From 13a8fde3ad2a4a37cf1bb8dcb367b4c8fc8b4d9b Mon Sep 17 00:00:00 2001 From: Michael Scire Date: Sun, 7 Jul 2019 09:42:54 -0700 Subject: Implement MapPhysicalMemory/UnmapPhysicalMemory This implements svcMapPhysicalMemory/svcUnmapPhysicalMemory for Yuzu, which can be used to map memory at a desired address by games since 3.0.0. It also properly parses SystemResourceSize from NPDM, and makes information available via svcGetInfo. This is needed for games like Super Smash Bros. and Diablo 3 -- this PR's implementation does not run into the "ASCII reads" issue mentioned in the comments of #2626, which was caused by the following bugs in Yuzu's memory management that this PR also addresses: * Yuzu's memory coalescing does not properly merge blocks. This results in a polluted address space/svcQueryMemory results that would be impossible to replicate on hardware, which can lead to game code making the wrong assumptions about memory layout. * This implements better merging for AllocatedMemoryBlocks. * Yuzu's implementation of svcMirrorMemory unprotected the entire virtual memory range containing the range being mirrored. This could lead to games attempting to map data at that unprotected range/attempting to access that range after yuzu improperly unmapped it. * This PR fixes it by simply calling ReprotectRange instead of Reprotect. --- src/core/hle/kernel/process.cpp | 1 + src/core/hle/kernel/process.h | 11 +- src/core/hle/kernel/svc.cpp | 110 ++++++++++++- src/core/hle/kernel/svc_wrap.h | 5 + src/core/hle/kernel/vm_manager.cpp | 320 ++++++++++++++++++++++++++++++++++++- src/core/hle/kernel/vm_manager.h | 41 ++++- 6 files changed, 468 insertions(+), 20 deletions(-) (limited to 'src/core/hle/kernel') diff --git a/src/core/hle/kernel/process.cpp b/src/core/hle/kernel/process.cpp index f45ef05f6..51245cbb4 100644 --- a/src/core/hle/kernel/process.cpp +++ b/src/core/hle/kernel/process.cpp @@ -172,6 +172,7 @@ ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) { program_id = metadata.GetTitleID(); ideal_core = metadata.GetMainThreadCore(); is_64bit_process = metadata.Is64BitProgram(); + system_resource_size = metadata.GetSystemResourceSize(); vm_manager.Reset(metadata.GetAddressSpaceType()); diff --git a/src/core/hle/kernel/process.h b/src/core/hle/kernel/process.h index 83ea02bee..b0e795577 100644 --- a/src/core/hle/kernel/process.h +++ b/src/core/hle/kernel/process.h @@ -168,8 +168,9 @@ public: return capabilities.GetPriorityMask(); } - u32 IsVirtualMemoryEnabled() const { - return is_virtual_address_memory_enabled; + /// Gets the amount of secure memory to allocate for memory management. + u32 GetSystemResourceSize() const { + return system_resource_size; } /// Whether this process is an AArch64 or AArch32 process. @@ -298,12 +299,16 @@ private: /// Title ID corresponding to the process u64 program_id = 0; + /// Specifies additional memory to be reserved for the process's memory management by the + /// system. When this is non-zero, secure memory is allocated and used for page table allocation + /// instead of using the normal global page tables/memory block management. + u32 system_resource_size = 0; + /// Resource limit descriptor for this process SharedPtr resource_limit; /// The ideal CPU core for this process, threads are scheduled on this core by default. u8 ideal_core = 0; - u32 is_virtual_address_memory_enabled = 0; /// The Thread Local Storage area is allocated as processes create threads, /// each TLS area is 0x200 bytes, so one page (0x1000) is split up in 8 parts, and each part diff --git a/src/core/hle/kernel/svc.cpp b/src/core/hle/kernel/svc.cpp index 332573a95..abb374892 100644 --- a/src/core/hle/kernel/svc.cpp +++ b/src/core/hle/kernel/svc.cpp @@ -729,8 +729,8 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha StackRegionBaseAddr = 14, StackRegionSize = 15, // 3.0.0+ - IsVirtualAddressMemoryEnabled = 16, - PersonalMmHeapUsage = 17, + SystemResourceSize = 16, + SystemResourceUsage = 17, TitleId = 18, // 4.0.0+ PrivilegedProcessId = 19, @@ -756,8 +756,8 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha case GetInfoType::StackRegionSize: case GetInfoType::TotalPhysicalMemoryAvailable: case GetInfoType::TotalPhysicalMemoryUsed: - case GetInfoType::IsVirtualAddressMemoryEnabled: - case GetInfoType::PersonalMmHeapUsage: + case GetInfoType::SystemResourceSize: + case GetInfoType::SystemResourceUsage: case GetInfoType::TitleId: case GetInfoType::UserExceptionContextAddr: case GetInfoType::TotalPhysicalMemoryAvailableWithoutMmHeap: @@ -822,8 +822,22 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha *result = process->GetTotalPhysicalMemoryUsed(); return RESULT_SUCCESS; - case GetInfoType::IsVirtualAddressMemoryEnabled: - *result = process->IsVirtualMemoryEnabled(); + case GetInfoType::SystemResourceSize: + *result = process->GetSystemResourceSize(); + return RESULT_SUCCESS; + + case GetInfoType::SystemResourceUsage: + // On hardware, this returns the amount of system resource memory that has + // been used by the kernel. This is problematic for Yuzu to emulate, because + // system resource memory is used for page tables -- and yuzu doesn't really + // have a way to calculate how much memory is required for page tables for + // the current process at any given time. + // TODO: Is this even worth implementing? No game should ever use it, since + // the amount of remaining page table space should never be relevant except + // for diagnostics. Is returning a value other than zero wise? + LOG_WARNING(Kernel_SVC, + "(STUBBED) Attempted to query system resource usage, returned 0"); + *result = 0; return RESULT_SUCCESS; case GetInfoType::TitleId: @@ -946,6 +960,86 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha } } +/// Maps memory at a desired address +static ResultCode MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) { + LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size); + + if (!Common::Is4KBAligned(addr)) { + LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr); + return ERR_INVALID_ADDRESS; + } + + if (!Common::Is4KBAligned(size)) { + LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size); + return ERR_INVALID_SIZE; + } + + if (size == 0) { + LOG_ERROR(Kernel_SVC, "Size is zero"); + return ERR_INVALID_SIZE; + } + + if (!(addr < addr + size)) { + LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address"); + return ERR_INVALID_MEMORY_RANGE; + } + + auto* const current_process = Core::CurrentProcess(); + auto& vm_manager = current_process->VMManager(); + + if (current_process->GetSystemResourceSize() == 0) { + LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); + return ERR_INVALID_STATE; + } + + if (!vm_manager.IsWithinMapRegion(addr, size)) { + LOG_ERROR(Kernel_SVC, "Range not within map region"); + return ERR_INVALID_MEMORY_RANGE; + } + + return vm_manager.MapPhysicalMemory(addr, size); +} + +/// Unmaps memory previously mapped via MapPhysicalMemory +static ResultCode UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) { + LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size); + + if (!Common::Is4KBAligned(addr)) { + LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr); + return ERR_INVALID_ADDRESS; + } + + if (!Common::Is4KBAligned(size)) { + LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size); + return ERR_INVALID_SIZE; + } + + if (size == 0) { + LOG_ERROR(Kernel_SVC, "Size is zero"); + return ERR_INVALID_SIZE; + } + + if (!