summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_scheduler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/k_scheduler.cpp')
-rw-r--r--src/core/hle/kernel/k_scheduler.cpp814
1 files changed, 814 insertions, 0 deletions
diff --git a/src/core/hle/kernel/k_scheduler.cpp b/src/core/hle/kernel/k_scheduler.cpp
new file mode 100644
index 000000000..bb5f43b53
--- /dev/null
+++ b/src/core/hle/kernel/k_scheduler.cpp
@@ -0,0 +1,814 @@
+// Copyright 2020 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+// This file references various implementation details from Atmosphere, an open-source firmware for
+// the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.
+
+#include <bit>
+
+#include "common/assert.h"
+#include "common/bit_util.h"
+#include "common/fiber.h"
+#include "common/logging/log.h"
+#include "core/arm/arm_interface.h"
+#include "core/core.h"
+#include "core/core_timing.h"
+#include "core/cpu_manager.h"
+#include "core/hle/kernel/k_scheduler.h"
+#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
+#include "core/hle/kernel/k_thread.h"
+#include "core/hle/kernel/kernel.h"
+#include "core/hle/kernel/physical_core.h"
+#include "core/hle/kernel/process.h"
+#include "core/hle/kernel/time_manager.h"
+
+namespace Kernel {
+
+static void IncrementScheduledCount(Kernel::KThread* thread) {
+ if (auto process = thread->GetOwnerProcess(); process) {
+ process->IncrementScheduledCount();
+ }
+}
+
+void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule) {
+ auto scheduler = kernel.CurrentScheduler();
+
+ u32 current_core{0xF};
+ bool must_context_switch{};
+ if (scheduler) {
+ current_core = scheduler->core_id;
+ // TODO(bunnei): Should be set to true when we deprecate single core
+ must_context_switch = !kernel.IsPhantomModeForSingleCore();
+ }
+
+ while (cores_pending_reschedule != 0) {
+ const auto core = static_cast<u32>(std::countr_zero(cores_pending_reschedule));
+ ASSERT(core < Core::Hardware::NUM_CPU_CORES);
+ if (!must_context_switch || core != current_core) {
+ auto& phys_core = kernel.PhysicalCore(core);
+ phys_core.Interrupt();
+ } else {
+ must_context_switch = true;
+ }
+ cores_pending_reschedule &= ~(1ULL << core);
+ }
+ if (must_context_switch) {
+ auto core_scheduler = kernel.CurrentScheduler();
+ kernel.ExitSVCProfile();
+ core_scheduler->RescheduleCurrentCore();
+ kernel.EnterSVCProfile();
+ }
+}
+
+u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
+ std::scoped_lock lock{guard};
+ if (KThread* prev_highest_thread = state.highest_priority_thread;
+ prev_highest_thread != highest_thread) {
+ if (prev_highest_thread != nullptr) {
+ IncrementScheduledCount(prev_highest_thread);
+ prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks());
+ }
+ if (state.should_count_idle) {
+ if (highest_thread != nullptr) {
+ if (Process* process = highest_thread->GetOwnerProcess(); process != nullptr) {
+ process->SetRunningThread(core_id, highest_thread, state.idle_count);
+ }
+ } else {
+ state.idle_count++;
+ }
+ }
+
+ state.highest_priority_thread = highest_thread;
+ state.needs_scheduling.store(true);
+ return (1ULL << core_id);
+ } else {
+ return 0;
+ }
+}
+
+u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
+ ASSERT(kernel.GlobalSchedulerContext().IsLocked());
+
+ // Clear that we need to update.
+ ClearSchedulerUpdateNeeded(kernel);
+
+ u64 cores_needing_scheduling = 0, idle_cores = 0;
+ KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
+ auto& priority_queue = GetPriorityQueue(kernel);
+
+ /// We want to go over all cores, finding the highest priority thread and determining if
+ /// scheduling is needed for that core.
+ for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
+ KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
+ if (top_thread != nullptr) {
+ // If the thread has no waiters, we need to check if the process has a thread pinned.
