summaryrefslogtreecommitdiffstats
path: root/src/video_core
diff options
context:
space:
mode:
Diffstat (limited to 'src/video_core')
-rw-r--r--src/video_core/gpu.cpp2
-rw-r--r--src/video_core/memory_manager.cpp532
-rw-r--r--src/video_core/memory_manager.h172
-rw-r--r--src/video_core/renderer_opengl/gl_rasterizer.cpp13
-rw-r--r--src/video_core/renderer_vulkan/vk_blit_screen.cpp1
-rw-r--r--src/video_core/renderer_vulkan/vk_device.cpp3
-rw-r--r--src/video_core/renderer_vulkan/vk_pipeline_cache.cpp5
-rw-r--r--src/video_core/renderer_vulkan/vk_rasterizer.cpp9
-rw-r--r--src/video_core/renderer_vulkan/vk_sampler_cache.cpp1
-rw-r--r--src/video_core/renderer_vulkan/vk_texture_cache.cpp2
10 files changed, 227 insertions, 513 deletions
diff --git a/src/video_core/gpu.cpp b/src/video_core/gpu.cpp
index 8e19c3373..512578c8b 100644
--- a/src/video_core/gpu.cpp
+++ b/src/video_core/gpu.cpp
@@ -81,7 +81,7 @@ void GPU::WaitFence(u32 syncpoint_id, u32 value) {
}
MICROPROFILE_SCOPE(GPU_wait);
std::unique_lock lock{sync_mutex};
- sync_cv.wait(lock, [=]() { return syncpoints[syncpoint_id].load() >= value; });
+ sync_cv.wait(lock, [=, this] { return syncpoints[syncpoint_id].load() >= value; });
}
void GPU::IncrementSyncPoint(const u32 syncpoint_id) {
diff --git a/src/video_core/memory_manager.cpp b/src/video_core/memory_manager.cpp
index ff5505d12..844164645 100644
--- a/src/video_core/memory_manager.cpp
+++ b/src/video_core/memory_manager.cpp
@@ -4,7 +4,6 @@
#include "common/alignment.h"
#include "common/assert.h"
-#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/process.h"
@@ -16,121 +15,137 @@
namespace Tegra {
MemoryManager::MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
- : rasterizer{rasterizer}, system{system} {
- page_table.Resize(address_space_width, page_bits, false);
-
- // Initialize the map with a single free region covering the entire managed space.
- VirtualMemoryArea initial_vma;
- initial_vma.size = address_space_end;
- vma_map.emplace(initial_vma.base, initial_vma);
-
- UpdatePageTableForVMA(initial_vma);
-}
+ : system{system}, rasterizer{rasterizer}, page_table(page_table_size) {}
MemoryManager::~MemoryManager() = default;
-GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
- const u64 aligned_size{Common::AlignUp(size, page_size)};
- const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
-
- AllocateMemory(gpu_addr, 0, aligned_size);
-
+GPUVAddr MemoryManager::UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
+ u64 remaining_size{size};
+ for (u64 offset{}; offset < size; offset += page_size) {
+ if (remaining_size < page_size) {
+ SetPageEntry(gpu_addr + offset, page_entry + offset, remaining_size);
+ } else {
+ SetPageEntry(gpu_addr + offset, page_entry + offset);
+ }
+ remaining_size -= page_size;
+ }
return gpu_addr;
}
-GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
- const u64 aligned_size{Common::AlignUp(size, page_size)};
-
- AllocateMemory(gpu_addr, 0, aligned_size);
+GPUVAddr MemoryManager::Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size) {
+ return UpdateRange(gpu_addr, cpu_addr, size);
+}
- return gpu_addr;
+GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) {
+ return Map(cpu_addr, *FindFreeRange(size, align), size);
}
-GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
- const u64 aligned_size{Common::AlignUp(size, page_size)};
- const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
+void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
+ if (!size) {
+ return;
+ }
- MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr);
- ASSERT(
- system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
+ // Flush and invalidate through the GPU interface, to be asynchronous if possible.
