from __future__ import annotations from dataclasses import dataclass from .Provider import IterListProvider, ProviderType from .Provider import ( AI365VIP, Allyfy, Bing, Blackbox, ChatGot, Chatgpt4o, Chatgpt4Online, ChatgptFree, DDG, DeepInfra, DeepInfraImage, FreeChatgpt, FreeGpt, Gemini, GeminiPro, GeminiProChat, GigaChat, HuggingChat, HuggingFace, Koala, Liaobots, MetaAI, OpenaiChat, PerplexityLabs, Pi, Pizzagpt, Reka, Replicate, ReplicateHome, Vercel, You, ) @dataclass(unsafe_hash=True) class Model: """ Represents a machine learning model configuration. Attributes: name (str): Name of the model. base_provider (str): Default provider for the model. best_provider (ProviderType): The preferred provider for the model, typically with retry logic. """ name: str base_provider: str best_provider: ProviderType = None @staticmethod def __all__() -> list[str]: """Returns a list of all model names.""" return _all_models default = Model( name = "", base_provider = "", best_provider = IterListProvider([ Bing, You, OpenaiChat, FreeChatgpt, AI365VIP, Chatgpt4o, DDG, ChatgptFree, Koala, Pizzagpt, ]) ) # GPT-3.5 too, but all providers supports long requests and responses gpt_35_long = Model( name = 'gpt-3.5-turbo', base_provider = 'openai', best_provider = IterListProvider([ FreeGpt, You, Koala, ChatgptFree, FreeChatgpt, DDG, AI365VIP, Pizzagpt, Allyfy, ]) ) ############ ### Text ### ############ ### OpenAI ### ### GPT-3.5 / GPT-4 ### # gpt-3.5 gpt_35_turbo = Model( name = 'gpt-3.5-turbo', base_provider = 'openai', best_provider = IterListProvider([ FreeGpt, You, Koala, ChatgptFree, FreeChatgpt, DDG, AI365VIP, Pizzagpt, Allyfy, ]) ) gpt_35_turbo_16k = Model( name = 'gpt-3.5-turbo-16k', base_provider = 'openai', best_provider = gpt_35_long.best_provider ) gpt_35_turbo_16k_0613 = Model( name = 'gpt-3.5-turbo-16k-0613', base_provider = 'openai', best_provider = gpt_35_long.best_provider ) gpt_35_turbo_0613 = Model( name = 'gpt-3.5-turbo-0613', base_provider = 'openai', best_provider = gpt_35_turbo.best_provider ) # gpt-4 gpt_4 = Model( name = 'gpt-4', base_provider = 'openai', best_provider = IterListProvider([ Bing, Chatgpt4Online ]) ) gpt_4_0613 = Model( name = 'gpt-4-0613', base_provider = 'openai', best_provider = gpt_4.best_provider ) gpt_4_32k = Model( name = 'gpt-4-32k', base_provider = 'openai', best_provider = gpt_4.best_provider ) gpt_4_32k_0613 = Model( name = 'gpt-4-32k-0613', base_provider = 'openai', best_provider = gpt_4.best_provider ) gpt_4_turbo = Model( name = 'gpt-4-turbo', base_provider = 'openai', best_provider = IterListProvider([ Bing, Liaobots ]) ) gpt_4o = Model( name = 'gpt-4o', base_provider = 'openai', best_provider = IterListProvider([ You, Liaobots, Chatgpt4o, AI365VIP, OpenaiChat ]) ) gpt_4o_mini = Model( name = 'gpt-4o-mini', base_provider = 'openai', best_provider = IterListProvider([ Liaobots, OpenaiChat, You, ]) ) ### GigaChat ### gigachat = Model( name = 'GigaChat:latest', base_provider = 'gigachat', best_provider = GigaChat ) ### Meta ### meta = Model( name = "meta", base_provider = "meta", best_provider = MetaAI ) llama3_8b_instruct = Model( name = "meta-llama/Meta-Llama-3-8B-Instruct", base_provider = "meta", best_provider = IterListProvider([DeepInfra, PerplexityLabs, Replicate]) ) llama3_70b_instruct = Model( name = "meta-llama/Meta-Llama-3-70B-Instruct", base_provider = "meta", best_provider = IterListProvider([DeepInfra, PerplexityLabs, Replicate, DDG, ReplicateHome]) ) llama_3_1_70b_Instruct = Model( name = "meta-llama/Meta-Llama-3.1-70B-Instruct", base_provider = "meta", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) llama_3_1_405b_Instruct_FP8 = Model( name = "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", base_provider = "meta", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) codellama_34b_instruct = Model( name = "codellama/CodeLlama-34b-Instruct-hf", base_provider = "meta", best_provider = HuggingChat ) codellama_70b_instruct = Model( name = "codellama/CodeLlama-70b-Instruct-hf", base_provider = "meta", best_provider = IterListProvider([DeepInfra]) ) ### Mistral ### mixtral_8x7b = Model( name = "mistralai/Mixtral-8x7B-Instruct-v0.1", base_provider = "huggingface", best_provider = IterListProvider([DeepInfra, HuggingFace, PerplexityLabs, HuggingChat, DDG, ReplicateHome]) ) mistral_7b_v02 = Model( name = "mistralai/Mistral-7B-Instruct-v0.2", base_provider = "huggingface", best_provider = IterListProvider([DeepInfra, HuggingFace, HuggingChat]) ) ### NousResearch ### Nous_Hermes_2_Mixtral_8x7B_DPO = Model( name = "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", base_provider = "NousResearch", best_provider = IterListProvider([HuggingFace, HuggingChat]) ) ### 01-ai ### Yi_1_5_34B_Chat = Model( name = "01-ai/Yi-1.5-34B-Chat", base_provider = "01-ai", best_provider = IterListProvider([HuggingFace, HuggingChat]) ) ### Microsoft ### Phi_3_mini_4k_instruct = Model( name = "microsoft/Phi-3-mini-4k-instruct", base_provider = "Microsoft", best_provider = IterListProvider([HuggingFace, HuggingChat]) ) ### Google ### # gemini gemini = Model( name = 'gemini', base_provider = 'Google', best_provider = Gemini ) gemini_pro = Model( name = 'gemini-pro', base_provider = 'Google', best_provider = IterListProvider([GeminiPro, You, ChatGot, GeminiProChat, Liaobots]) ) gemini_flash = Model( name = 'gemini-flash', base_provider = 'Google', best_provider = IterListProvider([Liaobots]) ) # gemma gemma_2b_it = Model( name = 'gemma-2b-it', base_provider = 'Google', best_provider = IterListProvider([ReplicateHome]) ) gemma_2_9b_it = Model( name = 'gemma-2-9b-it', base_provider = 'Google', best_provider = IterListProvider([PerplexityLabs]) ) gemma_2_27b_it = Model( name = 'gemma-2-27b-it', base_provider = 'Google', best_provider = IterListProvider([PerplexityLabs]) ) ### Anthropic ### claude_2 = Model( name = 'claude-2', base_provider = 'Anthropic', best_provider = IterListProvider([You]) ) claude_2_0 = Model( name = 'claude-2.0', base_provider = 'Anthropic', best_provider = IterListProvider([Liaobots]) ) claude_2_1 = Model( name = 'claude-2.1', base_provider = 'Anthropic', best_provider = IterListProvider([Liaobots]) ) claude_3_opus = Model( name = 'claude-3-opus', base_provider = 'Anthropic', best_provider = IterListProvider([You, Liaobots]) ) claude_3_sonnet = Model( name = 'claude-3-sonnet', base_provider = 'Anthropic', best_provider = IterListProvider([You, Liaobots]) ) claude_3_5_sonnet = Model( name = 'claude-3-5-sonnet', base_provider = 'Anthropic', best_provider = IterListProvider([Liaobots]) ) claude_3_haiku = Model( name = 'claude-3-haiku', base_provider = 'Anthropic', best_provider = IterListProvider([DDG, AI365VIP, Liaobots]) ) ### Reka AI ### reka_core = Model( name = 'reka-core', base_provider = 'Reka AI', best_provider = Reka ) ### NVIDIA ### nemotron_4_340b_instruct = Model( name = 'nemotron-4-340b-instruct', base_provider = 'NVIDIA', best_provider = IterListProvider([PerplexityLabs]) ) ### Blackbox ### blackbox = Model( name = 'blackbox', base_provider = 'Blackbox', best_provider = Blackbox ) ### Databricks ### dbrx_instruct = Model( name = 'databricks/dbrx-instruct', base_provider = 'Databricks', best_provider = IterListProvider([DeepInfra]) ) ### CohereForAI ### command_r_plus = Model( name = 'CohereForAI/c4ai-command-r-plus', base_provider = 'CohereForAI', best_provider = IterListProvider([HuggingChat]) ) ### iFlytek ### SparkDesk_v1_1 = Model( name = 'SparkDesk-v1.1', base_provider = 'iFlytek', best_provider = IterListProvider([FreeChatgpt]) ) ### DeepSeek ### deepseek_coder = Model( name = 'deepseek-coder', base_provider = 'DeepSeek', best_provider = IterListProvider([FreeChatgpt]) ) deepseek_chat = Model( name = 'deepseek-chat', base_provider = 'DeepSeek', best_provider = IterListProvider([FreeChatgpt]) ) ### Qwen ### Qwen2_7B_Instruct = Model( name = 'Qwen2-7B-Instruct', base_provider = 'Qwen', best_provider = IterListProvider([FreeChatgpt]) ) ### Zhipu AI ### glm4_9B_chat = Model( name = 'glm4-9B-chat', base_provider = 'Zhipu AI', best_provider = IterListProvider([FreeChatgpt]) ) chatglm3_6B = Model( name = 'chatglm3-6B', base_provider = 'Zhipu AI', best_provider = IterListProvider([FreeChatgpt]) ) ### 01-ai ### Yi_1_5_9B_Chat = Model( name = 'Yi-1.5-9B-Chat', base_provider = '01-ai', best_provider = IterListProvider([FreeChatgpt]) ) ### Other ### pi = Model( name = 'pi', base_provider = 'inflection', best_provider = Pi ) ############# ### Image ### ############# ### Stability AI ### sdxl = Model( name = 'stability-ai/sdxl', base_provider = 'Stability AI', best_provider = IterListProvider([DeepInfraImage]) ) stable_diffusion_3 = Model( name = 'stability-ai/stable-diffusion-3', base_provider = 'Stability AI', best_provider = IterListProvider([ReplicateHome]) ) sdxl_lightning_4step = Model( name = 'bytedance/sdxl-lightning-4step', base_provider = 'Stability AI', best_provider = IterListProvider([ReplicateHome]) ) playground_v2_5_1024px_aesthetic = Model( name = 'playgroundai/playground-v2.5-1024px-aesthetic', base_provider = 'Stability AI', best_provider = IterListProvider([ReplicateHome]) ) class ModelUtils: """ Utility class for mapping string identifiers to Model instances. Attributes: convert (dict[str, Model]): Dictionary mapping model string identifiers to Model instances. """ convert: dict[str, Model] = { ############ ### Text ### ############ ### OpenAI ### ### GPT-3.5 / GPT-4 ### # gpt-3.5 'gpt-3.5-turbo' : gpt_35_turbo, 'gpt-3.5-turbo-0613' : gpt_35_turbo_0613, 'gpt-3.5-turbo-16k' : gpt_35_turbo_16k, 'gpt-3.5-turbo-16k-0613' : gpt_35_turbo_16k_0613, 'gpt-3.5-long': gpt_35_long, # gpt-4 'gpt-4o' : gpt_4o, 'gpt-4o-mini' : gpt_4o_mini, 'gpt-4' : gpt_4, 'gpt-4-0613' : gpt_4_0613, 'gpt-4-32k' : gpt_4_32k, 'gpt-4-32k-0613' : gpt_4_32k_0613, 'gpt-4-turbo' : gpt_4_turbo, ### Meta ### "meta-ai": meta, 'llama3-8b': llama3_8b_instruct, # alias 'llama3-70b': llama3_70b_instruct, # alias 'llama3-8b-instruct' : llama3_8b_instruct, 'llama3-70b-instruct': llama3_70b_instruct, 'llama-3.1-70b-Instruct': llama_3_1_70b_Instruct, 'llama-3.1-405B-Instruct-FP8': llama_3_1_405b_Instruct_FP8, 'codellama-34b-instruct': codellama_34b_instruct, 'codellama-70b-instruct': codellama_70b_instruct, ### Mistral (Opensource) ### 'mixtral-8x7b': mixtral_8x7b, 'mistral-7b-v02': mistral_7b_v02, ### NousResearch ### 'Nous-Hermes-2-Mixtral-8x7B-DPO': Nous_Hermes_2_Mixtral_8x7B_DPO, ### 01-ai ### 'Yi-1.5-34B-Chat': Yi_1_5_34B_Chat, ### Microsoft ### 'Phi-3-mini-4k-instruct': Phi_3_mini_4k_instruct, ### Google ### # gemini 'gemini': gemini, 'gemini-pro': gemini_pro, 'gemini-flash': gemini_flash, # gemma 'gemma-2b-it': gemma_2b_it, 'gemma-2-9b-it': gemma_2_9b_it, 'gemma-2-27b-it': gemma_2_27b_it, ### Anthropic ### 'claude-2': claude_2, 'claude-2.0': claude_2_0, 'claude-2.1': claude_2_1, 'claude-3-opus': claude_3_opus, 'claude-3-sonnet': claude_3_sonnet, 'claude-3-5-sonnet': claude_3_5_sonnet, 'claude-3-haiku': claude_3_haiku, ### Reka AI ### 'reka': reka_core, ### NVIDIA ### 'nemotron-4-340b-instruct': nemotron_4_340b_instruct, ### Blackbox ### 'blackbox': blackbox, ### CohereForAI ### 'command-r+': command_r_plus, ### Databricks ### 'dbrx-instruct': dbrx_instruct, ### GigaChat ### 'gigachat': gigachat, ### iFlytek ### 'SparkDesk-v1.1': SparkDesk_v1_1, ### DeepSeek ### 'deepseek-coder': deepseek_coder, 'deepseek-chat': deepseek_chat, ### ### Qwen ### ### 'Qwen2-7B-Instruct': Qwen2_7B_Instruct, ### Zhipu AI ### 'glm4-9B-chat': glm4_9B_chat, 'chatglm3-6B': chatglm3_6B, ### 01-ai ### 'Yi-1.5-9B-Chat': Yi_1_5_9B_Chat, # Other 'pi': pi, ############# ### Image ### ############# ### Stability AI ### 'sdxl': sdxl, 'stable-diffusion-3': stable_diffusion_3, ### ByteDance ### 'sdxl-lightning-4step': sdxl_lightning_4step, ### ByteDance ### 'sdxl-lightning-4step': sdxl_lightning_4step, ### Playground ### 'playground-v2.5-1024px-aesthetic': playground_v2_5_1024px_aesthetic, } _all_models = list(ModelUtils.convert.keys())