+ if (top_thread->GetNumKernelWaiters() == 0) {
+ if (Process* parent = top_thread->GetOwnerProcess(); parent != nullptr) {
+ if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
+ pinned != nullptr && pinned != top_thread) {
+ // We prefer our parent's pinned thread if possible. However, we also don't
+ // want to schedule un-runnable threads.
+ if (pinned->GetRawState() == ThreadState::Runnable) {
+ top_thread = pinned;
+ } else {
+ top_thread = nullptr;
+ }
+ }
+ }
+ }
+ } else {
+ idle_cores |= (1ULL << core_id);
+ }
+
+ top_threads[core_id] = top_thread;
+ cores_needing_scheduling |=
+ kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
+ }
+
+ // Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
+ while (idle_cores != 0) {
+ const auto core_id = static_cast<u32>(std::countr_zero(idle_cores));
+ if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
+ s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
+ size_t num_candidates = 0;
+
+ // While we have a suggested thread, try to migrate it!
+ while (suggested != nullptr) {
+ // Check if the suggested thread is the top thread on its core.
+ const s32 suggested_core = suggested->GetActiveCore();
+ if (KThread* top_thread =
+ (suggested_core >= 0) ? top_threads[suggested_core] : nullptr;
+ top_thread != suggested) {
+ // Make sure we're not dealing with threads too high priority for migration.
+ if (top_thread != nullptr &&
+ top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) {
+ break;
+ }
+
+ // The suggested thread isn't bound to its core, so we can migrate it!
+ suggested->SetActiveCore(core_id);
+ priority_queue.ChangeCore(suggested_core, suggested);
+
+ top_threads[core_id] = suggested;
+ cores_needing_scheduling |=
+ kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
+ break;
+ }
+
+ // Note this core as a candidate for migration.
+ ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES);
+ migration_candidates[num_candidates++] = suggested_core;
+ suggested = priority_queue.GetSuggestedNext(core_id, suggested);
+ }
+
+ // If suggested is nullptr, we failed to migrate a specific thread. So let's try all our
+ // candidate cores' top threads.
+ if (suggested == nullptr) {
+ for (size_t i = 0; i < num_candidates; i++) {
+ // Check if there's some other thread that can run on the candidate core.
+ const s32 candidate_core = migration_candidates[i];
+ suggested = top_threads[candidate_core];
+ if (KThread* next_on_candidate_core =
+ priority_queue.GetScheduledNext(candidate_core, suggested);
+ next_on_candidate_core != nullptr) {
+ // The candidate core can run some other thread! We'll migrate its current
+ // top thread to us.
+ top_threads[candidate_core] = next_on_candidate_core;
+ cores_needing_scheduling |=
+ kernel.Scheduler(candidate_core)
+ .UpdateHighestPriorityThread(top_threads[candidate_core]);
+
+ // Perform the migration.
+ suggested->SetActiveCore(core_id);
+ priority_queue.ChangeCore(candidate_core, suggested);
+
+ top_threads[core_id] = suggested;
+ cores_needing_scheduling |=
+ kernel.Scheduler(core_id).UpdateHighestPriorityThread(
+ top_threads[core_id]);
+ break;
+ }
+ }
+ }
+ }
+
+ idle_cores &= ~(1ULL << core_id);
+ }
+
+ return cores_needing_scheduling;
+}
+
+void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
+ ASSERT(kernel.GlobalSchedulerContext().IsLocked());
+ for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
+ // Get an atomic reference to the core scheduler's previous thread.
+ std::atomic_ref<KThread*> prev_thread(kernel.Scheduler(static_cast<s32>(i)).prev_thread);
+ static_assert(std::atomic_ref<KThread*>::is_always_lock_free);
+
+ // Atomically clear the previous thread if it's our target.
+ KThread* compare = thread;
+ prev_thread.compare_exchange_strong(compare, nullptr);
+ }
+}
+
+void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
+ ASSERT(kernel.GlobalSchedulerContext().IsLocked());
+
+ // Check if the state has changed, because if it hasn't there's nothing to do.
