summaryrefslogtreecommitdiffstats
path: root/src/common
diff options
context:
space:
mode:
Diffstat (limited to 'src/common')
-rw-r--r--src/common/color.h18
-rw-r--r--src/common/common_funcs.h12
-rw-r--r--src/common/file_util.h2
-rw-r--r--src/common/x64/emitter.cpp746
-rw-r--r--src/common/x64/emitter.h849
5 files changed, 801 insertions, 826 deletions
diff --git a/src/common/color.h b/src/common/color.h
index 9dafdca0c..eb199e308 100644
--- a/src/common/color.h
+++ b/src/common/color.h
@@ -69,6 +69,15 @@ inline const Math::Vec4<u8> DecodeRGB8(const u8* bytes) {
}
/**
+ * Decode a color stored in RG8 (aka HILO8) format
+ * @param bytes Pointer to encoded source color
+ * @return Result color decoded as Math::Vec4<u8>
+ */
+inline const Math::Vec4<u8> DecodeRG8(const u8* bytes) {
+ return { bytes[1], bytes[0], 0, 255 };
+}
+
+/**
* Decode a color stored in RGB565 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
@@ -152,6 +161,15 @@ inline void EncodeRGB8(const Math::Vec4<u8>& color, u8* bytes) {
}
/**
+ * Encode a color as RG8 (aka HILO8) format
+ * @param color Source color to encode
+ * @param bytes Destination pointer to store encoded color
+ */
+inline void EncodeRG8(const Math::Vec4<u8>& color, u8* bytes) {
+ bytes[1] = color.r();
+ bytes[0] = color.g();
+}
+/**
* Encode a color as RGB565 format
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
diff --git a/src/common/common_funcs.h b/src/common/common_funcs.h
index 88e452a16..ed20c3629 100644
--- a/src/common/common_funcs.h
+++ b/src/common/common_funcs.h
@@ -45,14 +45,20 @@
// GCC 4.8 defines all the rotate functions now
// Small issue with GCC's lrotl/lrotr intrinsics is they are still 32bit while we require 64bit
-#ifndef _rotl
-inline u32 _rotl(u32 x, int shift) {
+#ifdef _rotl
+#define rotl _rotl
+#else
+inline u32 rotl(u32 x, int shift) {
shift &= 31;
if (!shift) return x;
return (x << shift) | (x >> (32 - shift));
}
+#endif
-inline u32 _rotr(u32 x, int shift) {
+#ifdef _rotr
+#define rotr _rotr
+#else
+inline u32 rotr(u32 x, int shift) {
shift &= 31;
if (!shift) return x;
return (x >> shift) | (x << (32 - shift));
diff --git a/src/common/file_util.h b/src/common/file_util.h
index d0dccdf69..e71a9b2fa 100644
--- a/src/common/file_util.h
+++ b/src/common/file_util.h
@@ -244,7 +244,7 @@ private:
template <typename T>
void OpenFStream(T& fstream, const std::string& filename, std::ios_base::openmode openmode)
{
-#ifdef _WIN32
+#ifdef _MSC_VER
fstream.open(Common::UTF8ToTStr(filename).c_str(), openmode);
#else
fstream.open(filename.c_str(), openmode);
diff --git a/src/common/x64/emitter.cpp b/src/common/x64/emitter.cpp
index 4b79acd1f..cf31f8d69 100644
--- a/src/common/x64/emitter.cpp
+++ b/src/common/x64/emitter.cpp
@@ -15,6 +15,7 @@
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
+#include <cinttypes>
#include <cstring>
#include "common/assert.h"
@@ -25,11 +26,6 @@
#include "cpu_detect.h"
#include "emitter.h"
-#define PRIx64 "llx"
-
-// Minimize the diff against Dolphin
-#define DYNA_REC JIT
-
namespace Gen
{
@@ -374,7 +370,7 @@ void XEmitter::Rex(int w, int r, int x, int b)
Write8(rx);
}
-void XEmitter::JMP(const u8 *addr, bool force5Bytes)
+void XEmitter::JMP(const u8* addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
@@ -398,7 +394,7 @@ void XEmitter::JMP(const u8 *addr, bool force5Bytes)
}
}
-void XEmitter::JMPptr(const OpArg &arg2)
+void XEmitter::JMPptr(const OpArg& arg2)
{
OpArg arg = arg2;
if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument");
@@ -425,7 +421,7 @@ void XEmitter::CALLptr(OpArg arg)
arg.WriteRest(this);
}
-void XEmitter::CALL(const void *fnptr)
+void XEmitter::CALL(const void* fnptr)
{
u64 distance = u64(fnptr) - (u64(code) + 5);
ASSERT_MSG(
@@ -496,7 +492,7 @@ void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes)
}
}
-void XEmitter::SetJumpTarget(const FixupBranch &branch)
+void XEmitter::SetJumpTarget(const FixupBranch& branch)
{
if (branch.type == 0)
{
@@ -512,30 +508,6 @@ void XEmitter::SetJumpTarget(const FixupBranch &branch)
}
}
-// INC/DEC considered harmful on newer CPUs due to partial flag set.
-// Use ADD, SUB instead.
-
-/*
-void XEmitter::INC(int bits, OpArg arg)
-{
- if (arg.IsImm()) ASSERT_MSG(0, "INC - Imm argument");
- arg.operandReg = 0;
- if (bits == 16) {Write8(0x66);}
- arg.WriteRex(this, bits, bits);
- Write8(bits == 8 ? 0xFE : 0xFF);
- arg.WriteRest(this);
-}
-void XEmitter::DEC(int bits, OpArg arg)
-{
- if (arg.IsImm()) ASSERT_MSG(0, "DEC - Imm argument");
- arg.operandReg = 1;
- if (bits == 16) {Write8(0x66);}
- arg.WriteRex(this, bits, bits);
- Write8(bits == 8 ? 0xFE : 0xFF);
- arg.WriteRest(this);
-}
-*/
-
//Single byte opcodes
//There is no PUSHAD/POPAD in 64-bit mode.
