value) { table[value] = Replicate(value, num_bits, to_bit); @@ -127,78 +116,17 @@ static constexpr auto MakeReplicateTable() { return table; } -static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable(); -static constexpr u32 ReplicateByteTo16(std::size_t value) { - return REPLICATE_BYTE_TO_16_TABLE[value]; -} - -static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable(); -static constexpr u32 ReplicateBitTo7(std::size_t value) { - return REPLICATE_BIT_TO_7_TABLE[value]; -} - -static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable(); -static constexpr u32 ReplicateBitTo9(std::size_t value) { - return REPLICATE_BIT_TO_9_TABLE[value]; -} - -static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable(); -/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback -/// to the runtime implementation -static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_8_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_8_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_8_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_8_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_8_TABLE[value]; - case 6: - return REPLICATE_6_BIT_TO_8_TABLE[value]; - case 7: - return REPLICATE_7_BIT_TO_8_TABLE[value]; - case 8: - return REPLICATE_8_BIT_TO_8_TABLE[value]; - default: - return Replicate(value, num_bits, 8); - } -} - -static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable(); -static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable(); - -static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_6_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_6_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_6_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_6_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_6_TABLE[value]; - default: - return Replicate(value, num_bits, 6); - } -} - -void Decompress(std::span data, uint32_t width, uint32_t height, uint32_t depth, - uint32_t block_width, uint32_t block_height, std::span output); +constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable(); +constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable(); +constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable(); +constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable(); + +struct AstcBufferData { + decltype(EncodingsValues) encoding_values = EncodingsValues; + decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE; + decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE; + decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE; + decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE; +} constexpr ASTC_BUFFER_DATA; } // namespace Tegra::Texture::ASTC -- cgit v1.2.3