+ const auto cur_state = thread->GetRawState();
+ if (cur_state == old_state) {
+ return;
+ }
+
+ // Update the priority queues.
+ if (old_state == ThreadState::Runnable) {
+ // If we were previously runnable, then we're not runnable now, and we should remove.
+ GetPriorityQueue(kernel).Remove(thread);
+ IncrementScheduledCount(thread);
+ SetSchedulerUpdateNeeded(kernel);
+ } else if (cur_state == ThreadState::Runnable) {
+ // If we're now runnable, then we weren't previously, and we should add.
+ GetPriorityQueue(kernel).PushBack(thread);
+ IncrementScheduledCount(thread);
+ SetSchedulerUpdateNeeded(kernel);
+ }
+}
+
+void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
+ ASSERT(kernel.GlobalSchedulerContext().IsLocked());
+
+ // If the thread is runnable, we want to change its priority in the queue.
+ if (thread->GetRawState() == ThreadState::Runnable) {
+ GetPriorityQueue(kernel).ChangePriority(
+ old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread);
+ IncrementScheduledCount(thread);
+ SetSchedulerUpdateNeeded(kernel);
+ }
+}
+
+void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
+ const KAffinityMask& old_affinity, s32 old_core) {
+ ASSERT(kernel.GlobalSchedulerContext().IsLocked());
+
+ // If the thread is runnable, we want to change its affinity in the queue.
+ if (thread->GetRawState() == ThreadState::Runnable) {
+ GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
+ IncrementScheduledCount(thread);
+ SetSchedulerUpdateNeeded(kernel);
+ }
+}
+
+void KScheduler::RotateScheduledQueue(s32 core_id, s32 priority) {
+ ASSERT(system.GlobalSchedulerContext().IsLocked());
+
+ // Get a reference to the priority queue.
+ auto& kernel = system.Kernel();
+ auto& priority_queue = GetPriorityQueue(kernel);
+
+ // Rotate the front of the queue to the end.
+ KThread* top_thread = priority_queue.GetScheduledFront(core_id, priority);
+ KThread* next_thread = nullptr;
+ if (top_thread != nullptr) {
+ next_thread = priority_queue.MoveToScheduledBack(top_thread);
+ if (next_thread != top_thread) {
+ IncrementScheduledCount(top_thread);
+ IncrementScheduledCount(next_thread);
+ }
+ }
+
+ // While we have a suggested thread, try to migrate it!
+ {
+ KThread* suggested = priority_queue.GetSuggestedFront(core_id, priority);
+ while (suggested != nullptr) {
+ // Check if the suggested thread is the top thread on its core.
+ const s32 suggested_core = suggested->GetActiveCore();
+ if (KThread* top_on_suggested_core =
+ (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
+ : nullptr;
+ top_on_suggested_core != suggested) {
+ // If the next thread is a new thread that has been waiting longer than our
+ // suggestion, we prefer it to our suggestion.
+ if (top_thread != next_thread && next_thread != nullptr &&
+ next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) {
+ suggested = nullptr;
+ break;
+ }
+
+ // If we're allowed to do a migration, do one.
+ // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion
+ // to the front of the queue.
+ if (top_on_suggested_core == nullptr ||
+ top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
+ suggested->SetActiveCore(core_id);
+ priority_queue.ChangeCore(suggested_core, suggested, true);
+ IncrementScheduledCount(suggested);
+ break;
+ }
+ }
+
+ // Get the next suggestion.
+ suggested = priority_queue.GetSamePriorityNext(core_id, suggested);
+ }
+ }
+
+ // Now that we might have migrated a thread with the same priority, check if we can do better.
+
+ {
+ KThread* best_thread = priority_queue.GetScheduledFront(core_id);
+ if (best_thread == GetCurrentThread()) {
+ best_thread = priority_queue.GetScheduledNext(core_id, best_thread);
+ }
+
+ // If the best thread we can choose has a priority the same or worse than ours, try to
+ // migrate a higher priority thread.
+ if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
+ KThread* suggested = priority_queue.GetSuggestedFront(core_id);
+ while (suggested != nullptr) {
+ // If the suggestion's priority is the same as ours, don't bother.