void XEmitter::INT3() {Write8(0xCC);}
@@ -667,7 +639,7 @@ void XEmitter::CBW(int bits)
void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);}
-void XEmitter::PUSH(int bits, const OpArg &reg)
+void XEmitter::PUSH(int bits, const OpArg& reg)
{
if (reg.IsSimpleReg())
PUSH(reg.GetSimpleReg());
@@ -703,7 +675,7 @@ void XEmitter::PUSH(int bits, const OpArg &reg)
}
}
-void XEmitter::POP(int /*bits*/, const OpArg &reg)
+void XEmitter::POP(int /*bits*/, const OpArg& reg)
{
if (reg.IsSimpleReg())
POP(reg.GetSimpleReg());
@@ -791,12 +763,12 @@ void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
src.WriteRest(this);
}
-void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);}
-void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);}
-void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
-void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
-void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);}
-void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);}
+void XEmitter::MUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 4);}
+void XEmitter::DIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 6);}
+void XEmitter::IMUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 5);}
+void XEmitter::IDIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 7);}
+void XEmitter::NEG(int bits, const OpArg& src) {WriteMulDivType(bits, src, 3);}
+void XEmitter::NOT(int bits, const OpArg& src) {WriteMulDivType(bits, src, 2);}
void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
{
@@ -813,24 +785,24 @@ void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bo
src.WriteRest(this);
}
-void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src)
+void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src)
{
if (bits <= 16)
ASSERT_MSG(0, "MOVNTI - bits<=16");
WriteBitSearchType(bits, src, dest, 0xC3);
}
-void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
-void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
+void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBC);} // Bottom bit to top bit
+void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBD);} // Top bit to bottom bit
-void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src)
+void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src)
{
CheckFlags();
if (!Common::GetCPUCaps().bmi1)
ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBC, true);
}
-void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src)
+void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src)
{
CheckFlags();
if (!Common::GetCPUCaps().lzcnt)
@@ -950,7 +922,7 @@ void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
}
//shift can be either imm8 or cl
-void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
+void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
{
CheckFlags();
bool writeImm = false;
@@ -991,16 +963,16 @@ void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
// large rotates and shift are slower on intel than amd
// intel likes to rotate by 1, and the op is smaller too
-void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
-void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
-void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
-void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
-void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
-void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
-void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
+void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 0);}
+void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 1);}
+void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 2);}
+void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 3);}
+void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 4);}
+void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 5);}
+void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 7);}
// index can be either imm8 or register, don't use memory destination because it's slow
-void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext)
+void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext)
{
CheckFlags();
if (dest.IsImm())
@@ -1029,13 +1001,13 @@ void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext)
}
}
-void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);}
-void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);}
-void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);}
-void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);}
+void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 4);}
+void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 5);}
+void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 6);}
+void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 7);}
//shift can be either imm8 or cl
-void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift)
+void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
CheckFlags();
if (dest.IsImm())
@@ -1067,7 +1039,7 @@ void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift)
}
}
-void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift)
+void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
CheckFlags();
if (dest.IsImm())
@@ -1111,7 +1083,7 @@ void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bit
}
//operand can either be immediate or register
-void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const
+void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const
{
X64Reg _operandReg;
if (IsImm())
@@ -1257,7 +1229,7 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &o
}
}
-void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
+void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2)
{
if (a1.IsImm())
{
@@ -1283,24 +1255,24 @@ void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg
}
}
-void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);}
-void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);}
-void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);}
-void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);}
-void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);}
-void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);}
-void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);}
-void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2)
+void XEmitter::ADD (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);}
+void XEmitter::ADC (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);}
+void XEmitter::SUB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);}
+void XEmitter::SBB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);}
+void XEmitter::AND (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);}
+void XEmitter::OR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);}
+void XEmitter::XOR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);}
+void XEmitter::MOV (int bits, const OpArg& a1, const OpArg& a2)
{
if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code);
WriteNormalOp(this, bits, nrmMOV, a1, a2);
}
-void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);}
-void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);}
-void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
+void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);}
+void XEmitter::CMP (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);}
+void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
-void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
+void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
if (bits == 8)
@@ -1353,7 +1325,7 @@ void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
}
}
-void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a)
+void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
{
CheckFlags();
if (bits == 8)
@@ -1390,7 +1362,7 @@ void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extr
arg.WriteRest(this, extrabytes);
}
-void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes);
}
@@ -1400,25 +1372,25 @@ static int GetVEXmmmmm(u16 op)
// Currently, only 0x38 and 0x3A are used as secondary escape byte.
if ((op >> 8) == 0x3A)
return 3;
- else if ((op >> 8) == 0x38)
+ if ((op >> 8) == 0x38)
return 2;
- else
- return 1;
+
+ return 1;
}
static int GetVEXpp(u8 opPrefix)
{
if (opPrefix == 0x66)
return 1;
- else if (opPrefix == 0xF3)
+ if (opPrefix == 0xF3)
return 2;
- else if (opPrefix == 0xF2)
+ if (opPrefix == 0xF2)
return 3;
- else
- return 0;
+
+ return 0;
}
-void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
if (!Common::GetCPUCaps().avx)
ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer.");
@@ -1431,7 +1403,7 @@ void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpA
}
// Like the above, but more general; covers GPR-based VEX operations, like BMI1/2
-void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
if (size != 32 && size != 64)
ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!");
@@ -1442,7 +1414,7 @@ void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg r
arg.WriteRest(this, extrabytes, regOp1);
}
-void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
CheckFlags();
if (!Common::GetCPUCaps().bmi1)
@@ -1450,7 +1422,7 @@ void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg
WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
-void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
CheckFlags();
if (!Common::GetCPUCaps().bmi2)
@@ -1517,135 +1489,135 @@ void XEmitter::WriteMXCSR(OpArg arg, int ext)
arg.WriteRest(this);
}
-void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
-void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
-
-void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);}
-void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);}
-void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);}
-
-void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);}
-void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);}
-void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);}
-void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);}
-void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);}
-void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);}
-void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);}
-void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);}
-void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);}
-void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);}
-void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);}
-void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);}
-void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);}
-void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);}
-void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);}
-
-void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseADD, regOp, arg);}
-void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseADD, regOp, arg);}
-void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);}
-void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);}
-void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);}
-void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseAND, regOp, arg);}
-void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseAND, regOp, arg);}
-void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);}
-void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);}
-void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseOR, regOp, arg);}
-void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseOR, regOp, arg);}
-void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);}
-void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);}
-void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);}
-void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);}
-void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);}
-void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);}
-void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);}
-void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);}
-void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);}
-void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);}
-void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);}
-void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);}
-void XEmitter::RCPPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); }
-void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);}
-void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);}
-void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);}
-
-void XEmitter::HADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);}
-
-void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed
-void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered
-void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered
-void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);}
-
-void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);}
-void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);}
-void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);}
-void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);}
-
-void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);}
-void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);}
-
-void XEmitter::MOVDQA(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);}
-void XEmitter::MOVDQA(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);}
-void XEmitter::MOVDQU(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);}
-void XEmitter::MOVDQU(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);}
-
-void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);}
-void XEmitter::MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);}
-void XEmitter::MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);}
-
-void XEmitter::MOVLPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); }
-void XEmitter::MOVLPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); }
-void XEmitter::MOVLPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); }
-void XEmitter::MOVLPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); }
-
-void XEmitter::MOVHPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); }
-void XEmitter::MOVHPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); }
-void XEmitter::MOVHPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); }
-void XEmitter::MOVHPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); }
+void XEmitter::STMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 3);}
+void XEmitter::LDMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 2);}
+
+void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);}
+void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);}
+void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);}
+
+void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);}
+void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);}
+void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);}
+void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);}
+void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);}
+void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);}
+void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);}
+void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);}
+void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);}
+void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);}
+void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);}
+void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);}
+void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);}
+void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);}
+void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);}
+
+void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseADD, regOp, arg);}
+void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseADD, regOp, arg);}
+void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);}
+void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);}
+void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseAND, regOp, arg);}
+void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseAND, regOp, arg);}
+void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);}
+void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);}
+void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseOR, regOp, arg);}
+void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseOR, regOp, arg);}
+void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);}
+void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);}
+void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);}
+void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);}
+void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);}
+void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);}
+void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);}
+void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);}
+void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);}
+void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);}
+void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);}
+void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);}
+void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); }
+void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);}
+void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);}
+void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);}
+
+void XEmitter::HADDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);}
+
+void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed
+void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered
+void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered
+void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);}
+
+void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);}
+void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);}
+void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);}
+void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);}
+
+void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);}
+void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);}
+
+void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);}
+void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);}
+void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);}
+void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);}
+
+void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);}
+void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);}
+
+void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); }
+void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); }
+void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); }
+void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); }
+
+void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); }
+void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); }
+void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); }
+void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); }
void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));}
void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));}
-void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);}
-void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);}
+void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);}
+void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);}
-void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);}
-void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);}
-void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);}
-void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);}
-void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);}
-void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);}
+void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);}
+void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);}
+void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);}
+void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);}
+void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);}
+void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);}
-void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);}
-void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);}
-void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);}
-void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);}
+void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);}
+void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);}
+void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);}
+void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);}
-void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);}
-void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);}
-void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);}
-void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);}
+void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);}
+void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);}
+void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);}
+void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);}
void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));}
-void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x50, dest, arg);}
-void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x50, dest, arg);}
+void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x50, dest, arg);}
+void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x50, dest, arg);}
-void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only
+void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only
// THESE TWO ARE UNTESTED.
