1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
// DelayedFluidSimulator.cpp
// Interfaces to the cDelayedFluidSimulator class representing a fluid simulator that has a configurable delay
// before simulating a block. Each tick it takes a consecutive delay "slot" and simulates only blocks in that slot.
#include "Globals.h"
#include "DelayedFluidSimulator.h"
#include "../World.h"
#include "../Chunk.h"
////////////////////////////////////////////////////////////////////////////////
// cDelayedFluidSimulatorChunkData::cSlot
bool cDelayedFluidSimulatorChunkData::cSlot::Add(int a_RelX, int a_RelY, int a_RelZ)
{
ASSERT(a_RelZ >= 0);
ASSERT(a_RelZ < static_cast<int>(ARRAYCOUNT(m_Blocks)));
auto & Blocks = m_Blocks[a_RelZ];
const auto Index = cChunkDef::MakeIndex(a_RelX, a_RelY, a_RelZ);
for (const auto & Block : Blocks)
{
if (Block.Data == Index)
{
// Already present
return false;
}
} // for itr - Blocks[]
Blocks.emplace_back(a_RelX, a_RelY, a_RelZ, Index);
return true;
}
////////////////////////////////////////////////////////////////////////////////
// cDelayedFluidSimulatorChunkData:
cDelayedFluidSimulatorChunkData::cDelayedFluidSimulatorChunkData(int a_TickDelay) :
m_Slots(new cSlot[ToUnsigned(a_TickDelay)])
{
}
cDelayedFluidSimulatorChunkData::~cDelayedFluidSimulatorChunkData()
{
delete[] m_Slots;
m_Slots = nullptr;
}
////////////////////////////////////////////////////////////////////////////////
// cDelayedFluidSimulator:
cDelayedFluidSimulator::cDelayedFluidSimulator(
cWorld & a_World,
BLOCKTYPE a_Fluid,
BLOCKTYPE a_StationaryFluid,
int a_TickDelay
) :
Super(a_World, a_Fluid, a_StationaryFluid),
m_TickDelay(a_TickDelay),
m_AddSlotNum(a_TickDelay - 1),
m_SimSlotNum(0),
m_TotalBlocks(0)
{
}
void cDelayedFluidSimulator::Simulate(float a_Dt)
{
m_AddSlotNum = m_SimSlotNum;
m_SimSlotNum += 1;
if (m_SimSlotNum >= m_TickDelay)
{
m_SimSlotNum = 0;
}
}
void cDelayedFluidSimulator::SimulateChunk(std::chrono::milliseconds a_Dt, int a_ChunkX, int a_ChunkZ, cChunk * a_Chunk)
{
auto ChunkDataRaw =
(m_FluidBlock == E_BLOCK_WATER) ? a_Chunk->GetWaterSimulatorData() : a_Chunk->GetLavaSimulatorData();
cDelayedFluidSimulatorChunkData * ChunkData = static_cast<cDelayedFluidSimulatorChunkData *>(ChunkDataRaw);
cDelayedFluidSimulatorChunkData::cSlot & Slot = ChunkData->m_Slots[m_SimSlotNum];
// Simulate all the blocks in the scheduled slot:
for (size_t i = 0; i < ARRAYCOUNT(Slot.m_Blocks); i++)
{
auto & Blocks = Slot.m_Blocks[i];
if (Blocks.empty())
{
continue;
}
for (const auto & Block : Blocks)
{
SimulateBlock(a_Chunk, Block.x, Block.y, Block.z);
}
m_TotalBlocks -= static_cast<int>(Blocks.size());
Blocks.clear();
}
}
void cDelayedFluidSimulator::AddBlock(cChunk & a_Chunk, Vector3i a_Position, BLOCKTYPE a_Block)
{
if ((a_Block != m_FluidBlock) && (a_Block != m_StationaryFluidBlock))
{
return;
}
auto ChunkDataRaw =
(m_FluidBlock == E_BLOCK_WATER) ? a_Chunk.GetWaterSimulatorData() : a_Chunk.GetLavaSimulatorData();
cDelayedFluidSimulatorChunkData * ChunkData = static_cast<cDelayedFluidSimulatorChunkData *>(ChunkDataRaw);
cDelayedFluidSimulatorChunkData::cSlot & Slot = ChunkData->m_Slots[m_AddSlotNum];
// Add, if not already present:
if (!Slot.Add(a_Position.x, a_Position.y, a_Position.z))
{
return;
}
++m_TotalBlocks;
}
|