+ if (suggested->GetPriority() >= best_thread->GetPriority()) {
+ break;
+ }
+
+ // Check if the suggested thread is the top thread on its core.
+ const s32 suggested_core = suggested->GetActiveCore();
+ if (KThread* top_on_suggested_core =
+ (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
+ : nullptr;
+ top_on_suggested_core != suggested) {
+ // If we're allowed to do a migration, do one.
+ // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
+ // suggestion to the front of the queue.
+ if (top_on_suggested_core == nullptr ||
+ top_on_suggested_core->GetPriority() >=
+ HighestCoreMigrationAllowedPriority) {
+ suggested->SetActiveCore(core_id);
+ priority_queue.ChangeCore(suggested_core, suggested, true);
+ IncrementScheduledCount(suggested);
+ break;
+ }
+ }
+
+ // Get the next suggestion.
+ suggested = priority_queue.GetSuggestedNext(core_id, suggested);
+ }
+ }
+ }
+
+ // After a rotation, we need a scheduler update.
+ SetSchedulerUpdateNeeded(kernel);
+}
+
+bool KScheduler::CanSchedule(KernelCore& kernel) {
+ return kernel.CurrentScheduler()->GetCurrentThread()->GetDisableDispatchCount() <= 1;
+}
+
+bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
+ return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire);
+}
+
+void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) {
+ kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release);
+}
+
+void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
+ kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release);
+}
+
+void KScheduler::DisableScheduling(KernelCore& kernel) {
+ if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
+ ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 0);
+ scheduler->GetCurrentThread()->DisableDispatch();
+ }
+}
+
+void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
+ if (auto* scheduler = kernel.CurrentScheduler(); scheduler) {
+ ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1);
+ if (scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1) {
+ scheduler->GetCurrentThread()->EnableDispatch();
+ }
+ }
+ RescheduleCores(kernel, cores_needing_scheduling);
+}
+
+u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
+ if (IsSchedulerUpdateNeeded(kernel)) {
+ return UpdateHighestPriorityThreadsImpl(kernel);
+ } else {
+ return 0;
+ }
+}
+
+KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) {
+ return kernel.GlobalSchedulerContext().priority_queue;
+}
+
+void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
+ // Validate preconditions.
+ ASSERT(CanSchedule(kernel));
+ ASSERT(kernel.CurrentProcess() != nullptr);
+
+ // Get the current thread and process.
+ KThread& cur_thread = Kernel::GetCurrentThread(kernel);
+ Process& cur_process = *kernel.CurrentProcess();
+
+ // If the thread's yield count matches, there's nothing for us to do.
+ if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
+ return;
+ }
+
+ // Get a reference to the priority queue.
+ auto& priority_queue = GetPriorityQueue(kernel);
+
+ // Perform the yield.
+ {
+ KScopedSchedulerLock lock(kernel);
+
+ const auto cur_state = cur_thread.GetRawState();
+ if (cur_state == ThreadState::Runnable) {
+ // Put the current thread at the back of the queue.
+ KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
+ IncrementScheduledCount(std::addressof(cur_thread));
+
+ // If the next thread is different, we have an update to perform.
+ if (next_thread != std::addressof(cur_thread)) {
+ SetSchedulerUpdateNeeded(kernel);
+ } else {
+ // Otherwise, set the thread's yield count so that we won't waste work until the
+ // process is scheduled again.
+ cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
+ }
+ }
+ }
+}
+
+void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
+ // Validate preconditions.
+ ASSERT(CanSchedule(kernel));
+ ASSERT(kernel.CurrentProcess() != nullptr);
+
+ // Get the current thread and process.
+ KThread& cur_thread = Kernel::GetCurrentThread(kernel);
+ Process& cur_process = *kernel.CurrentProcess();
+
+ // If the thread's yield count matches, there's nothing for us to do.
+ if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
+ return;
+ }
+
+ // Get a reference to the priority queue.
+ auto& priority_queue = GetPriorityQueue(kernel);
+
+ // Perform the yield.