+ system.GPU().FlushAndInvalidateRegion(*GpuToCpuAddress(gpu_addr), size);
- return gpu_addr;
+ UpdateRange(gpu_addr, PageEntry::State::Unmapped, size);
}
-GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
- ASSERT((gpu_addr & page_mask) == 0);
+std::optional<GPUVAddr> MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) {
+ for (u64 offset{}; offset < size; offset += page_size) {
+ if (!GetPageEntry(gpu_addr + offset).IsUnmapped()) {
+ return {};
+ }
+ }
- const u64 aligned_size{Common::AlignUp(size, page_size)};
+ return UpdateRange(gpu_addr, PageEntry::State::Allocated, size);
+}
- MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr);
- ASSERT(
- system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
- return gpu_addr;
+GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) {
+ return *AllocateFixed(*FindFreeRange(size, align), size);
}
-GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) {
- ASSERT((gpu_addr & page_mask) == 0);
+void MemoryManager::TryLockPage(PageEntry page_entry, std::size_t size) {
+ if (!page_entry.IsValid()) {
+ return;
+ }
- const u64 aligned_size{Common::AlignUp(size, page_size)};
- const auto cpu_addr = GpuToCpuAddress(gpu_addr);
- ASSERT(cpu_addr);
+ ASSERT(system.CurrentProcess()
+ ->PageTable()
+ .LockForDeviceAddressSpace(page_entry.ToAddress(), size)
+ .IsSuccess());
+}
- // Flush and invalidate through the GPU interface, to be asynchronous if possible.
- system.GPU().FlushAndInvalidateRegion(*cpu_addr, aligned_size);
+void MemoryManager::TryUnlockPage(PageEntry page_entry, std::size_t size) {
+ if (!page_entry.IsValid()) {
+ return;
+ }
- UnmapRange(gpu_addr, aligned_size);
ASSERT(system.CurrentProcess()
->PageTable()
- .UnlockForDeviceAddressSpace(cpu_addr.value(), size)
+ .UnlockForDeviceAddressSpace(page_entry.ToAddress(), size)
.IsSuccess());
-
- return gpu_addr;
}
-GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size) const {
- // Find the first Free VMA.
- const VMAHandle vma_handle{
- std::find_if(vma_map.begin(), vma_map.end(), [region_start, size](const auto& vma) {
- if (vma.second.type != VirtualMemoryArea::Type::Unmapped) {
- return false;
- }
+PageEntry MemoryManager::GetPageEntry(GPUVAddr gpu_addr) const {
+ return page_table[PageEntryIndex(gpu_addr)];
+}
- const VAddr vma_end{vma.second.base + vma.second.size};
- return vma_end > region_start && vma_end >= region_start + size;
- })};
+void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
+ // TODO(bunnei): We should lock/unlock device regions. This currently causes issues due to
+ // improper tracking, but should be fixed in the future.
- if (vma_handle == vma_map.end()) {
- return {};
- }
+ //// Unlock the old page
+ // TryUnlockPage(page_table[PageEntryIndex(gpu_addr)], size);
- return std::max(region_start, vma_handle->second.base);
-}
+ //// Lock the new page
+ // TryLockPage(page_entry, size);
-bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
- return (addr >> page_bits) < page_table.pointers.size();
+ page_table[PageEntryIndex(gpu_addr)] = page_entry;
}
-std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) const {
- if (!IsAddressValid(addr)) {
- return {};
+std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align) const {
+ if (!align) {
+ align = page_size;
+ } else {
+ align = Common::AlignUp(align, page_size);
}
- const VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]};
- if (cpu_addr) {
- return cpu_addr + (addr & page_mask);
+ u64 available_size{};
+ GPUVAddr gpu_addr{address_space_start};
+ while (gpu_addr + available_size < address_space_size) {
+ if (GetPageEntry(gpu_addr + available_size).IsUnmapped()) {
+ available_size += page_size;
+
+ if (available_size >= size) {
+ return gpu_addr;
+ }
+ } else {
+ gpu_addr += available_size + page_size;
+ available_size = 0;
+
+ const auto remainder{gpu_addr % align};
+ if (remainder) {
+ gpu_addr = (gpu_addr - remainder) + align;
+ }
+ }
}
return {};
}
-template <typename T>
-T MemoryManager::Read(GPUVAddr addr) const {
- if (!IsAddressValid(addr)) {
+std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
+ const auto page_entry{GetPageEntry(gpu_addr)};
+ if (!page_entry.IsValid()) {
return {};
}
- const u8* page_pointer{GetPointer(addr)};
- if (page_pointer) {
+ return page_entry.ToAddress() + (gpu_addr & page_mask);
+}
+
+template <typename T>
+T MemoryManager::Read(GPUVAddr addr) const {
+ if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, page_pointer, sizeof(T));
@@ -144,12 +159,7 @@ T MemoryManager::Read(GPUVAddr addr) const {
template <typename T>
void MemoryManager::Write(GPUVAddr addr, T data) {
