blob: a30f896d3028b727dfb56fe7b6d84432d10caee5 (
plain) (
tree)
|
|
from __future__ import annotations
from urllib.parse import quote
import random
import requests
from aiohttp import ClientSession
from ..typing import AsyncResult, Messages
from ..image import ImageResponse
from ..requests.raise_for_status import raise_for_status
from ..requests.aiohttp import get_connector
from .needs_auth.OpenaiAPI import OpenaiAPI
from .helper import format_prompt
class PollinationsAI(OpenaiAPI):
label = "Pollinations.AI"
url = "https://pollinations.ai"
working = True
supports_stream = True
default_model = "openai"
@classmethod
def get_models(cls):
if not cls.image_models:
url = "https://image.pollinations.ai/models"
response = requests.get(url)
raise_for_status(response)
cls.image_models = response.json()
if not cls.models:
url = "https://text.pollinations.ai/models"
response = requests.get(url)
raise_for_status(response)
cls.models = [model.get("name") for model in response.json()]
cls.models.extend(cls.image_models)
return cls.models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
api_base: str = "https://text.pollinations.ai/openai",
api_key: str = None,
proxy: str = None,
seed: str = None,
**kwargs
) -> AsyncResult:
if model:
model = cls.get_model(model)
if model in cls.image_models:
if prompt is None:
prompt = messages[-1]["content"]
if seed is None:
seed = random.randint(0, 100000)
image = f"https://image.pollinations.ai/prompt/{quote(prompt)}?width=1024&height=1024&seed={int(seed)}&nofeed=true&nologo=true&model={quote(model)}"
yield ImageResponse(image, prompt)
return
if api_key is None:
async with ClientSession(connector=get_connector(proxy=proxy)) as session:
prompt = format_prompt(messages)
async with session.get(f"https://text.pollinations.ai/{quote(prompt)}?model={quote(model)}") as response:
await raise_for_status(response)
async for line in response.content.iter_any():
yield line.decode(errors="ignore")
else:
async for chunk in super().create_async_generator(
model, messages, api_base=api_base, proxy=proxy, **kwargs
):
yield chunk
|