From 0af4fc0997360720712f8b37d75431ce7de79e74 Mon Sep 17 00:00:00 2001 From: ThatLukinhasGuy <139662282+thatlukinhasguy1@users.noreply.github.com> Date: Sat, 4 Nov 2023 18:16:09 -0300 Subject: Update __init__.py --- g4f/api/__init__.py | 281 ++++++++++++++++++++++++++-------------------------- 1 file changed, 138 insertions(+), 143 deletions(-) diff --git a/g4f/api/__init__.py b/g4f/api/__init__.py index 8ea61dba..17951339 100644 --- a/g4f/api/__init__.py +++ b/g4f/api/__init__.py @@ -1,167 +1,162 @@ -from fastapi import FastAPI, Response, Request -from fastapi.middleware.cors import CORSMiddleware -from typing import List, Union, Any, Dict, AnyStr -from ._tokenizer import tokenize -import g4f +from fastapi import FastAPI, Response, Request +from typing import List, Union, Any, Dict, AnyStr +from ._tokenizer import tokenize +from .. import BaseProvider + import time import json import random import string import uvicorn import nest_asyncio +import g4f -app = FastAPI() -nest_asyncio.apply() - -origins = [ - "http://localhost", - "http://localhost:1337", -] - -app.add_middleware( - CORSMiddleware, - allow_origins=origins, - allow_credentials=True, - allow_methods=["*"], - allow_headers=["*"], -) - -JSONObject = Dict[AnyStr, Any] -JSONArray = List[Any] -JSONStructure = Union[JSONArray, JSONObject] - -@app.get("/") -async def read_root(): - return Response(content=json.dumps({"info": "G4F API"}, indent=4), media_type="application/json") - -@app.get("/v1") -async def read_root_v1(): - return Response(content=json.dumps({"info": "Go to /v1/chat/completions or /v1/models."}, indent=4), media_type="application/json") - -@app.get("/v1/models") -async def models(): - model_list = [{ - 'id': model, - 'object': 'model', - 'created': 0, - 'owned_by': 'g4f'} for model in g4f.Model.__all__()] - - return Response(content=json.dumps({ - 'object': 'list', - 'data': model_list}, indent=4), media_type="application/json") - -@app.get("/v1/models/{model_name}") -async def model_info(model_name: str): - try: - model_info = (g4f.ModelUtils.convert[model_name]) - - return Response(content=json.dumps({ - 'id': model_name, - 'object': 'model', - 'created': 0, - 'owned_by': model_info.base_provider - }, indent=4), media_type="application/json") - except: - return Response(content=json.dumps({"error": "The model does not exist."}, indent=4), media_type="application/json") - -@app.post("/v1/chat/completions") -async def chat_completions(request: Request, item: JSONStructure = None): - - item_data = { - 'model': 'gpt-3.5-turbo', - 'stream': False, - } - - item_data.update(item or {}) - model = item_data.get('model') - stream = item_data.get('stream') - messages = item_data.get('messages') - - try: - response = g4f.ChatCompletion.create(model=model, stream=stream, messages=messages) - except: - return Response(content=json.dumps({"error": "An error occurred while generating the response."}, indent=4), media_type="application/json") - - completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28)) - completion_timestamp = int(time.time()) - - if not stream: - prompt_tokens, _ = tokenize(''.join([message['content'] for message in messages])) - completion_tokens, _ = tokenize(response) - - json_data = { - 'id': f'chatcmpl-{completion_id}', - 'object': 'chat.completion', - 'created': completion_timestamp, - 'model': model, - 'choices': [ - { - 'index': 0, - 'message': { - 'role': 'assistant', - 'content': response, - }, - 'finish_reason': 'stop', - } - ], - 'usage': { - 'prompt_tokens': prompt_tokens, - 'completion_tokens': completion_tokens, - 'total_tokens': prompt_tokens + completion_tokens, - }, - } - - return Response(content=json.dumps(json_data, indent=4), media_type="application/json") - - def streaming(): - try: - for chunk in response: - completion_data = { +class Api: + def __init__(self, engine: g4f, debug: bool = True, sentry: bool = False, + list_ignored_providers: List[Union[str, BaseProvider]] = None) -> None: + self.engine = engine + self.debug = debug + self.sentry = sentry + self.list_ignored_providers = list_ignored_providers + + self.app = FastAPI() + nest_asyncio.apply() + + JSONObject = Dict[AnyStr, Any] + JSONArray = List[Any] + JSONStructure = Union[JSONArray, JSONObject] + + @self.app.get("/") + async def read_root(): + return Response(content=json.dumps({"info": "g4f API"}, indent=4), media_type="application/json") + + @self.app.get("/v1") + async def read_root_v1(): + return Response(content=json.dumps({"info": "Go to /v1/chat/completions or /v1/models."