- if (!IsAddressValid(addr)) {
- return;
- }
-
- u8* page_pointer{GetPointer(addr)};
- if (page_pointer) {
+ if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(page_pointer, &data, sizeof(T));
return;
@@ -167,66 +177,49 @@ template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
-u8* MemoryManager::GetPointer(GPUVAddr addr) {
- if (!IsAddressValid(addr)) {
+u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
+ if (!GetPageEntry(gpu_addr).IsValid()) {
return {};
}
- auto& memory = system.Memory();
-
- const VAddr page_addr{page_table.backing_addr[addr >> page_bits]};
-
- if (page_addr != 0) {
- return memory.GetPointer(page_addr + (addr & page_mask));
+ const auto address{GpuToCpuAddress(gpu_addr)};
+ if (!address) {
+ return {};
}
- LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
- return {};
+ return system.Memory().GetPointer(*address);
}
-const u8* MemoryManager::GetPointer(GPUVAddr addr) const {
- if (!IsAddressValid(addr)) {
+const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
+ if (!GetPageEntry(gpu_addr).IsValid()) {
return {};
}
- const auto& memory = system.Memory();
-
- const VAddr page_addr{page_table.backing_addr[addr >> page_bits]};
-
- if (page_addr != 0) {
- return memory.GetPointer(page_addr + (addr & page_mask));
+ const auto address{GpuToCpuAddress(gpu_addr)};
+ if (!address) {
+ return {};
}
- LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
- return {};
-}
-
-bool MemoryManager::IsBlockContinuous(const GPUVAddr start, const std::size_t size) const {
- const std::size_t inner_size = size - 1;
- const GPUVAddr end = start + inner_size;
- const auto host_ptr_start = reinterpret_cast<std::uintptr_t>(GetPointer(start));
- const auto host_ptr_end = reinterpret_cast<std::uintptr_t>(GetPointer(end));
- const auto range = static_cast<std::size_t>(host_ptr_end - host_ptr_start);
- return range == inner_size;
+ return system.Memory().GetPointer(*address);
}
-void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer,
- const std::size_t size) const {
+void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const {
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
- auto& memory = system.Memory();
-
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
- const VAddr src_addr{page_table.backing_addr[page_index] + page_offset};
- // Flush must happen on the rasterizer interface, such that memory is always synchronous
- // when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
- rasterizer.FlushRegion(src_addr, copy_amount);
- memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
+ if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
+ const auto src_addr{*page_addr + page_offset};
+
+ // Flush must happen on the rasterizer interface, such that memory is always synchronous
+ // when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
+ rasterizer.FlushRegion(src_addr, copy_amount);
+ system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
+ }
page_index++;
page_offset = 0;
@@ -241,18 +234,17 @@ void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
- auto& memory = system.Memory();
-
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
- const u8* page_pointer = page_table.pointers[page_index];
- if (page_pointer) {
- const VAddr src_addr{page_table.backing_addr[page_index] + page_offset};
- memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
+
+ if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
+ const auto src_addr{*page_addr + page_offset};
+ system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
} else {
std::memset(dest_buffer, 0, copy_amount);
}
+
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
@@ -260,23 +252,23 @@ void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
}
}
-void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer,
- const std::size_t size) {
+void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
- auto& memory = system.Memory();
-
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
- const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset};
- // Invalidate must happen on the rasterizer interface, such that memory is always
- // synchronous when it is written (even when in asynchronous GPU mode).
- rasterizer.InvalidateRegion(dest_addr, copy_amount);
- memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
+ if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
+ const auto dest_addr{*page_addr + page_offset};
+
+ // Invalidate must happen on the rasterizer interface, such that memory is always
+ // synchronous when it is written (even when in asynchronous GPU mode).
