1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
#pragma once
#include "RedstoneHandler.h"
#include "Blocks/BlockComparator.h"
class cRedstoneComparatorHandler : public cRedstoneHandler
{
typedef cRedstoneHandler super;
public:
unsigned char GetFrontPowerLevel(cWorld & a_World, Vector3i a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, unsigned char a_HighestSidePowerLevel, unsigned char a_HighestRearPowerLevel) const
{
if (cBlockComparatorHandler::IsInSubtractionMode(a_Meta))
{
// Subtraction mode
return static_cast<unsigned char>(std::max(static_cast<char>(a_HighestRearPowerLevel) - a_HighestSidePowerLevel, 0));
}
else
{
// Comparison mode
return (std::max(a_HighestSidePowerLevel, a_HighestRearPowerLevel) == a_HighestSidePowerLevel) ? 0 : a_HighestRearPowerLevel;
}
}
virtual unsigned char GetPowerDeliveredToPosition(cWorld & a_World, Vector3i a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, Vector3i a_QueryPosition, BLOCKTYPE a_QueryBlockType) const override
{
UNUSED(a_QueryPosition);
UNUSED(a_QueryBlockType);
auto ChunkData = static_cast<cIncrementalRedstoneSimulator *>(a_World.GetRedstoneSimulator())->GetChunkData();
return (
(cBlockComparatorHandler::GetFrontCoordinate(a_Position, a_Meta & 0x3) == a_QueryPosition) ?
ChunkData->GetCachedPowerData(a_Position).PowerLevel : 0
);
}
virtual unsigned char GetPowerLevel(cWorld & a_World, Vector3i a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta) const override
{
UNUSED(a_Position);
UNUSED(a_BlockType);
class cContainerCallback : public cBlockEntityCallback
{
public:
cContainerCallback() : m_SignalStrength(0)
{
}
virtual bool Item(cBlockEntity * a_BlockEntity) override
{
// Skip BlockEntities that don't have slots
auto BlockEntityWithItems = dynamic_cast<cBlockEntityWithItems *>(a_BlockEntity);
if (BlockEntityWithItems == nullptr)
{
return false;
}
auto & Contents = BlockEntityWithItems->GetContents();
float Fullness = 0; // Is a floating-point type to allow later calculation to produce a non-truncated value
for (int Slot = 0; Slot != Contents.GetNumSlots(); ++Slot)
{
Fullness += static_cast<float>(Contents.GetSlot(Slot).m_ItemCount) / Contents.GetSlot(Slot).GetMaxStackSize();
}
m_SignalStrength = (Fullness < 0.001 /* container empty? */) ? 0 : static_cast<unsigned char>(1 + (Fullness / Contents.GetNumSlots()) * 14);
return false;
}
unsigned char m_SignalStrength;
} CCB;
auto RearCoordinate = cBlockComparatorHandler::GetRearCoordinate(a_Position, a_Meta & 0x3);
a_World.DoWithBlockEntityAt(RearCoordinate.x, RearCoordinate.y, RearCoordinate.z, CCB);
auto RearPower = CCB.m_SignalStrength;
auto RearType = a_World.GetBlock(RearCoordinate);
auto PotentialSourceHandler = cIncrementalRedstoneSimulator::GetComponentHandler(RearType);
if (PotentialSourceHandler != nullptr)
{
NIBBLETYPE RearMeta = a_World.GetBlockMeta(RearCoordinate);
RearPower = std::max(CCB.m_SignalStrength, PotentialSourceHandler->GetPowerDeliveredToPosition(a_World, RearCoordinate, RearType, RearMeta, a_Position, a_BlockType));
}
return RearPower;
}
virtual cVector3iArray Update(cWorld & a_World, Vector3i a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, PoweringData a_PoweringData) const override
{
// Note that a_PoweringData here contains the maximum * side * power level, as specified by GetValidSourcePositions
// LOGD("Evaluating ALU the comparator (%d %d %d)", a_Position.x, a_Position.y, a_Position.z);
auto Data = static_cast<cIncrementalRedstoneSimulator *>(a_World.GetRedstoneSimulator())->GetChunkData();
auto DelayInfo = Data->GetMechanismDelayInfo(a_Position);
// Delay is used here to prevent an infinite loop (#3168)
if (DelayInfo == nullptr)
{
auto RearPower = GetPowerLevel(a_World, a_Position, a_BlockType, a_Meta);
auto FrontPower = GetFrontPowerLevel(a_World, a_Position, a_BlockType, a_Meta, a_PoweringData.PowerLevel, RearPower);
auto PreviousFrontPower = Data->ExchangeUpdateOncePowerData(a_Position, PoweringData(a_PoweringData.PoweringBlock, FrontPower));
bool ShouldBeOn = (RearPower > 0); // Provide visual indication by examining * rear * power level
bool ShouldUpdate = (FrontPower != PreviousFrontPower.PowerLevel); // "Business logic" (:P) - determine by examining *side* power levels
if (ShouldUpdate || (ShouldBeOn != cBlockComparatorHandler::IsOn(a_Meta)))
{
Data->m_MechanismDelays[a_Position] = std::make_pair(1, ShouldBeOn);
}
}
else
{
int DelayTicks;
bool ShouldPowerOn;
std::tie(DelayTicks, ShouldPowerOn) = *DelayInfo;
if (DelayTicks == 0)
{
a_World.SetBlockMeta(a_Position, ShouldPowerOn ? (a_Meta | 0x8) : (a_Meta & 0x7));
Data->m_MechanismDelays.erase(a_Position);
// Assume that an update (to front power) is needed.
// Note: potential inconsistencies will arise as power data is updated before-delay due to limitations of the power data caching functionality (only stores one bool)
// This means that other mechanisms like wires may get our new power data before our delay has finished
// This also means that we have to manually update ourselves to be aware of any changes that happened in the previous redstone tick
return StaticAppend(GetAdjustedRelatives(a_Position, GetRelativeLaterals()), cVector3iArray{ a_Position });
}
}
return {};
}
virtual cVector3iArray GetValidSourcePositions(cWorld & a_World, Vector3i a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta) const override
{
UNUSED(a_World);
UNUSED(a_BlockType);
return cVector3iArray {cBlockComparatorHandler::GetSideCoordinate(a_Position, a_Meta & 0x3, false), cBlockComparatorHandler::GetSideCoordinate(a_Position, a_Meta & 0x3, true)};
}
};
|