(addr < addr + size)) { + LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address"); + return ERR_INVALID_MEMORY_RANGE; + } + + auto* const current_process = Core::CurrentProcess(); + auto& vm_manager = current_process->VMManager(); + + if (current_process->GetSystemResourceSize() == 0) { + LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); + return ERR_INVALID_STATE; + } + + if (!vm_manager.IsWithinMapRegion(addr, size)) { + LOG_ERROR(Kernel_SVC, "Range not within map region"); + return ERR_INVALID_MEMORY_RANGE; + } + + return vm_manager.UnmapPhysicalMemory(addr, size); +} + /// Sets the thread activity static ResultCode SetThreadActivity(Core::System& system, Handle handle, u32 activity) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", handle, activity); @@ -2303,8 +2397,8 @@ static const FunctionDef SVC_Table[] = { {0x29, SvcWrap, "GetInfo"}, {0x2A, nullptr, "FlushEntireDataCache"}, {0x2B, nullptr, "FlushDataCache"}, - {0x2C, nullptr, "MapPhysicalMemory"}, - {0x2D, nullptr, "UnmapPhysicalMemory"}, + {0x2C, SvcWrap, "MapPhysicalMemory"}, + {0x2D, SvcWrap, "UnmapPhysicalMemory"}, {0x2E, nullptr, "GetFutureThreadInfo"}, {0x2F, nullptr, "GetLastThreadInfo"}, {0x30, SvcWrap, "GetResourceLimitLimitValue"}, diff --git a/src/core/hle/kernel/svc_wrap.h b/src/core/hle/kernel/svc_wrap.h index 865473c6f..c2d8d0dc3 100644 --- a/src/core/hle/kernel/svc_wrap.h +++ b/src/core/hle/kernel/svc_wrap.h @@ -32,6 +32,11 @@ void SvcWrap(Core::System& system) { FuncReturn(system, func(system, Param(system, 0)).raw); } +template +void SvcWrap(Core::System& system) { + FuncReturn(system, func(system, Param(system, 0), Param(system, 1)).raw); +} + template void SvcWrap(Core::System& system) { FuncReturn(system, func(system, static_cast(Param(system, 0))).raw); diff --git a/src/core/hle/kernel/vm_manager.cpp b/src/core/hle/kernel/vm_manager.cpp index 501544090..9385a8697 100644 --- a/src/core/hle/kernel/vm_manager.cpp +++ b/src/core/hle/kernel/vm_manager.cpp @@ -12,6 +12,8 @@ #include "core/core.h" #include "core/file_sys/program_metadata.h" #include "core/hle/kernel/errors.h" +#include "core/hle/kernel/process.h" +#include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "core/memory_setup.h" @@ -49,9 +51,8 @@ bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const { type != next.type) { return false; } - if (type == VMAType::AllocatedMemoryBlock && - (backing_block != next.backing_block || offset + size != next.offset)) { - return false; + if (type == VMAType::AllocatedMemoryBlock) { + return true; } if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) { return false; @@ -100,7 +101,7 @@ bool VMManager::IsValidHandle(VMAHandle handle) const { ResultVal VMManager::MapMemoryBlock(VAddr target, std::shared_ptr> block, std::size_t offset, u64 size, - MemoryState state) { + MemoryState state, VMAPermission perm) { ASSERT(block != nullptr); ASSERT(offset + size <= block->size()); @@ -119,7 +120,7 @@ ResultVal VMManager::MapMemoryBlock(VAddr target, VMAPermission::ReadWriteExecute); final_vma.type = VMAType::AllocatedMemoryBlock; - final_vma.permissions = VMAPermission::ReadWrite; + final_vma.permissions = perm; final_vma.state = state; final_vma.backing_block = std::move(block); final_vma.offset = offset; @@ -308,6 +309,258 @@ ResultVal VMManager::SetHeapSize(u64 size) { return MakeResult(heap_region_base); } +ResultCode VMManager::MapPhysicalMemory(VAddr target, u64 size) { + const auto last_addr = target + size - 1; + VAddr cur_addr = target; + std::size_t mapped_size = 0; + + ResultCode result = RESULT_SUCCESS; + + // Check whether we've already mapped the desired memory. + { + auto vma = FindVMA(target); + ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end"); + + while (true) { + const auto vma_start = vma->second.base; + const auto vma_size = vma->second.size; + const auto state = vma->second.state; + + // Handle last block. + if (last_addr <= (vma_start + vma_size - 1)) { + if (state != MemoryState::Unmapped) { + mapped_size += last_addr - cur_addr + 1; + } + break; + } + + if (state != MemoryState::Unmapped) { + mapped_size += vma_start + vma_size - cur_addr; + } + cur_addr = vma_start + vma_size; + vma++; + ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end"); + } + + // If we already have the desired amount mapped, we're done. + if (mapped_size == size) { + return RESULT_SUCCESS; + } + } + + // Check that we can map the memory we want. + const auto res_limit = Core::CurrentProcess()->GetResourceLimit(); + const u64 physmem_remaining = res_limit->GetMaxResourceValue(ResourceType::PhysicalMemory) - + res_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory); + if (physmem_remaining < (size - mapped_size)) { + return ERR_RESOURCE_LIMIT_EXCEEDED; + } + + // Keep track of the memory regions we unmap. + std::vector> mapped_regions; + + // Iterate, trying to map memory. + // Map initially with VMAPermission::None. + { + cur_addr = target; + + auto vma = FindVMA(target); + ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end"); + + while (true) { + const auto vma_start = vma->second.base; + const auto vma_size = vma->second.size; + const auto state = vma->second.state; + + // Handle last block. + if (last_addr <= (vma_start + vma_size - 1)) { + if (state == MemoryState::Unmapped) { + const auto map_res = MapMemoryBlock( + cur_addr, std::make_shared>(last_addr - cur_addr + 1, 0), 0, + last_addr - cur_addr + 1, MemoryState::Heap, VMAPermission::None); + result = map_res.Code(); + if (result.IsSuccess()) { + mapped_regions.push_back( + std::make_pair(cur_addr, last_addr - cur_addr + 1)); + } + } + break; + } + + if (state == MemoryState::Unmapped) { + const auto map_res = MapMemoryBlock( + cur_addr, std::make_shared>(vma_start + vma_size - cur_addr, 0), + 0, vma_start + vma_size - cur_addr, MemoryState::Heap, VMAPermission::None); + result = map_res.Code(); + if (result.IsSuccess()) { + mapped_regions.push_back( + std::make_pair(cur_addr, vma_start + vma_size - cur_addr)); + } else { + break; + } + } + cur_addr = vma_start + vma_size; + vma = FindVMA(cur_addr); + ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end"); + } + } + + // If we failed, unmap memory. + if (result.IsError()) { + for (const auto& it : mapped_regions) { + const auto unmap_res = UnmapRange(it.first, it.second); + ASSERT_MSG(unmap_res.IsSuccess(), "MapPhysicalMemory un-map on error"); + } + + return result; + } + + // We didn't fail, so reprotect all the memory to ReadWrite. + { + cur_addr = target; + + auto vma = FindVMA(target); + ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end"); + + while (true) { + const auto vma_start = vma->second.base; + const auto vma_size = vma->second.size; + const auto state = vma->second.state; + const auto perm = vma->second.permissions; + + // Handle last block. + if (last_addr <= (vma_start + vma_size - 1)) { + if (state == MemoryState::Heap && perm == VMAPermission::None) { + ASSERT_MSG( + ReprotectRange(cur_addr, last_addr - cur_addr + 1, VMAPermission::ReadWrite) + .IsSuccess(), + "MapPhysicalMemory reprotect"); + } + break; + } + + if (state == MemoryState::Heap && perm == VMAPermission::None) { + ASSERT_MSG(ReprotectRange(cur_addr, vma_start + vma_size - cur_addr, + VMAPermission::ReadWrite) + .IsSuccess(), + "MapPhysicalMemory reprotect"); + } + cur_addr = vma_start + vma_size; + vma = FindVMA(cur_addr); + ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end"); + } + } + + // Update amount of mapped physical memory. + physical_memory_mapped += size - mapped_size; + + return RESULT_SUCCESS; +} + +ResultCode VMManager::UnmapPhysicalMemory(VAddr target, u64 size) { + auto last_addr = target + size - 1; + VAddr cur_addr = target; + std::size_t mapped_size = 0; + + ResultCode result = RESULT_SUCCESS; + + // Check how much of the memory is currently mapped. + { + auto vma = FindVMA(target); + ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end"); + + while (true) { + const auto vma_start = vma->second.base; + const auto vma_size = vma->second.size; + const auto state = vma->second.state; + const auto attr = vma->second.attribute; + + // Memory within region must be free or mapped heap. + if (!