+ {
+ KScopedSchedulerLock lock(kernel);
+
+ const auto cur_state = cur_thread.GetRawState();
+ if (cur_state == ThreadState::Runnable) {
+ // Get the current active core.
+ const s32 core_id = cur_thread.GetActiveCore();
+
+ // Put the current thread at the back of the queue.
+ KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
+ IncrementScheduledCount(std::addressof(cur_thread));
+
+ // While we have a suggested thread, try to migrate it!
+ bool recheck = false;
+ KThread* suggested = priority_queue.GetSuggestedFront(core_id);
+ while (suggested != nullptr) {
+ // Check if the suggested thread is the thread running on its core.
+ const s32 suggested_core = suggested->GetActiveCore();
+
+ if (KThread* running_on_suggested_core =
+ (suggested_core >= 0)
+ ? kernel.Scheduler(suggested_core).state.highest_priority_thread
+ : nullptr;
+ running_on_suggested_core != suggested) {
+ // If the current thread's priority is higher than our suggestion's we prefer
+ // the next thread to the suggestion. We also prefer the next thread when the
+ // current thread's priority is equal to the suggestions, but the next thread
+ // has been waiting longer.
+ if ((suggested->GetPriority() > cur_thread.GetPriority()) ||
+ (suggested->GetPriority() == cur_thread.GetPriority() &&
+ next_thread != std::addressof(cur_thread) &&
+ next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) {
+ suggested = nullptr;
+ break;
+ }
+
+ // If we're allowed to do a migration, do one.
+ // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
+ // suggestion to the front of the queue.
+ if (running_on_suggested_core == nullptr ||
+ running_on_suggested_core->GetPriority() >=
+ HighestCoreMigrationAllowedPriority) {
+ suggested->SetActiveCore(core_id);
+ priority_queue.ChangeCore(suggested_core, suggested, true);
+ IncrementScheduledCount(suggested);
+ break;
+ } else {
+ // We couldn't perform a migration, but we should check again on a future
+ // yield.
+ recheck = true;
+ }
+ }
+
+ // Get the next suggestion.
+ suggested = priority_queue.GetSuggestedNext(core_id, suggested);
+ }
+
+ // If we still have a suggestion or the next thread is different, we have an update to
+ // perform.
+ if (suggested != nullptr || next_thread != std::addressof(cur_thread)) {
+ SetSchedulerUpdateNeeded(kernel);
+ } else if (!recheck) {
+ // Otherwise if we don't need to re-check, set the thread's yield count so that we
+ // won't waste work until the process is scheduled again.
+ cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
+ }
+ }
+ }
+}
+
+void KScheduler::YieldToAnyThread(KernelCore& kernel) {
+ // Validate preconditions.
+ ASSERT(CanSchedule(kernel));
+ ASSERT(kernel.CurrentProcess() != nullptr);
+
+ // Get the current thread and process.
+ KThread& cur_thread = Kernel::GetCurrentThread(kernel);
+ Process& cur_process = *kernel.CurrentProcess();
+
+ // If the thread's yield count matches, there's nothing for us to do.
+ if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
+ return;
+ }
+
+ // Get a reference to the priority queue.
+ auto& priority_queue = GetPriorityQueue(kernel);
+
+ // Perform the yield.
+ {
+ KScopedSchedulerLock lock(kernel);
+
+ const auto cur_state = cur_thread.GetRawState();
+ if (cur_state == ThreadState::Runnable) {
+ // Get the current active core.
+ const s32 core_id = cur_thread.GetActiveCore();
+
+ // Migrate the current thread to core -1.
+ cur_thread.SetActiveCore(-1);
+ priority_queue.ChangeCore(core_id, std::addressof(cur_thread));
+ IncrementScheduledCount(std::addressof(cur_thread));
+
+ // If there's nothing scheduled, we can try to perform a migration.
+ if (priority_queue.GetScheduledFront(core_id) == nullptr) {
+ // While we have a suggested thread, try to migrate it!
+ KThread* suggested = priority_queue.GetSuggestedFront(core_id);
+ while (suggested != nullptr) {
+ // Check if the suggested thread is the top thread on its core.