-void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x14, dest, arg);}
-void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x15, dest, arg);}
+void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x14, dest, arg);}
+void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x15, dest, arg);}
-void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x14, dest, arg);}
-void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x15, dest, arg);}
+void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x14, dest, arg);}
+void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x15, dest, arg);}
-void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg)
+void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
{
if (Common::GetCPUCaps().sse3)
{
@@ -1663,9 +1635,9 @@ void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg)
//There are a few more left
// Also some integer instructions are missing
-void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x6B, dest, arg);}
-void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x63, dest, arg);}
-void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x67, dest, arg);}
+void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x6B, dest, arg);}
+void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x63, dest, arg);}
+void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x67, dest, arg);}
void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);}
void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);}
@@ -1690,7 +1662,7 @@ void XEmitter::PSRLQ(X64Reg reg, int shift)
Write8(shift);
}
-void XEmitter::PSRLQ(X64Reg reg, OpArg arg)
+void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg)
{
WriteSSEOp(0x66, 0xd3, reg, arg);
}
@@ -1735,212 +1707,212 @@ void XEmitter::PSRAD(X64Reg reg, int shift)
Write8(shift);
}
-void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
if (!Common::GetCPUCaps().ssse3)
ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
-void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
if (!Common::GetCPUCaps().sse4_1)
ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
-void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);}
-void XEmitter::PTEST(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);}
-void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);}
-void XEmitter::DPPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);}
-
-void XEmitter::PMINSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);}
-void XEmitter::PMINSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);}
-void XEmitter::PMINUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);}
-void XEmitter::PMINUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);}
-void XEmitter::PMAXSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);}
-void XEmitter::PMAXSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);}
-void XEmitter::PMAXUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);}
-void XEmitter::PMAXUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);}
-
-void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);}
-void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);}
-void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);}
-void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);}
-void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);}
-void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);}
-void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);}
-void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);}
-void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);}
-void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);}
-void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);}
-void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);}
-
-void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);}
-void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);}
-void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);}
+void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);}
+void XEmitter::PTEST(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);}
+void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);}
+void XEmitter::DPPS(X64Reg dest, const OpArg& arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);}
+
+void XEmitter::PMINSB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);}
+void XEmitter::PMINSD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);}
+void XEmitter::PMINUW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);}
+void XEmitter::PMINUD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);}
+void XEmitter::PMAXSB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);}
+void XEmitter::PMAXSD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);}
+void XEmitter::PMAXUW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);}
+void XEmitter::PMAXUD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);}
+
+void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);}
+void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);}
+void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);}
+void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);}
+void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);}
+void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);}
+void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);}
+void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);}
+void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);}
+void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);}
+void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);}
+void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);}
+
+void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);}
+void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);}
+void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);}
void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); }
void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); }
-void XEmitter::ROUNDSS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);}
-void XEmitter::ROUNDSD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);}
-void XEmitter::ROUNDPS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);}
-void XEmitter::ROUNDPD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);}
-void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDB, dest, arg);}
-void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDF, dest, arg);}
-void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEF, dest, arg);}
-void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEB, dest, arg);}
+void XEmitter::PAND(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDB, dest, arg);}
+void XEmitter::PANDN(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDF, dest, arg);}
+void XEmitter::PXOR(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEF, dest, arg);}
+void XEmitter::POR(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEB, dest, arg);}
-void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFC, dest, arg);}
-void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFD, dest, arg);}
-void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFE, dest, arg);}
-void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD4, dest, arg);}
+void XEmitter::PADDB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFC, dest, arg);}
+void XEmitter::PADDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFD, dest, arg);}
+void XEmitter::PADDD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFE, dest, arg);}
+void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD4, dest, arg);}
-void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEC, dest, arg);}
-void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xED, dest, arg);}
-void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDC, dest, arg);}
-void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDD, dest, arg);}
+void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEC, dest, arg);}
+void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xED, dest, arg);}
+void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDC, dest, arg);}
+void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDD, dest, arg);}
-void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF8, dest, arg);}
-void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF9, dest, arg);}
-void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFA, dest, arg);}
-void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFB, dest, arg);}
+void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF8, dest, arg);}
+void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF9, dest, arg);}
+void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFA, dest, arg);}
+void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFB, dest, arg);}
-void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE8, dest, arg);}
-void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE9, dest, arg);}
-void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD8, dest, arg);}
-void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD9, dest, arg);}
+void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE8, dest, arg);}
+void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE9, dest, arg);}
+void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD8, dest, arg);}
+void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD9, dest, arg);}
-void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE0, dest, arg);}
-void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE3, dest, arg);}
+void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE0, dest, arg);}
+void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE3, dest, arg);}
-void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x74, dest, arg);}
-void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x75, dest, arg);}
-void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x76, dest, arg);}
+void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x74, dest, arg);}
+void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x75, dest, arg);}
+void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x76, dest, arg);}
-void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x64, dest, arg);}
-void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x65, dest, arg);}
-void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x66, dest, arg);}
+void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x64, dest, arg);}
+void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x65, dest, arg);}
+void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x66, dest, arg);}
-void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);}
-void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);}
+void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);}
+void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);}
-void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF5, dest, arg); }
-void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF6, dest, arg);}
+void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF5, dest, arg); }
+void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF6, dest, arg);}
-void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEE, dest, arg); }
-void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDE, dest, arg); }
-void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEA, dest, arg); }
-void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDA, dest, arg); }
+void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEE, dest, arg); }
+void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDE, dest, arg); }
+void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEA, dest, arg); }
+void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDA, dest, arg); }
-void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD7, dest, arg); }
-void XEmitter::PSHUFD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);}
-void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);}
-void XEmitter::PSHUFHW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD7, dest, arg); }
+void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);}
// VEX
-void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);}
-void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);}
-void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);}
-void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);}
-void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);}
-void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);}
-void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);}
-void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);}
-void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);}
-void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);}
-void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);}
-void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);}
-
-void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); }
-void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); }
-void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); }
-void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); }
-void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); }
-void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); }
-void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); }
-void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); }
-
-void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); }