+ rasterizer.InvalidateRegion(dest_addr, copy_amount);
+ system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
+ }
page_index++;
page_offset = 0;
@@ -286,21 +278,20 @@ void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer,
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
- const std::size_t size) {
+ std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
- auto& memory = system.Memory();
-
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
- u8* page_pointer = page_table.pointers[page_index];
- if (page_pointer) {
- const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset};
- memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
+
+ if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
+ const auto dest_addr{*page_addr + page_offset};
+ system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
+
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
@@ -308,273 +299,26 @@ void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buf
}
}
-void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr,
- const std::size_t size) {
+void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlock(gpu_src_addr, tmp_buffer.data(), size);
WriteBlock(gpu_dest_addr, tmp_buffer.data(), size);
}
void MemoryManager::CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr,
- const std::size_t size) {
+ std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlockUnsafe(gpu_src_addr, tmp_buffer.data(), size);
WriteBlockUnsafe(gpu_dest_addr, tmp_buffer.data(), size);
}
bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) {
- const VAddr addr = page_table.backing_addr[gpu_addr >> page_bits];
- const std::size_t page = (addr & Core::Memory::PAGE_MASK) + size;
- return page <= Core::Memory::PAGE_SIZE;
-}
-
-void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
- VAddr backing_addr) {
- LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
- (base + size) * page_size);
-
- const VAddr end{base + size};
- ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
- base + page_table.pointers.size());
-
- if (memory == nullptr) {
- while (base != end) {
- page_table.pointers[base] = nullptr;
- page_table.backing_addr[base] = 0;
-
- base += 1;
- }
- } else {
- while (base != end) {
- page_table.pointers[base] = memory;
- page_table.backing_addr[base] = backing_addr;
-
- base += 1;
- memory += page_size;
- backing_addr += page_size;
- }
- }
-}
-
-void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
- ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
- ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
- MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
-}
-
-void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
- ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
- ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
- MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
-}
-
-bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
- ASSERT(base + size == next.base);
- if (type != next.type) {
- return {};
- }
- if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
- return {};
- }
- if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
- return {};
- }
- return true;
-}
-
-MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
- if (target >= address_space_end) {
- return vma_map.end();
- } else {
- return std::prev(vma_map.upper_bound(target));
- }
-}
-
-MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
- VirtualMemoryArea& vma{vma_handle->second};
-
- vma.type = VirtualMemoryArea::Type::Allocated;
- vma.backing_addr = 0;
- vma.backing_memory = {};
- UpdatePageTableForVMA(vma);
-
- return MergeAdjacent(vma_handle);
-}
-
-MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
- u64 size) {
-
- // This is the appropriately sized VMA that will turn into our allocation.
- VMAIter vma_handle{CarveVMA(target, size)};
- VirtualMemoryArea& vma{vma_handle->second};
-
- ASSERT(vma.size == size);
-
- vma.offset = offset;
-
- return Allocate(vma_handle);
-}
-
-MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
- VAddr backing_addr) {
- // This is the appropriately sized VMA that will turn into our allocation.
- VMAIter vma_handle{CarveVMA(target, size)};
- VirtualMemoryArea& vma{vma_handle->second};
-
- ASSERT(vma.size == size);
-
- vma.type = VirtualMemoryArea::Type::Mapped;
- vma.backing_memory = memory;
- vma.backing_addr = backing_addr;
- UpdatePageTableForVMA(vma);
-
- return MergeAdjacent(vma_handle);
-}
-
-void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
- VMAIter vma{CarveVMARange(target, size)};
- const VAddr target_end{target + size};
- const VMAIter end{vma_map.end()};
-
- // The comparison against the end of the range must be done using addresses since VMAs can be
- // merged during this process, causing invalidation of the iterators.
- while (vma != end && vma->second.base < target_end) {
- // Unmapped ranges return to allocated state and can be reused
- // This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
- vma = std::next(Allocate(vma));
- }
-
- ASSERT(FindVMA(target)->second.size >= size);
-}
-
-MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
- // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
- // non-const access to its container.