+ const s32 suggested_core = suggested->GetActiveCore();
+ if (KThread* top_on_suggested_core =
+ (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
+ : nullptr;
+ top_on_suggested_core != suggested) {
+ // If we're allowed to do a migration, do one.
+ if (top_on_suggested_core == nullptr ||
+ top_on_suggested_core->GetPriority() >=
+ HighestCoreMigrationAllowedPriority) {
+ suggested->SetActiveCore(core_id);
+ priority_queue.ChangeCore(suggested_core, suggested);
+ IncrementScheduledCount(suggested);
+ }
+
+ // Regardless of whether we migrated, we had a candidate, so we're done.
+ break;
+ }
+
+ // Get the next suggestion.
+ suggested = priority_queue.GetSuggestedNext(core_id, suggested);
+ }
+
+ // If the suggestion is different from the current thread, we need to perform an
+ // update.
+ if (suggested != std::addressof(cur_thread)) {
+ SetSchedulerUpdateNeeded(kernel);
+ } else {
+ // Otherwise, set the thread's yield count so that we won't waste work until the
+ // process is scheduled again.
+ cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
+ }
+ } else {
+ // Otherwise, we have an update to perform.
+ SetSchedulerUpdateNeeded(kernel);
+ }
+ }
+ }
+}
+
+KScheduler::KScheduler(Core::System& system, s32 core_id) : system(system), core_id(core_id) {
+ switch_fiber = std::make_shared<Common::Fiber>(OnSwitch, this);
+ state.needs_scheduling.store(true);
+ state.interrupt_task_thread_runnable = false;
+ state.should_count_idle = false;
+ state.idle_count = 0;
+ state.idle_thread_stack = nullptr;
+ state.highest_priority_thread = nullptr;
+}
+
+KScheduler::~KScheduler() = default;
+
+KThread* KScheduler::GetCurrentThread() const {
+ if (auto result = current_thread.load(); result) {
+ return result;
+ }
+ return idle_thread;
+}
+
+u64 KScheduler::GetLastContextSwitchTicks() const {
+ return last_context_switch_time;
+}
+
+void KScheduler::RescheduleCurrentCore() {
+ ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1);
+
+ auto& phys_core = system.Kernel().PhysicalCore(core_id);
+ if (phys_core.IsInterrupted()) {
+ phys_core.ClearInterrupt();
+ }
+ guard.lock();
+ if (state.needs_scheduling.load()) {
+ Schedule();
+ } else {
+ guard.unlock();
+ }
+}
+
+void KScheduler::OnThreadStart() {
+ SwitchContextStep2();
+}
+
+void KScheduler::Unload(KThread* thread) {
+ LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
+
+ if (thread) {
+ if (thread->IsCallingSvc()) {
+ system.ArmInterface(core_id).ExceptionalExit();
+ thread->ClearIsCallingSvc();
+ }
+ if (!thread->IsTerminationRequested()) {
+ prev_thread = thread;
+
+ Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
+ cpu_core.SaveContext(thread->GetContext32());
+ cpu_core.SaveContext(thread->GetContext64());
+ // Save the TPIDR_EL0 system register in case it was modified.
+ thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
+ cpu_core.ClearExclusiveState();
+ } else {
+ prev_thread = nullptr;
+ }
+ thread->context_guard.unlock();
+ }
+}
+
+void KScheduler::Reload(KThread* thread) {
+ LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread ? thread->GetName() : "nullptr");
+
+ if (thread) {
+ ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
+
+ auto* const thread_owner_process = thread->GetOwnerProcess();
+ if (thread_owner_process != nullptr) {
+ system.Kernel().MakeCurrentProcess(thread_owner_process);
+ }
+
+ Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
+ cpu_core.LoadContext(thread->GetContext32());
+ cpu_core.LoadContext(thread->GetContext64());
+ cpu_core.SetTlsAddress(thread->GetTLSAddress());
+ cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
+ cpu_core.ClearExclusiveState();
+ }
+}
+
+void KScheduler::SwitchContextStep2() {
+ // Load context of new thread
+ Reload(current_thread.load());
+
+ RescheduleCurrentCore();
+}
+
+void KScheduler::ScheduleImpl() {
+ KThread* previous_thread = current_thread.load();
+ KThread* next_thread = state.highest_priority_thread;
+
+ state.needs_scheduling = false;
+
+ // We never want to schedule a null thread, so use the idle thread if we don't have a next.