-void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); }
-void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); }
-void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); }
-
-void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); }
-void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); }
-void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); }
-void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); }
-void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); }
-void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); }
-void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); }
-void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); }
-void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); }
-void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); }
-void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); }
-void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); }
-void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); }
-void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); }
-void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); }
-void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); }
-void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); }
-void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); }
-
-void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);}
-void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);}
-void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);}
-void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);}
-void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);}
-void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);}
-void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);}
-void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);}
-void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);}
-void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);}
+void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);}
+void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);}
+void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);}
+void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);}
+void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);}
+void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);}
+void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);}
+void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);}
+void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);}
+void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);}
+void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);}
+void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);}
+
+void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); }
+void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); }
+void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); }
+void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); }
+void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); }
+void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); }
+void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); }
+void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); }
+
+void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); }
+void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); }
+void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); }
+void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); }
+
+void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); }
+void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); }
+void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); }
+void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); }
+void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); }
+void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); }
+void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); }
+
+void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);}
+void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);}
+void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);}
+void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);}
+void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);}
+void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);}
// Prefixes
@@ -1956,7 +1928,7 @@ void XEmitter::FWAIT()
}
// TODO: make this more generic
-void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg)
+void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg)
{
int mf = 0;
ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction");
@@ -1974,9 +1946,9 @@ void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg a
arg.WriteRest(this, 0, (X64Reg) op);
}
-void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);}
-void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);}
-void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);}
+void XEmitter::FLD(int bits, const OpArg& src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);}
+void XEmitter::FST(int bits, const OpArg& dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);}
+void XEmitter::FSTP(int bits, const OpArg& dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);}
void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); }
void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); }
diff --git a/src/common/x64/emitter.h b/src/common/x64/emitter.h
index e9c924126..86f4a1fff 100644
--- a/src/common/x64/emitter.h
+++ b/src/common/x64/emitter.h
@@ -328,8 +328,6 @@ enum SSECompare
ORD,
};
-typedef const u8* JumpTarget;
-
class XEmitter
{
friend struct OpArg; // for Write8 etc
@@ -344,27 +342,27 @@ private:
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
void WriteMulDivType(int bits, OpArg src, int ext);
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
- void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
- void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
+ void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext);
+ void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext);
void WriteMXCSR(OpArg arg, int ext);
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
- void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
- void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
- void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
- void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
- void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
- void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
- void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
- void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
- void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
+ void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
+ void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
+ void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
+ void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
+ void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0);
+ void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg);
+ void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2);
void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
protected:
- inline void Write8(u8 value) {*code++ = value;}
- inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
- inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
- inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
+ void Write8(u8 value) {*code++ = value;}
+ void Write16(u16 value) {*(u16*)code = (value); code += 2;}
+ void Write32(u32 value) {*(u32*)code = (value); code += 4;}
+ void Write64(u64 value) {*(u64*)code = (value); code += 8;}
public:
XEmitter() { code = nullptr; flags_locked = false; }
@@ -413,8 +411,8 @@ public:
// Stack control
void PUSH(X64Reg reg);
void POP(X64Reg reg);
- void PUSH(int bits, const OpArg &reg);
- void POP(int bits, const OpArg &reg);
+ void PUSH(int bits, const OpArg& reg);
+ void POP(int bits, const OpArg& reg);
void PUSHF();
void POPF();
@@ -424,21 +422,19 @@ public:
void UD2();
FixupBranch J(bool force5bytes = false);
- void JMP(const u8 * addr, bool force5Bytes = false);
- void JMP(OpArg arg);
- void JMPptr(const OpArg &arg);
+ void JMP(const u8* addr, bool force5Bytes = false);
+ void JMPptr(const OpArg& arg);
void JMPself(); //infinite loop!
#ifdef CALL
#undef CALL
#endif
- void CALL(const void *fnptr);
+ void CALL(const void* fnptr);
void CALLptr(OpArg arg);
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
- //void J_CC(CCFlags conditionCode, JumpTarget target);
- void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
+ void J_CC(CCFlags conditionCode, const u8* addr, bool force5Bytes = false);
- void SetJumpTarget(const FixupBranch &branch);
+ void SetJumpTarget(const FixupBranch& branch);
void SETcc(CCFlags flag, OpArg dest);
// Note: CMOV brings small if any benefit on current cpus.
@@ -450,8 +446,8 @@ public:
void SFENCE();
// Bit scan
- void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
- void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
+ void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit
+ void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit
// Cache control
enum PrefetchLevel
@@ -462,67 +458,67 @@ public:
PF_T2, //Levels 3+ (aliased to T0 on AMD)
};
void PREFETCH(PrefetchLevel level, OpArg arg);
- void MOVNTI(int bits, OpArg dest, X64Reg src);
- void MOVNTDQ(OpArg arg, X64Reg regOp);
- void MOVNTPS(OpArg arg, X64Reg regOp);
- void MOVNTPD(OpArg arg, X64Reg regOp);
+ void MOVNTI(int bits, const OpArg& dest, X64Reg src);
+ void MOVNTDQ(const OpArg& arg, X64Reg regOp);
+ void MOVNTPS(const OpArg& arg, X64Reg regOp);
+ void MOVNTPD(const OpArg& arg, X64Reg regOp);
// Multiplication / division
- void MUL(int bits, OpArg src); //UNSIGNED
- void IMUL(int bits, OpArg src); //SIGNED
- void IMUL(int bits, X64Reg regOp, OpArg src);
- void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
- void DIV(int bits, OpArg src);
- void IDIV(int bits, OpArg src);
+ void MUL(int bits, const OpArg& src); //UNSIGNED
+ void IMUL(int bits, const OpArg& src); //SIGNED
+ void IMUL(int bits, X64Reg regOp, const OpArg& src);
+ void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm);
+ void DIV(int bits, const OpArg& src);
+ void IDIV(int bits, const OpArg& src);
// Shift
- void ROL(int bits, OpArg dest, OpArg shift);
- void ROR(int bits, OpArg dest, OpArg shift);
- void RCL(int bits, OpArg dest, OpArg shift);
- void RCR(int bits, OpArg dest, OpArg shift);
- void SHL(int bits, OpArg dest, OpArg shift);
- void SHR(int bits, OpArg dest, OpArg shift);
- void SAR(int bits, OpArg dest, OpArg shift);
+ void ROL(int bits, const OpArg& dest, const OpArg& shift);
+ void ROR(int bits, const OpArg& dest, const OpArg& shift);
+ void RCL(int bits, const OpArg& dest, const OpArg& shift);
+ void RCR(int bits, const OpArg& dest, const OpArg& shift);
+ void SHL(int bits, const OpArg& dest, const OpArg& shift);
+ void SHR(int bits, const OpArg& dest, const OpArg& shift);
+ void SAR(int bits, const OpArg& dest, const OpArg& shift);
// Bit Test
- void BT(int bits, OpArg dest, OpArg index);
- void BTS(int bits, OpArg dest, OpArg index);
- void BTR(int bits, OpArg dest, OpArg index);
- void BTC(int bits, OpArg dest, OpArg index);
+ void BT(int bits, const OpArg& dest, const OpArg& index);
+ void BTS(int bits, const OpArg& dest, const OpArg& index);
+ void BTR(int bits, const OpArg& dest, const OpArg& index);
+ void BTC(int bits, const OpArg& dest, const OpArg& index);
// Double-Precision Shift
- void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
- void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
+ void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
+ void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
// Extend EAX into EDX in various ways
void CWD(int bits = 16);
- inline void CDQ() {CWD(32);}
- inline void CQO() {CWD(64);}
+ void CDQ() {CWD(32);}
+ void CQO() {CWD(64);}
void CBW(int bits = 8);
- inline void CWDE() {CBW(16);}
- inline void CDQE() {CBW(32);}
+ void CWDE() {CBW(16);}
+ void CDQE() {CBW(32);}
// Load effective address
void LEA(int bits, X64Reg dest, OpArg src);
// Integer arithmetic
- void NEG (int bits, OpArg src);
- void ADD (int bits, const OpArg &a1, const OpArg &a2);
- void ADC (int bits, const OpArg &a1, const OpArg &a2);
- void SUB (int bits, const OpArg &a1, const OpArg &a2);
- void SBB (int bits, const OpArg &a1, const OpArg &a2);
- void AND (int bits, const OpArg &a1, const OpArg &a2);
- void CMP (int bits, const OpArg &a1, const OpArg &a2);
+ void NEG(int bits, const OpArg& src);
+ void ADD(int bits, const OpArg& a1, const OpArg& a2);
+ void ADC(int bits, const OpArg& a1, const OpArg& a2);
+ void SUB(int bits, const OpArg& a1, const OpArg& a2);
+ void SBB(int bits, const OpArg& a1, const OpArg& a2);
+ void AND(int bits, const OpArg& a1, const OpArg& a2);
+ void CMP(int bits, const OpArg& a1, const OpArg& a2);
// Bit operations
- void NOT (int bits, OpArg src);
- void OR (int bits, const OpArg &a1, const OpArg &a2);
- void XOR (int bits, const OpArg &a1, const OpArg &a2);
- void MOV (int bits, const OpArg &a1, const OpArg &a2);
- void TEST(int bits, const OpArg &a1, const OpArg &a2);
+ void NOT (int bits, const OpArg& src);
+ void OR(int bits, const OpArg& a1, const OpArg& a2);
+ void XOR(int bits, const OpArg& a1, const OpArg& a2);
+ void MOV(int bits, const OpArg& a1, const OpArg& a2);
+ void TEST(int bits, const OpArg& a1, const OpArg& a2);
// Are these useful at all? Consider removing.