}, indent=4), media_type="application/json") + + @self.app.get("/v1/models") + async def models(): + model_list = [{ + 'id': model, + 'object': 'model', + 'created': 0, + 'owned_by': 'g4f'} for model in g4f.Model.__all__()] + + return Response(content=json.dumps({ + 'object': 'list', + 'data': model_list}, indent=4), media_type="application/json") + + @self.app.get("/v1/models/{model_name}") + async def model_info(model_name: str): + try: + model_info = (g4f.ModelUtils.convert[model_name]) + + return Response(content=json.dumps({ + 'id': model_name, + 'object': 'model', + 'created': 0, + 'owned_by': model_info.base_provider + }, indent=4), media_type="application/json") + except: + return Response(content=json.dumps({"error": "The model does not exist."}, indent=4), media_type="application/json") + + @self.app.post("/v1/chat/completions") + async def chat_completions(request: Request, item: JSONStructure = None): + item_data = { + 'model': 'gpt-3.5-turbo', + 'stream': False, + } + + item_data.update(item or {}) + model = item_data.get('model') + stream = item_data.get('stream') + messages = item_data.get('messages') + + try: + response = g4f.ChatCompletion.create(model=model, stream=stream, messages=messages) + except: + return Response(content=json.dumps({"error": "An error occurred while generating the response."}, indent=4), media_type="application/json") + + completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28)) + completion_timestamp = int(time.time()) + + if not stream: + prompt_tokens, _ = tokenize(''.join([message['content'] for message in messages])) + completion_tokens, _ = tokenize(response) + + json_data = { 'id': f'chatcmpl-{completion_id}', - 'object': 'chat.completion.chunk', + 'object': 'chat.completion', 'created': completion_timestamp, 'model': model, 'choices': [ { 'index': 0, - 'delta': { - 'content': chunk, + 'message': { + 'role': 'assistant', + 'content': response, }, - 'finish_reason': None, + 'finish_reason': 'stop', } ], + 'usage': { + 'prompt_tokens': prompt_tokens, + 'completion_tokens': completion_tokens, + 'total_tokens': prompt_tokens + completion_tokens, + }, } - content = json.dumps(completion_data, separators=(',', ':')) - yield f'data: {content}\n\n' - time.sleep(0.03) - - end_completion_data = { - 'id': f'chatcmpl-{completion_id}', - 'object': 'chat.completion.chunk', - 'created': completion_timestamp, - 'model': model, - 'choices': [ - { - 'index': 0, - 'delta': {}, - 'finish_reason': 'stop', + return Response(content=json.dumps(json_data, indent=4), media_type="application/json") + + def streaming(): + try: + for chunk in response: + completion_data = { + 'id': f'chatcmpl-{completion_id}', + 'object': 'chat.completion.chunk', + 'created': completion_timestamp, + 'model': model, + 'choices': [ + { + 'index': 0, + 'delta': { + 'content': chunk, + }, + 'finish_reason': None, + } + ], + } + + content = json.dumps(completion_data, separators=(',', ':')) + yield f'data: {content}\n\n' + time.sleep(0.03) + + end_completion_data = { + 'id': f'chatcmpl-{completion_id}', + 'object': 'chat.completion.chunk', + 'created': completion_timestamp, + 'model': model, + 'choices': [ + { + 'index': 0, + 'delta': {}, + 'finish_reason': 'stop', + } + ], } - ], - } - content = json.dumps(end_completion_data, separators=(',', ':')) - yield f'data: {content}\n\n' + content = json.dumps(end_completion_data, separators=(',', ':')) + yield f'data: {content}\n\n' - except GeneratorExit: - pass + except GeneratorExit: + pass - return Response(content=json.dumps(streaming(), indent=4), media_type="application/json") + return Response(content=json.dumps(streaming(), indent=4), media_type="application/json") -@app.post("/v1/completions") -async def completions(): - return Response(content=json.dumps({'info': 'Not working yet.'}, indent=4), media_type="application/json") + @self.app.post("/v1/completions") + async def completions(): + return Response(content=json.dumps({'info': 'Not working yet.'}, indent=4), media_type="application/json") -def run(ip, thread_quantity): - split_ip = ip.split(":") - uvicorn.run(app, host=split_ip[0], port=int(split_ip[1]), use_colors=False, workers=thread_quantity) + def run(self, ip, thread_quantity): + split_ip = ip.split(":") + uvicorn.run(self.app, host=split_ip[0], port=int(split_ip[1]), use_colors=False, workers=thread_quantity) -- cgit v1.2.3