+ if (next_thread == nullptr) {
+ next_thread = idle_thread;
+ }
+
+ // If we're not actually switching thread, there's nothing to do.
+ if (next_thread == current_thread.load()) {
+ guard.unlock();
+ return;
+ }
+
+ current_thread.store(next_thread);
+
+ Process* const previous_process = system.Kernel().CurrentProcess();
+
+ UpdateLastContextSwitchTime(previous_thread, previous_process);
+
+ // Save context for previous thread
+ Unload(previous_thread);
+
+ std::shared_ptr<Common::Fiber>* old_context;
+ if (previous_thread != nullptr) {
+ old_context = &previous_thread->GetHostContext();
+ } else {
+ old_context = &idle_thread->GetHostContext();
+ }
+ guard.unlock();
+
+ Common::Fiber::YieldTo(*old_context, switch_fiber);
+ /// When a thread wakes up, the scheduler may have changed to other in another core.
+ auto& next_scheduler = *system.Kernel().CurrentScheduler();
+ next_scheduler.SwitchContextStep2();
+}
+
+void KScheduler::OnSwitch(void* this_scheduler) {
+ KScheduler* sched = static_cast<KScheduler*>(this_scheduler);
+ sched->SwitchToCurrent();
+}
+
+void KScheduler::SwitchToCurrent() {
+ while (true) {
+ {
+ std::scoped_lock lock{guard};
+ current_thread.store(state.highest_priority_thread);
+ state.needs_scheduling.store(false);
+ }
+ const auto is_switch_pending = [this] {
+ std::scoped_lock lock{guard};
+ return state.needs_scheduling.load();
+ };
+ do {
+ auto next_thread = current_thread.load();
+ if (next_thread != nullptr) {
+ next_thread->context_guard.lock();
+ if (next_thread->GetRawState() != ThreadState::Runnable) {
+ next_thread->context_guard.unlock();
+ break;
+ }
+ if (next_thread->GetActiveCore() != core_id) {
+ next_thread->context_guard.unlock();
+ break;
+ }
+ }
+ std::shared_ptr<Common::Fiber>* next_context;
+ if (next_thread != nullptr) {
+ next_context = &next_thread->GetHostContext();
+ } else {
+ next_context = &idle_thread->GetHostContext();
+ }
+ Common::Fiber::YieldTo(switch_fiber, *next_context);
+ } while (!is_switch_pending());
+ }
+}
+
+void KScheduler::UpdateLastContextSwitchTime(KThread* thread, Process* process) {
+ const u64 prev_switch_ticks = last_context_switch_time;
+ const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
+ const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
+
+ if (thread != nullptr) {
+ thread->AddCpuTime(core_id, update_ticks);
+ }
+
+ if (process != nullptr) {
+ process->UpdateCPUTimeTicks(update_ticks);
+ }
+
+ last_context_switch_time = most_recent_switch_ticks;
+}
+
+void KScheduler::Initialize() {
+ std::string name = "Idle Thread Id:" + std::to_string(core_id);
+ std::function<void(void*)> init_func = Core::CpuManager::GetIdleThreadStartFunc();
+ void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
+ auto thread_res = KThread::Create(system, ThreadType::Main, name, 0,
+ KThread::IdleThreadPriority, 0, static_cast<u32>(core_id), 0,
+ nullptr, std::move(init_func), init_func_parameter);
+ idle_thread = thread_res.Unwrap().get();
+}
+
+KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel)
+ : KScopedLock(kernel.GlobalSchedulerContext().SchedulerLock()) {}
+
+KScopedSchedulerLock::~KScopedSchedulerLock() = default;
+
+} // namespace Kernel