- void XCHG(int bits, const OpArg &a1, const OpArg &a2);
+ void XCHG(int bits, const OpArg& a1, const OpArg& a2);
void XCHG_AHAL();
// Byte swapping (32 and 64-bit only).
@@ -536,13 +532,13 @@ public:
void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
// Available only on AMD >= Phenom or Intel >= Haswell
- void LZCNT(int bits, X64Reg dest, OpArg src);
+ void LZCNT(int bits, X64Reg dest, const OpArg& src);
// Note: this one is actually part of BMI1
- void TZCNT(int bits, X64Reg dest, OpArg src);
+ void TZCNT(int bits, X64Reg dest, const OpArg& src);
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
- void STMXCSR(OpArg memloc);
- void LDMXCSR(OpArg memloc);
+ void STMXCSR(const OpArg& memloc);
+ void LDMXCSR(const OpArg& memloc);
// Prefixes
void LOCK();
@@ -569,259 +565,242 @@ public:
x87_FPUBusy = 0x8000,
};
- void FLD(int bits, OpArg src);
- void FST(int bits, OpArg dest);
- void FSTP(int bits, OpArg dest);
+ void FLD(int bits, const OpArg& src);
+ void FST(int bits, const OpArg& dest);
+ void FSTP(int bits, const OpArg& dest);
void FNSTSW_AX();
void FWAIT();
// SSE/SSE2: Floating point arithmetic
- void ADDSS(X64Reg regOp, OpArg arg);
- void ADDSD(X64Reg regOp, OpArg arg);
- void SUBSS(X64Reg regOp, OpArg arg);
- void SUBSD(X64Reg regOp, OpArg arg);
- void MULSS(X64Reg regOp, OpArg arg);
- void MULSD(X64Reg regOp, OpArg arg);
- void DIVSS(X64Reg regOp, OpArg arg);
- void DIVSD(X64Reg regOp, OpArg arg);
- void MINSS(X64Reg regOp, OpArg arg);
- void MINSD(X64Reg regOp, OpArg arg);
- void MAXSS(X64Reg regOp, OpArg arg);
- void MAXSD(X64Reg regOp, OpArg arg);
- void SQRTSS(X64Reg regOp, OpArg arg);
- void SQRTSD(X64Reg regOp, OpArg arg);
- void RSQRTSS(X64Reg regOp, OpArg arg);
+ void ADDSS(X64Reg regOp, const OpArg& arg);
+ void ADDSD(X64Reg regOp, const OpArg& arg);
+ void SUBSS(X64Reg regOp, const OpArg& arg);
+ void SUBSD(X64Reg regOp, const OpArg& arg);
+ void MULSS(X64Reg regOp, const OpArg& arg);
+ void MULSD(X64Reg regOp, const OpArg& arg);
+ void DIVSS(X64Reg regOp, const OpArg& arg);
+ void DIVSD(X64Reg regOp, const OpArg& arg);
+ void MINSS(X64Reg regOp, const OpArg& arg);
+ void MINSD(X64Reg regOp, const OpArg& arg);
+ void MAXSS(X64Reg regOp, const OpArg& arg);
+ void MAXSD(X64Reg regOp, const OpArg& arg);
+ void SQRTSS(X64Reg regOp, const OpArg& arg);
+ void SQRTSD(X64Reg regOp, const OpArg& arg);
+ void RSQRTSS(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Floating point bitwise (yes)
- void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
- void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
+ void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare);
+ void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare);
- inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
- inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
- inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
- inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
- inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
- inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
- inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
+ void CMPEQSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_EQ); }
+ void CMPLTSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_LT); }
+ void CMPLESS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_LE); }
+ void CMPUNORDSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_UNORD); }
+ void CMPNEQSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_NEQ); }
+ void CMPNLTSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_NLT); }
+ void CMPORDSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_ORD); }
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
- void ADDPS(X64Reg regOp, OpArg arg);
- void ADDPD(X64Reg regOp, OpArg arg);
- void SUBPS(X64Reg regOp, OpArg arg);
- void SUBPD(X64Reg regOp, OpArg arg);
- void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
- void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
- void MULPS(X64Reg regOp, OpArg arg);
- void MULPD(X64Reg regOp, OpArg arg);
- void DIVPS(X64Reg regOp, OpArg arg);
- void DIVPD(X64Reg regOp, OpArg arg);
- void MINPS(X64Reg regOp, OpArg arg);
- void MINPD(X64Reg regOp, OpArg arg);
- void MAXPS(X64Reg regOp, OpArg arg);
- void MAXPD(X64Reg regOp, OpArg arg);
- void SQRTPS(X64Reg regOp, OpArg arg);
- void SQRTPD(X64Reg regOp, OpArg arg);
- void RCPPS(X64Reg regOp, OpArg arg);
- void RSQRTPS(X64Reg regOp, OpArg arg);
+ void ADDPS(X64Reg regOp, const OpArg& arg);
+ void ADDPD(X64Reg regOp, const OpArg& arg);
+ void SUBPS(X64Reg regOp, const OpArg& arg);
+ void SUBPD(X64Reg regOp, const OpArg& arg);
+ void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare);
+ void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare);
+ void MULPS(X64Reg regOp, const OpArg& arg);
+ void MULPD(X64Reg regOp, const OpArg& arg);
+ void DIVPS(X64Reg regOp, const OpArg& arg);
+ void DIVPD(X64Reg regOp, const OpArg& arg);
+ void MINPS(X64Reg regOp, const OpArg& arg);
+ void MINPD(X64Reg regOp, const OpArg& arg);
+ void MAXPS(X64Reg regOp, const OpArg& arg);
+ void MAXPD(X64Reg regOp, const OpArg& arg);
+ void SQRTPS(X64Reg regOp, const OpArg& arg);
+ void SQRTPD(X64Reg regOp, const OpArg& arg);
+ void RCPPS(X64Reg regOp, const OpArg& arg);
+ void RSQRTPS(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
- void ANDPS(X64Reg regOp, OpArg arg);
- void ANDPD(X64Reg regOp, OpArg arg);
- void ANDNPS(X64Reg regOp, OpArg arg);
- void ANDNPD(X64Reg regOp, OpArg arg);
- void ORPS(X64Reg regOp, OpArg arg);
- void ORPD(X64Reg regOp, OpArg arg);
- void XORPS(X64Reg regOp, OpArg arg);
- void XORPD(X64Reg regOp, OpArg arg);
+ void ANDPS(X64Reg regOp, const OpArg& arg);
+ void ANDPD(X64Reg regOp, const OpArg& arg);
+ void ANDNPS(X64Reg regOp, const OpArg& arg);
+ void ANDNPD(X64Reg regOp, const OpArg& arg);
+ void ORPS(X64Reg regOp, const OpArg& arg);
+ void ORPD(X64Reg regOp, const OpArg& arg);
+ void XORPS(X64Reg regOp, const OpArg& arg);
+ void XORPD(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
- void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
- void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
+ void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle);
+ void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle);
// SSE/SSE2: Useful alternative to shuffle in some cases.