- return vma_map.erase(iter, iter); // Erases an empty range of elements
-}
-
-MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
- ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
- ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
-
- VMAIter vma_handle{StripIterConstness(FindVMA(base))};
- if (vma_handle == vma_map.end()) {
- // Target address is outside the managed range
- return {};
- }
-
- const VirtualMemoryArea& vma{vma_handle->second};
- if (vma.type == VirtualMemoryArea::Type::Mapped) {
- // Region is already allocated
- return vma_handle;
- }
-
- const VAddr start_in_vma{base - vma.base};
- const VAddr end_in_vma{start_in_vma + size};
-
- ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
- vma.size, end_in_vma);
-
- if (end_in_vma < vma.size) {
- // Split VMA at the end of the allocated region
- SplitVMA(vma_handle, end_in_vma);
- }
- if (start_in_vma != 0) {
- // Split VMA at the start of the allocated region
- vma_handle = SplitVMA(vma_handle, start_in_vma);
- }
-
- return vma_handle;
-}
-
-MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
- ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
- ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
-
- const VAddr target_end{target + size};
- ASSERT(target_end >= target);
- ASSERT(size > 0);
-
- VMAIter begin_vma{StripIterConstness(FindVMA(target))};
- const VMAIter i_end{vma_map.lower_bound(target_end)};
- if (std::any_of(begin_vma, i_end, [](const auto& entry) {
- return entry.second.type == VirtualMemoryArea::Type::Unmapped;
- })) {
+ const auto cpu_addr{GpuToCpuAddress(gpu_addr)};
+ if (!cpu_addr) {
return {};
}
-
- if (target != begin_vma->second.base) {
- begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
- }
-
- VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
- if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
- end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
- }
-
- return begin_vma;
-}
-
-MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
- VirtualMemoryArea& old_vma{vma_handle->second};
- VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
-
- // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
- // a bug. This restriction might be removed later.
- ASSERT(offset_in_vma < old_vma.size);
- ASSERT(offset_in_vma > 0);
-
- old_vma.size = offset_in_vma;
- new_vma.base += offset_in_vma;
- new_vma.size -= offset_in_vma;
-
- switch (new_vma.type) {
- case VirtualMemoryArea::Type::Unmapped:
- break;
- case VirtualMemoryArea::Type::Allocated:
- new_vma.offset += offset_in_vma;
- break;
- case VirtualMemoryArea::Type::Mapped:
- new_vma.backing_memory += offset_in_vma;
- break;
- }
-
- ASSERT(old_vma.CanBeMergedWith(new_vma));
-
- return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
-}
-
-MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
- const VMAIter next_vma{std::next(iter)};
- if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
- iter->second.size += next_vma->second.size;
- vma_map.erase(next_vma);
- }
-
- if (iter != vma_map.begin()) {
- VMAIter prev_vma{std::prev(iter)};
- if (prev_vma->second.CanBeMergedWith(iter->second)) {
- prev_vma->second.size += iter->second.size;
- vma_map.erase(iter);
- iter = prev_vma;
- }
- }
-
- return iter;
-}
-
-void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
- switch (vma.type) {
- case VirtualMemoryArea::Type::Unmapped:
- UnmapRegion(vma.base, vma.size);
- break;
- case VirtualMemoryArea::Type::Allocated:
- MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
- break;
- case VirtualMemoryArea::Type::Mapped:
- MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
- break;
- }
+ const std::size_t page{(*cpu_addr & Core::Memory::PAGE_MASK) + size};
+ return page <= Core::Memory::PAGE_SIZE;
}
} // namespace Tegra
diff --git a/src/video_core/memory_manager.h b/src/video_core/memory_manager.h
index 87658e87a..681bd9588 100644
--- a/src/video_core/memory_manager.h
+++ b/src/video_core/memory_manager.h
@@ -6,9 +6,9 @@
#include <map>
#include <optional>
+#include <vector>
#include "common/common_types.h"
-#include "common/page_table.h"
namespace VideoCore {
class RasterizerInterface;
@@ -20,45 +20,57 @@ class System;
namespace Tegra {
-/**
- * Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
- * with homogeneous attributes across its extents. In this particular implementation each VMA is
- * also backed by a single host memory allocation.
- */
-struct VirtualMemoryArea {
- enum class Type : u8 {
- Unmapped,
- Allocated,
- Mapped,
+class PageEntry final {
+public:
+ enum class State : u32 {
+ Unmapped = static_cast<u32>(-1),
+ Allocated = static_cast<u32>(-2),
};
- /// Virtual base address of the region.
- GPUVAddr base{};
- /// Size of the region.
- u64 size{};
- /// Memory area mapping type.
- Type type{Type::Unmapped};
- /// CPU memory mapped address corresponding to this memory area.
- VAddr backing_addr{};
- /// Offset into the backing_memory the mapping starts from.
- std::size_t offset{};
- /// Pointer backing this VMA.
- u8* backing_memory{};
-
- /// Tests if this area can be merged to the right with `next`.