((state == MemoryState::Heap && attr == MemoryAttribute::None) || + (state == MemoryState::Unmapped))) { + return ERR_INVALID_ADDRESS_STATE; + } + + // If this is the last block and it's mapped, update mapped size. + if (last_addr <= (vma_start + vma_size - 1)) { + if (state == MemoryState::Heap) { + mapped_size += last_addr - cur_addr + 1; + } + break; + } + + if (state == MemoryState::Heap) { + mapped_size += vma_start + vma_size - cur_addr; + } + cur_addr = vma_start + vma_size; + vma++; + ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end"); + } + + // If memory is already unmapped, we're done. + if (mapped_size == 0) { + return RESULT_SUCCESS; + } + } + + // Keep track of the memory regions we unmap. + std::vector> unmapped_regions; + + // Try to unmap regions. + { + cur_addr = target; + + auto vma = FindVMA(target); + ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end"); + + while (true) { + const auto vma_start = vma->second.base; + const auto vma_size = vma->second.size; + const auto state = vma->second.state; + const auto perm = vma->second.permissions; + + // Handle last block. + if (last_addr <= (vma_start + vma_size - 1)) { + if (state == MemoryState::Heap) { + result = UnmapRange(cur_addr, last_addr - cur_addr + 1); + if (result.IsSuccess()) { + unmapped_regions.push_back( + std::make_pair(cur_addr, last_addr - cur_addr + 1)); + } + } + break; + } + + if (state == MemoryState::Heap) { + result = UnmapRange(cur_addr, vma_start + vma_size - cur_addr); + if (result.IsSuccess()) { + unmapped_regions.push_back( + std::make_pair(cur_addr, vma_start + vma_size - cur_addr)); + } else { + break; + } + } + + cur_addr = vma_start + vma_size; + vma = FindVMA(cur_addr); + ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end"); + } + } + + // If we failed, re-map regions. + // TODO: Preserve memory contents? + if (result.IsError()) { + for (const auto& it : unmapped_regions) { + const auto remap_res = + MapMemoryBlock(it.first, std::make_shared>(it.second, 0), 0, + it.second, MemoryState::Heap, VMAPermission::None); + ASSERT_MSG(remap_res.Succeeded(), "UnmapPhysicalMemory re-map on error"); + } + } + + return RESULT_SUCCESS; +} + ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) { constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped; const auto src_check_result = CheckRangeState( @@ -455,7 +708,7 @@ ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, Mem // Protect mirror with permissions from old region Reprotect(new_vma, vma->second.permissions); // Remove permissions from old region - Reprotect(vma, VMAPermission::None); + ReprotectRange(src_addr, size, VMAPermission::None); return RESULT_SUCCESS; } @@ -588,14 +841,14 @@ VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) { VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) { const VMAIter next_vma = std::next(iter); if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { - iter->second.size += next_vma->second.size; + MergeAdjacentVMA(iter->second, next_vma->second); vma_map.erase(next_vma); } if (iter != vma_map.begin()) { VMAIter prev_vma = std::prev(iter); if (prev_vma->second.CanBeMergedWith(iter->second)) { - prev_vma->second.size += iter->second.size; + MergeAdjacentVMA(prev_vma->second, iter->second); vma_map.erase(iter); iter = prev_vma; } @@ -604,6 +857,57 @@ VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) { return iter; } +void VMManager::MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right) { + ASSERT(left.CanBeMergedWith(right)); + + // Always merge allocated memory blocks, even when they don't share the same backing block. + if (left.type == VMAType::AllocatedMemoryBlock && + (left.backing_block != right.backing_block || left.offset + left.size != right.offset)) { + // Check if we can save work. + if (left.offset == 0 && left.size == left.backing_block->size()) { + // Fast case: left is an entire backing block. + left.backing_block->insert(left.backing_block->end(), + right.backing_block->begin() + right.offset, + right.backing_block->begin() + right.offset + right.size); + } else { + // Slow case: make a new memory block for left and right. + auto new_memory = std::make_shared>(); + new_memory->insert(new_memory->end(), left.backing_block->begin() + left.offset, + left.backing_block->begin() + left.offset + left.size); + new_memory->insert(new_memory->end(), right.backing_block->begin() + right.offset, + right.backing_block->begin() + right.offset + right.size); + left.backing_block = new_memory; + left.offset = 0; + } + + // Page table update is needed, because backing memory changed. + left.size += right.size; + UpdatePageTableForVMA(left); + + // Update mappings for unicorn. + system.ArmInterface(0).UnmapMemory(left.base, left.size); + system.ArmInterface(1).UnmapMemory(left.base, left.size); + system.ArmInterface(2).UnmapMemory(left.base, left.size); + system.ArmInterface(3).UnmapMemory(left.base, left.size); + + system.ArmInterface(0).MapBackingMemory(left.base, left.size, + left.backing_block->data() + left.offset, + VMAPermission::ReadWriteExecute); + system.ArmInterface(1).MapBackingMemory(left.base, left.size, + left.backing_block->data() + left.offset, + VMAPermission::ReadWriteExecute); + system.ArmInterface(2).MapBackingMemory(left.base, left.size, + left.backing_block->data() + left.offset, + VMAPermission::ReadWriteExecute); + system.ArmInterface(3).MapBackingMemory(left.base, left.size, + left.backing_block->data() + left.offset, + VMAPermission::ReadWriteExecute); + } else { + // Just update the size. + left.size += right.size; + } +} + void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { switch (vma.type) { case VMAType::Free: diff --git a/src/core/hle/kernel/vm_manager.h b/src/core/hle/kernel/vm_manager.h index 9fe6ac3f4..16f40ad00 100644 --- a/src/core/hle/kernel/vm_manager.h +++ b/src/core/hle/kernel/vm_manager.h @@ -349,7 +349,8 @@ public: * @param state MemoryState tag to attach to the VMA. */ ResultVal MapMemoryBlock(VAddr target, std::shared_ptr> block, - std::size_t offset, u64 size, MemoryState state); + std::size_t offset, u64 size, MemoryState state, + VMAPermission perm = VMAPermission::ReadWrite); /** * Maps an unmanaged host memory pointer at a given address. @@ -450,6 +451,34 @@ public: /// ResultVal SetHeapSize(u64 size); + /// Maps memory at a given address. + /// + /// @param addr The virtual address to map memory at. + /// @param size The amount of memory to map. + /// + /// @note The destination address must lie within the Map region. + /// + /// @note This function requires SystemResourceSize is non-zero, + /// however, this is just because if it were not then the + /// resulting page tables could be exploited on hardware by + /// a malicious program. SystemResource usage does not need + /// to be explicitly checked or updated here. + ResultCode MapPhysicalMemory(VAddr target, u64 size); + + /// Unmaps memory at a given address. + /// + /// @param addr The virtual address to unmap memory at. + /// @param size The amount of memory to unmap. + /// + /// @note The destination address must lie within the Map region. + /// + /// @note This function requires SystemResourceSize is non-zero, + /// however, this is just because if it were not then the + /// resulting page tables could be exploited on hardware by + /// a malicious program. SystemResource usage does not need + /// to be explicitly checked or updated here. + ResultCode UnmapPhysicalMemory(VAddr target, u64 size); + /// Maps a region of memory as code memory. /// /// @param dst_address The base address of the region to create the aliasing memory region. @@ -657,6 +686,11 @@ private: */ VMAIter MergeAdjacent(VMAIter vma); + /** + * Merges two adjacent VMAs. + */ + void MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right); + /// Updates the pages corresponding to this VMA so they match the VMA's attributes. void UpdatePageTableForVMA(const VirtualMemoryArea& vma); @@ -742,6 +776,11 @@ private: // end of the range. This is essentially 'base_address + current_size'. VAddr heap_end = 0; + // The current amount of memory mapped via MapPhysicalMemory. + // This is used here (and in Nintendo's kernel) only for debugging, and does not impact + // any behavior. + u64 physical_memory_mapped = 0; + Core::System& system; }; } // namespace Kernel -- cgit v1.2.3