- void MOVDDUP(X64Reg regOp, OpArg arg);
-
- // TODO: Actually implement
-#if 0
- // SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
- void ADDSUBPS(X64Reg dest, OpArg src);
- void ADDSUBPD(X64Reg dest, OpArg src);
- void HADDPD(X64Reg dest, OpArg src);
- void HSUBPS(X64Reg dest, OpArg src);
- void HSUBPD(X64Reg dest, OpArg src);
-
- // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
- void DPPD(X64Reg dest, OpArg src, u8 arg);
-
- // These are probably useful for VFPU emulation.
- void INSERTPS(X64Reg dest, OpArg src, u8 arg);
- void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
-#endif
+ void MOVDDUP(X64Reg regOp, const OpArg& arg);
// SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
- void HADDPS(X64Reg dest, OpArg src);
+ void HADDPS(X64Reg dest, const OpArg& src);
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
- void DPPS(X64Reg dest, OpArg src, u8 arg);
+ void DPPS(X64Reg dest, const OpArg& src, u8 arg);
- void UNPCKLPS(X64Reg dest, OpArg src);
- void UNPCKHPS(X64Reg dest, OpArg src);
- void UNPCKLPD(X64Reg dest, OpArg src);
- void UNPCKHPD(X64Reg dest, OpArg src);
+ void UNPCKLPS(X64Reg dest, const OpArg& src);
+ void UNPCKHPS(X64Reg dest, const OpArg& src);
+ void UNPCKLPD(X64Reg dest, const OpArg& src);
+ void UNPCKHPD(X64Reg dest, const OpArg& src);
// SSE/SSE2: Compares.
- void COMISS(X64Reg regOp, OpArg arg);
- void COMISD(X64Reg regOp, OpArg arg);
- void UCOMISS(X64Reg regOp, OpArg arg);
- void UCOMISD(X64Reg regOp, OpArg arg);
+ void COMISS(X64Reg regOp, const OpArg& arg);
+ void COMISD(X64Reg regOp, const OpArg& arg);
+ void UCOMISS(X64Reg regOp, const OpArg& arg);
+ void UCOMISD(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
- void MOVAPS(X64Reg regOp, OpArg arg);
- void MOVAPD(X64Reg regOp, OpArg arg);
- void MOVAPS(OpArg arg, X64Reg regOp);
- void MOVAPD(OpArg arg, X64Reg regOp);
-
- void MOVUPS(X64Reg regOp, OpArg arg);
- void MOVUPD(X64Reg regOp, OpArg arg);
- void MOVUPS(OpArg arg, X64Reg regOp);
- void MOVUPD(OpArg arg, X64Reg regOp);
-
- void MOVDQA(X64Reg regOp, OpArg arg);
- void MOVDQA(OpArg arg, X64Reg regOp);
- void MOVDQU(X64Reg regOp, OpArg arg);
- void MOVDQU(OpArg arg, X64Reg regOp);
-
- void MOVSS(X64Reg regOp, OpArg arg);
- void MOVSD(X64Reg regOp, OpArg arg);
- void MOVSS(OpArg arg, X64Reg regOp);
- void MOVSD(OpArg arg, X64Reg regOp);
-
- void MOVLPS(X64Reg regOp, OpArg arg);
- void MOVLPD(X64Reg regOp, OpArg arg);
- void MOVLPS(OpArg arg, X64Reg regOp);
- void MOVLPD(OpArg arg, X64Reg regOp);
-
- void MOVHPS(X64Reg regOp, OpArg arg);
- void MOVHPD(X64Reg regOp, OpArg arg);
- void MOVHPS(OpArg arg, X64Reg regOp);
- void MOVHPD(OpArg arg, X64Reg regOp);
+ void MOVAPS(X64Reg regOp, const OpArg& arg);
+ void MOVAPD(X64Reg regOp, const OpArg& arg);
+ void MOVAPS(const OpArg& arg, X64Reg regOp);
+ void MOVAPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVUPS(X64Reg regOp, const OpArg& arg);
+ void MOVUPD(X64Reg regOp, const OpArg& arg);
+ void MOVUPS(const OpArg& arg, X64Reg regOp);
+ void MOVUPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVDQA(X64Reg regOp, const OpArg& arg);
+ void MOVDQA(const OpArg& arg, X64Reg regOp);
+ void MOVDQU(X64Reg regOp, const OpArg& arg);
+ void MOVDQU(const OpArg& arg, X64Reg regOp);
+
+ void MOVSS(X64Reg regOp, const OpArg& arg);
+ void MOVSD(X64Reg regOp, const OpArg& arg);
+ void MOVSS(const OpArg& arg, X64Reg regOp);
+ void MOVSD(const OpArg& arg, X64Reg regOp);
+
+ void MOVLPS(X64Reg regOp, const OpArg& arg);
+ void MOVLPD(X64Reg regOp, const OpArg& arg);
+ void MOVLPS(const OpArg& arg, X64Reg regOp);
+ void MOVLPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVHPS(X64Reg regOp, const OpArg& arg);
+ void MOVHPD(X64Reg regOp, const OpArg& arg);
+ void MOVHPS(const OpArg& arg, X64Reg regOp);
+ void MOVHPD(const OpArg& arg, X64Reg regOp);
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
- void MOVD_xmm(X64Reg dest, const OpArg &arg);
+ void MOVD_xmm(X64Reg dest, const OpArg& arg);
void MOVQ_xmm(X64Reg dest, OpArg arg);
- void MOVD_xmm(const OpArg &arg, X64Reg src);
+ void MOVD_xmm(const OpArg& arg, X64Reg src);
void MOVQ_xmm(OpArg arg, X64Reg src);
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
- void MOVMSKPS(X64Reg dest, OpArg arg);
- void MOVMSKPD(X64Reg dest, OpArg arg);
+ void MOVMSKPS(X64Reg dest, const OpArg& arg);
+ void MOVMSKPD(X64Reg dest, const OpArg& arg);
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
void MASKMOVDQU(X64Reg dest, X64Reg src);
- void LDDQU(X64Reg dest, OpArg src);
+ void LDDQU(X64Reg dest, const OpArg& src);
// SSE/SSE2: Data type conversions.