- bool CanBeMergedWith(const VirtualMemoryArea& next) const;
+ constexpr PageEntry() = default;
+ constexpr PageEntry(State state) : state{state} {}
+ constexpr PageEntry(VAddr addr) : state{static_cast<State>(addr >> ShiftBits)} {}
+
+ constexpr bool IsUnmapped() const {
+ return state == State::Unmapped;
+ }
+
+ constexpr bool IsAllocated() const {
+ return state == State::Allocated;
+ }
+
+ constexpr bool IsValid() const {
+ return !IsUnmapped() && !IsAllocated();
+ }
+
+ constexpr VAddr ToAddress() const {
+ if (!IsValid()) {
+ return {};
+ }
+
+ return static_cast<VAddr>(state) << ShiftBits;
+ }
+
+ constexpr PageEntry operator+(u64 offset) {
+ // If this is a reserved value, offsets do not apply
+ if (!IsValid()) {
+ return *this;
+ }
+ return PageEntry{(static_cast<VAddr>(state) << ShiftBits) + offset};
+ }
+
+private:
+ static constexpr std::size_t ShiftBits{12};
+
+ State state{State::Unmapped};
};
+static_assert(sizeof(PageEntry) == 4, "PageEntry is too large");
class MemoryManager final {
public:
explicit MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer);
~MemoryManager();
- GPUVAddr AllocateSpace(u64 size, u64 align);
- GPUVAddr AllocateSpace(GPUVAddr addr, u64 size, u64 align);
- GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
- GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr addr, u64 size);
- GPUVAddr UnmapBuffer(GPUVAddr addr, u64 size);
std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
template <typename T>
@@ -70,9 +82,6 @@ public:
u8* GetPointer(GPUVAddr addr);
const u8* GetPointer(GPUVAddr addr) const;
- /// Returns true if the block is continuous in host memory, false otherwise
- bool IsBlockContinuous(GPUVAddr start, std::size_t size) const;
-
/**
* ReadBlock and WriteBlock are full read and write operations over virtual
* GPU Memory. It's important to use these when GPU memory may not be continuous
@@ -98,92 +107,43 @@ public:
void CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size);
/**
- * IsGranularRange checks if a gpu region can be simply read with a pointer
+ * IsGranularRange checks if a gpu region can be simply read with a pointer.
*/
bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size);
-private:
- using VMAMap = std::map<GPUVAddr, VirtualMemoryArea>;
- using VMAHandle = VMAMap::const_iterator;
- using VMAIter = VMAMap::iterator;
-
- bool IsAddressValid(GPUVAddr addr) const;
- void MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
- VAddr backing_addr = 0);
- void MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr);
- void UnmapRegion(GPUVAddr base, u64 size);
-
- /// Finds the VMA in which the given address is included in, or `vma_map.end()`.
- VMAHandle FindVMA(GPUVAddr target) const;
-
- VMAHandle AllocateMemory(GPUVAddr target, std::size_t offset, u64 size);
-
- /**
- * Maps an unmanaged host memory pointer at a given address.
- *
- * @param target The guest address to start the mapping at.
- * @param memory The memory to be mapped.
- * @param size Size of the mapping in bytes.
- * @param backing_addr The base address of the range to back this mapping.
- */
- VMAHandle MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr);
-
- /// Unmaps a range of addresses, splitting VMAs as necessary.
- void UnmapRange(GPUVAddr target, u64 size);
-
- /// Converts a VMAHandle to a mutable VMAIter.
- VMAIter StripIterConstness(const VMAHandle& iter);
-
- /// Marks as the specified VMA as allocated.
- VMAIter Allocate(VMAIter vma);
-
- /**
- * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
- * the appropriate error checking.
- */
- VMAIter CarveVMA(GPUVAddr base, u64 size);
-
- /**
- * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
- * end of the range.
- */
- VMAIter CarveVMARange(GPUVAddr base, u64 size);
-
- /**
- * Splits a VMA in two, at the specified offset.
- * @returns the right side of the split, with the original iterator becoming the left side.
- */
- VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
+ GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size);
+ GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
+ std::optional<GPUVAddr> AllocateFixed(GPUVAddr gpu_addr, std::size_t size);
+ GPUVAddr Allocate(std::size_t size, std::size_t align);
+ void Unmap(GPUVAddr gpu_addr, std::size_t size);
- /**
- * Checks for and merges the specified VMA with adjacent ones if possible.