- void CVTPS2PD(X64Reg dest, OpArg src);
- void CVTPD2PS(X64Reg dest, OpArg src);
- void CVTSS2SD(X64Reg dest, OpArg src);
- void CVTSI2SS(X64Reg dest, OpArg src);
- void CVTSD2SS(X64Reg dest, OpArg src);
- void CVTSI2SD(X64Reg dest, OpArg src);
- void CVTDQ2PD(X64Reg regOp, OpArg arg);
- void CVTPD2DQ(X64Reg regOp, OpArg arg);
- void CVTDQ2PS(X64Reg regOp, OpArg arg);
- void CVTPS2DQ(X64Reg regOp, OpArg arg);
-
- void CVTTPS2DQ(X64Reg regOp, OpArg arg);
- void CVTTPD2DQ(X64Reg regOp, OpArg arg);
+ void CVTPS2PD(X64Reg dest, const OpArg& src);
+ void CVTPD2PS(X64Reg dest, const OpArg& src);
+ void CVTSS2SD(X64Reg dest, const OpArg& src);
+ void CVTSI2SS(X64Reg dest, const OpArg& src);
+ void CVTSD2SS(X64Reg dest, const OpArg& src);
+ void CVTSI2SD(X64Reg dest, const OpArg& src);
+ void CVTDQ2PD(X64Reg regOp, const OpArg& arg);
+ void CVTPD2DQ(X64Reg regOp, const OpArg& arg);
+ void CVTDQ2PS(X64Reg regOp, const OpArg& arg);
+ void CVTPS2DQ(X64Reg regOp, const OpArg& arg);
+
+ void CVTTPS2DQ(X64Reg regOp, const OpArg& arg);
+ void CVTTPD2DQ(X64Reg regOp, const OpArg& arg);
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
- void CVTSS2SI(X64Reg xregdest, OpArg src);
- void CVTSD2SI(X64Reg xregdest, OpArg src);
- void CVTTSS2SI(X64Reg xregdest, OpArg arg);
- void CVTTSD2SI(X64Reg xregdest, OpArg arg);
+ void CVTSS2SI(X64Reg xregdest, const OpArg& src);
+ void CVTSD2SI(X64Reg xregdest, const OpArg& src);
+ void CVTTSS2SI(X64Reg xregdest, const OpArg& arg);
+ void CVTTSD2SI(X64Reg xregdest, const OpArg& arg);
// SSE2: Packed integer instructions
- void PACKSSDW(X64Reg dest, OpArg arg);
- void PACKSSWB(X64Reg dest, OpArg arg);
- void PACKUSDW(X64Reg dest, OpArg arg);
- void PACKUSWB(X64Reg dest, OpArg arg);
+ void PACKSSDW(X64Reg dest, const OpArg& arg);
+ void PACKSSWB(X64Reg dest, const OpArg& arg);
+ void PACKUSDW(X64Reg dest, const OpArg& arg);
+ void PACKUSWB(X64Reg dest, const OpArg& arg);
void PUNPCKLBW(X64Reg dest, const OpArg &arg);
void PUNPCKLWD(X64Reg dest, const OpArg &arg);
void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
- void PTEST(X64Reg dest, OpArg arg);
- void PAND(X64Reg dest, OpArg arg);
- void PANDN(X64Reg dest, OpArg arg);
- void PXOR(X64Reg dest, OpArg arg);
- void POR(X64Reg dest, OpArg arg);
-
- void PADDB(X64Reg dest, OpArg arg);
- void PADDW(X64Reg dest, OpArg arg);
- void PADDD(X64Reg dest, OpArg arg);
- void PADDQ(X64Reg dest, OpArg arg);
-
- void PADDSB(X64Reg dest, OpArg arg);
- void PADDSW(X64Reg dest, OpArg arg);
- void PADDUSB(X64Reg dest, OpArg arg);
- void PADDUSW(X64Reg dest, OpArg arg);
-
- void PSUBB(X64Reg dest, OpArg arg);
- void PSUBW(X64Reg dest, OpArg arg);
- void PSUBD(X64Reg dest, OpArg arg);
- void PSUBQ(X64Reg dest, OpArg arg);
-
- void PSUBSB(X64Reg dest, OpArg arg);
- void PSUBSW(X64Reg dest, OpArg arg);
- void PSUBUSB(X64Reg dest, OpArg arg);
- void PSUBUSW(X64Reg dest, OpArg arg);
-
- void PAVGB(X64Reg dest, OpArg arg);
- void PAVGW(X64Reg dest, OpArg arg);
-
- void PCMPEQB(X64Reg dest, OpArg arg);
- void PCMPEQW(X64Reg dest, OpArg arg);
- void PCMPEQD(X64Reg dest, OpArg arg);
-
- void PCMPGTB(X64Reg dest, OpArg arg);
- void PCMPGTW(X64Reg dest, OpArg arg);
- void PCMPGTD(X64Reg dest, OpArg arg);
-
- void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
- void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
-
- void PMADDWD(X64Reg dest, OpArg arg);
- void PSADBW(X64Reg dest, OpArg arg);
-
- void PMAXSW(X64Reg dest, OpArg arg);
- void PMAXUB(X64Reg dest, OpArg arg);
- void PMINSW(X64Reg dest, OpArg arg);
- void PMINUB(X64Reg dest, OpArg arg);
+ void PTEST(X64Reg dest, const OpArg& arg);
+ void PAND(X64Reg dest, const OpArg& arg);
+ void PANDN(X64Reg dest, const OpArg& arg);
+ void PXOR(X64Reg dest, const OpArg& arg);
+ void POR(X64Reg dest, const OpArg& arg);
+
+ void PADDB(X64Reg dest, const OpArg& arg);
+ void PADDW(X64Reg dest, const OpArg& arg);
+ void PADDD(X64Reg dest, const OpArg& arg);
+ void PADDQ(X64Reg dest, const OpArg& arg);
+
+ void PADDSB(X64Reg dest, const OpArg& arg);
+ void PADDSW(X64Reg dest, const OpArg& arg);
+ void PADDUSB(X64Reg dest, const OpArg& arg);
+ void PADDUSW(X64Reg dest, const OpArg& arg);
+
+ void PSUBB(X64Reg dest, const OpArg& arg);
+ void PSUBW(X64Reg dest, const OpArg& arg);
+ void PSUBD(X64Reg dest, const OpArg& arg);
+ void PSUBQ(X64Reg dest, const OpArg& arg);
+
+ void PSUBSB(X64Reg dest, const OpArg& arg);
+ void PSUBSW(X64Reg dest, const OpArg& arg);
+ void PSUBUSB(X64Reg dest, const OpArg& arg);
+ void PSUBUSW(X64Reg dest, const OpArg& arg);
+
+ void PAVGB(X64Reg dest, const OpArg& arg);
+ void PAVGW(X64Reg dest, const OpArg& arg);
+
+ void PCMPEQB(X64Reg dest, const OpArg& arg);
+ void PCMPEQW(X64Reg dest, const OpArg& arg);
+ void PCMPEQD(X64Reg dest, const OpArg& arg);
+
+ void PCMPGTB(X64Reg dest, const OpArg& arg);
+ void PCMPGTW(X64Reg dest, const OpArg& arg);
+ void PCMPGTD(X64Reg dest, const OpArg& arg);
+
+ void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg);
+ void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg);
+
+ void PMADDWD(X64Reg dest, const OpArg& arg);
+ void PSADBW(X64Reg dest, const OpArg& arg);
+
+ void PMAXSW(X64Reg dest, const OpArg& arg);
+ void PMAXUB(X64Reg dest, const OpArg& arg);
+ void PMINSW(X64Reg dest, const OpArg& arg);
+ void PMINUB(X64Reg dest, const OpArg& arg);
// SSE4: More MAX/MIN instructions.