- * @returns the merged VMA or the original if no merging was possible.
- */
- VMAIter MergeAdjacent(VMAIter vma);
+private:
+ PageEntry GetPageEntry(GPUVAddr gpu_addr) const;
+ void SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size = page_size);
+ GPUVAddr UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size);
+ std::optional<GPUVAddr> FindFreeRange(std::size_t size, std::size_t align) const;
- /// Updates the pages corresponding to this VMA so they match the VMA's attributes.
- void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
+ void TryLockPage(PageEntry page_entry, std::size_t size);
+ void TryUnlockPage(PageEntry page_entry, std::size_t size);
- /// Finds a free (unmapped region) of the specified size starting at the specified address.
- GPUVAddr FindFreeRegion(GPUVAddr region_start, u64 size) const;
+ static constexpr std::size_t PageEntryIndex(GPUVAddr gpu_addr) {
+ return (gpu_addr >> page_bits) & page_table_mask;
+ }
-private:
+ static constexpr u64 address_space_size = 1ULL << 40;
+ static constexpr u64 address_space_start = 1ULL << 32;
static constexpr u64 page_bits{16};
static constexpr u64 page_size{1 << page_bits};
static constexpr u64 page_mask{page_size - 1};
+ static constexpr u64 page_table_bits{24};
+ static constexpr u64 page_table_size{1 << page_table_bits};
+ static constexpr u64 page_table_mask{page_table_size - 1};
- /// Address space in bits, according to Tegra X1 TRM
- static constexpr u32 address_space_width{40};
- /// Start address for mapping, this is fairly arbitrary but must be non-zero.
- static constexpr GPUVAddr address_space_base{0x100000};
- /// End of address space, based on address space in bits.
- static constexpr GPUVAddr address_space_end{1ULL << address_space_width};
+ Core::System& system;
- Common::PageTable page_table;
- VMAMap vma_map;
VideoCore::RasterizerInterface& rasterizer;
- Core::System& system;
+ std::vector<PageEntry> page_table;
};
} // namespace Tegra
diff --git a/src/video_core/renderer_opengl/gl_rasterizer.cpp b/src/video_core/renderer_opengl/gl_rasterizer.cpp
index 03e82c599..cb284db77 100644
--- a/src/video_core/renderer_opengl/gl_rasterizer.cpp
+++ b/src/video_core/renderer_opengl/gl_rasterizer.cpp
@@ -178,16 +178,11 @@ RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWind
if (device.UseAsynchronousShaders()) {
// Max worker threads we should allow
- constexpr auto MAX_THREADS = 2u;
- // Amount of threads we should reserve for other parts of yuzu
- constexpr auto RESERVED_THREADS = 6u;
- // Get the amount of threads we can use(this can return zero)
- const auto cpu_thread_count =
- std::max(RESERVED_THREADS, std::thread::hardware_concurrency());
- // Deduce how many "extra" threads we have to use.
- const auto max_threads_unused = cpu_thread_count - RESERVED_THREADS;
+ constexpr u32 MAX_THREADS = 4;
+ // Deduce how many threads we can use
+ const u32 threads_used = std::thread::hardware_concurrency() / 4;
// Always allow at least 1 thread regardless of our settings
- const auto max_worker_count = std::max(1u, max_threads_unused);
+ const auto max_worker_count = std::max(1U, threads_used);
// Don't use more than MAX_THREADS
const auto worker_count = std::min(max_worker_count, MAX_THREADS);
async_shaders.AllocateWorkers(worker_count);
diff --git a/src/video_core/renderer_vulkan/vk_blit_screen.cpp b/src/video_core/renderer_vulkan/vk_blit_screen.cpp
index ce53e5a6b..a551e3de8 100644
--- a/src/video_core/renderer_vulkan/vk_blit_screen.cpp
+++ b/src/video_core/renderer_vulkan/vk_blit_screen.cpp
@@ -696,6 +696,7 @@ void VKBlitScreen::CreateFramebuffers() {
.flags = 0,
.renderPass = *renderpass,
.attachmentCount = 1,
+ .pAttachments = nullptr,
.width = size.width,
.height = size.height,
.layers = 1,
diff --git a/src/video_core/renderer_vulkan/vk_device.cpp b/src/video_core/renderer_vulkan/vk_device.cpp
index 6245e0d78..0c03e4d83 100644
--- a/src/video_core/renderer_vulkan/vk_device.cpp
+++ b/src/video_core/renderer_vulkan/vk_device.cpp
@@ -771,8 +771,9 @@ std::vector<VkDeviceQueueCreateInfo> VKDevice::GetDeviceQueueCreateInfos() const
.pNext = nullptr,
.flags = 0,
.queueFamilyIndex = queue_family,
+ .queueCount = 1,
+ .pQueuePriorities = nullptr,
});
- ci.queueCount = 1;
ci.pQueuePriorities = &QUEUE_PRIORITY;
}
diff --git a/src/video_core/renderer_vulkan/vk_pipeline_cache.cpp b/src/video_core/renderer_vulkan/vk_pipeline_cache.cpp
index 42b3a744c..418c62bc4 100644
--- a/src/video_core/renderer_vulkan/vk_pipeline_cache.cpp
+++ b/src/video_core/renderer_vulkan/vk_pipeline_cache.cpp
@@ -261,8 +261,13 @@ VKComputePipeline& VKPipelineCache::GetComputePipeline(const ComputePipelineCach
}
const Specialization specialization{
+ .base_binding = 0,
.workgroup_size = key.workgroup_size,
.shared_memory_size = key.shared_memory_size,
+ .point_size = std::nullopt,
+ .enabled_attributes = {},
+ .attribute_types = {},
+ .ndc_minus_one_to_one = false,
};
const SPIRVShader spirv_shader{Decompile(device, shader->GetIR(), ShaderType::Compute,
shader->GetRegistry(), specialization),
diff --git a/src/video_core/renderer_vulkan/vk_rasterizer.cpp b/src/video_core/renderer_vulkan/vk_rasterizer.cpp
index 2ed2004f0..7500e8244 100644
--- a/src/video_core/renderer_vulkan/vk_rasterizer.cpp
+++ b/src/video_core/renderer_vulkan/vk_rasterizer.cpp
@@ -815,8 +815,13 @@ bool RasterizerVulkan::WalkAttachmentOverlaps(const CachedSurfaceView& attachmen
std::tuple<VkFramebuffer, VkExtent2D> RasterizerVulkan::ConfigureFramebuffers(
VkRenderPass renderpass) {
- FramebufferCacheKey key{renderpass, std::numeric_limits<u32>::max(),
- std::numeric_limits<u32>::max(), std::numeric_limits<u32>::max()};
+ FramebufferCacheKey key{
+ .renderpass = renderpass,
+ .width = std::numeric_limits<u32>::max(),
+ .height = std::numeric_limits<u32>::max(),
+ .layers = std::numeric_limits<u32>::max(),
+ .views = {},
+ };
const auto try_push = [&key](const View& view) {
if (!view) {
diff --git a/src/video_core/renderer_vulkan/vk_sampler_cache.cpp b/src/video_core/renderer_vulkan/vk_sampler_cache.cpp
index 2d5460776..b068888f9 100644
--- a/src/video_core/renderer_vulkan/vk_sampler_cache.cpp
+++ b/src/video_core/renderer_vulkan/vk_sampler_cache.cpp
@@ -47,6 +47,7 @@ vk::Sampler VKSamplerCache::CreateSampler(const Tegra::Texture::TSCEntry& tsc) c
VkSamplerCustomBorderColorCreateInfoEXT border{
.sType = VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT,
.pNext = nullptr,
+ .customBorderColor = {},
.format = VK_FORMAT_UNDEFINED,
};
std::memcpy(&border.customBorderColor, color.data(), sizeof(color));
diff --git a/src/video_core/renderer_vulkan/vk_texture_cache.cpp b/src/video_core/renderer_vulkan/vk_texture_cache.cpp
index efd4bb13b..2c6f54101 100644
--- a/src/video_core/renderer_vulkan/vk_texture_cache.cpp
+++ b/src/video_core/renderer_vulkan/vk_texture_cache.cpp
@@ -473,6 +473,8 @@ VkImageView CachedSurfaceView::GetAttachment() {
.aspectMask = aspect_mask,
.baseMipLevel = base_level,
.levelCount = num_levels,
+ .baseArrayLayer = 0,
+ .layerCount = 0,
},
};
if (image_view_type == VK_IMAGE_VIEW_TYPE_3D) {