- void PMINSB(X64Reg dest, OpArg arg);
- void PMINSD(X64Reg dest, OpArg arg);
- void PMINUW(X64Reg dest, OpArg arg);
- void PMINUD(X64Reg dest, OpArg arg);
- void PMAXSB(X64Reg dest, OpArg arg);
- void PMAXSD(X64Reg dest, OpArg arg);
- void PMAXUW(X64Reg dest, OpArg arg);
- void PMAXUD(X64Reg dest, OpArg arg);
-
- void PMOVMSKB(X64Reg dest, OpArg arg);
- void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
- void PSHUFB(X64Reg dest, OpArg arg);
-
- void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
- void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
+ void PMINSB(X64Reg dest, const OpArg& arg);
+ void PMINSD(X64Reg dest, const OpArg& arg);
+ void PMINUW(X64Reg dest, const OpArg& arg);
+ void PMINUD(X64Reg dest, const OpArg& arg);
+ void PMAXSB(X64Reg dest, const OpArg& arg);
+ void PMAXSD(X64Reg dest, const OpArg& arg);
+ void PMAXUW(X64Reg dest, const OpArg& arg);
+ void PMAXUD(X64Reg dest, const OpArg& arg);
+
+ void PMOVMSKB(X64Reg dest, const OpArg& arg);
+ void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle);
+ void PSHUFB(X64Reg dest, const OpArg& arg);
+
+ void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle);
+ void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSRLW(X64Reg reg, int shift);
void PSRLD(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, int shift);
- void PSRLQ(X64Reg reg, OpArg arg);
+ void PSRLQ(X64Reg reg, const OpArg& arg);
void PSRLDQ(X64Reg reg, int shift);
void PSLLW(X64Reg reg, int shift);
@@ -833,198 +812,198 @@ public:
void PSRAD(X64Reg reg, int shift);
// SSE4: data type conversions
- void PMOVSXBW(X64Reg dest, OpArg arg);
- void PMOVSXBD(X64Reg dest, OpArg arg);
- void PMOVSXBQ(X64Reg dest, OpArg arg);
- void PMOVSXWD(X64Reg dest, OpArg arg);
- void PMOVSXWQ(X64Reg dest, OpArg arg);
- void PMOVSXDQ(X64Reg dest, OpArg arg);
- void PMOVZXBW(X64Reg dest, OpArg arg);
- void PMOVZXBD(X64Reg dest, OpArg arg);
- void PMOVZXBQ(X64Reg dest, OpArg arg);
- void PMOVZXWD(X64Reg dest, OpArg arg);
- void PMOVZXWQ(X64Reg dest, OpArg arg);
- void PMOVZXDQ(X64Reg dest, OpArg arg);
+ void PMOVSXBW(X64Reg dest, const OpArg& arg);
+ void PMOVSXBD(X64Reg dest, const OpArg& arg);
+ void PMOVSXBQ(X64Reg dest, const OpArg& arg);
+ void PMOVSXWD(X64Reg dest, const OpArg& arg);
+ void PMOVSXWQ(X64Reg dest, const OpArg& arg);
+ void PMOVSXDQ(X64Reg dest, const OpArg& arg);
+ void PMOVZXBW(X64Reg dest, const OpArg& arg);
+ void PMOVZXBD(X64Reg dest, const OpArg& arg);
+ void PMOVZXBQ(X64Reg dest, const OpArg& arg);
+ void PMOVZXWD(X64Reg dest, const OpArg& arg);
+ void PMOVZXWQ(X64Reg dest, const OpArg& arg);
+ void PMOVZXDQ(X64Reg dest, const OpArg& arg);
// SSE4: variable blend instructions (xmm0 implicit argument)
- void PBLENDVB(X64Reg dest, OpArg arg);
- void BLENDVPS(X64Reg dest, OpArg arg);
- void BLENDVPD(X64Reg dest, OpArg arg);
+ void PBLENDVB(X64Reg dest, const OpArg& arg);
+ void BLENDVPS(X64Reg dest, const OpArg& arg);
+ void BLENDVPD(X64Reg dest, const OpArg& arg);
void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
// SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
- void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
- void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
- void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
- void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
-
- inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
- inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
- inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
- inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
-
- inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
- inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
- inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
- inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
-
- inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
- inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
- inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
- inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
-
- inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
- inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
- inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
- inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
+ void ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode);
+ void ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode);
+ void ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode);
+ void ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode);
+
+ void ROUNDNEARSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
+ void ROUNDFLOORSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
+ void ROUNDCEILSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
+ void ROUNDZEROSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
+
+ void ROUNDNEARSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
+ void ROUNDFLOORSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
+ void ROUNDCEILSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
+ void ROUNDZEROSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
+
+ void ROUNDNEARPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
+ void ROUNDFLOORPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
+ void ROUNDCEILPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
+ void ROUNDZEROPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
+
+ void ROUNDNEARPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
+ void ROUNDFLOORPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
+ void ROUNDCEILPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
+ void ROUNDZEROPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
// AVX
- void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
- void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
-
- void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
-
- void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
+ void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+
+ void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+
+ void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
// FMA3
- void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
// VEX GPR instructions
- void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
- void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
- void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
- void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
- void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
- void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
- void BLSR(int bits, X64Reg regOp, OpArg arg);
- void BLSMSK(int bits, X64Reg regOp, OpArg arg);
- void BLSI(int bits, X64Reg regOp, OpArg arg);
- void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
- void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate);
+ void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void BLSR(int bits, X64Reg regOp, const OpArg& arg);
+ void BLSMSK(int bits, X64Reg regOp, const OpArg& arg);
+ void BLSI(int bits, X64Reg regOp, const OpArg& arg);
+ void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void RDTSC();
// Utility functions
// The difference between this and CALL is that this aligns the stack
// where appropriate.
- void ABI_CallFunction(const void *func);
+ void ABI_CallFunction(const void* func);
template <typename T>
void ABI_CallFunction(T (*func)()) {
- ABI_CallFunction((const void *)func);
+ ABI_CallFunction((const void*)func);
}
- void ABI_CallFunction(const u8 *func) {
- ABI_CallFunction((const void *)func);
+ void ABI_CallFunction(const u8* func) {
+ ABI_CallFunction((const void*)func);
}
- void ABI_CallFunctionC16(const void *func, u16 param1);
- void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
+ void ABI_CallFunctionC16(const void* func, u16 param1);
+ void ABI_CallFunctionCC16(const void* func, u32 param1, u16 param2);
// These only support u32 parameters, but that's enough for a lot of uses.
// These will destroy the 1 or 2 first "parameter regs".
- void ABI_CallFunctionC(const void *func, u32 param1);
- void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
- void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
- void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
- void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
- void ABI_CallFunctionP(const void *func, void *param1);
- void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
- void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
- void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
- void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
- void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
- void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
- void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
+ void ABI_CallFunctionC(const void* func, u32 param1);
+ void ABI_CallFunctionCC(const void* func, u32 param1, u32 param2);
+ void ABI_CallFunctionCCC(const void* func, u32 param1, u32 param2, u32 param3);
+ void ABI_CallFunctionCCP(const void* func, u32 param1, u32 param2, void* param3);
+ void ABI_CallFunctionCCCP(const void* func, u32 param1, u32 param2, u32 param3, void* param4);
+ void ABI_CallFunctionP(const void* func, void* param1);
+ void ABI_CallFunctionPA(const void* func, void* param1, const OpArg& arg2);
+ void ABI_CallFunctionPAA(const void* func, void* param1, const OpArg& arg2, const OpArg& arg3);
+ void ABI_CallFunctionPPC(const void* func, void* param1, void* param2, u32 param3);
+ void ABI_CallFunctionAC(const void* func, const OpArg& arg1, u32 param2);
+ void ABI_CallFunctionACC(const void* func, const OpArg& arg1, u32 param2, u32 param3);
+ void ABI_CallFunctionA(const void* func, const OpArg& arg1);
+ void ABI_CallFunctionAA(const void* func, const OpArg& arg1, const OpArg& arg2);
// Pass a register as a parameter.
- void ABI_CallFunctionR(const void *func, X64Reg reg1);
- void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
+ void ABI_CallFunctionR(const void* func, X64Reg reg1);
+ void ABI_CallFunctionRR(const void* func, X64Reg reg1, X64Reg reg2);
template <typename Tr, typename T1>
void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
- ABI_CallFunctionC((const void *)func, param1);
+ ABI_CallFunctionC((const void*)func, param1);
}
// A function that doesn't have any control over what it will do to regs,
@@ -1048,9 +1027,9 @@ public:
void ABI_EmitEpilogue(int maxCallParams);
#ifdef _M_IX86
- inline int ABI_GetNumXMMRegs() { return 8; }
+ static int ABI_GetNumXMMRegs() { return 8; }
#else
- inline int ABI_GetNumXMMRegs() { return 16; }
+ static int ABI_GetNumXMMRegs() { return 16; }
#endif
}; // class XEmitter