summaryrefslogtreecommitdiffstats
path: root/src/Protocol/ChunkDataSerializer.cpp
blob: bf8798d6f048bfc73bec2413413326457f7ce9f8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#include "Globals.h"
#include "ChunkDataSerializer.h"
#include "zlib/zlib.h"
#include "Protocol_1_8.h"
#include "Protocol_1_9.h"
#include "../ByteBuffer.h"
#include "../ClientHandle.h"

#include "Palettes/Upgrade.h"
#include "Palettes/Palette_1_13.h"
#include "Palettes/Palette_1_13_1.h"





/** Calls the given function with every present chunk section. */
template <class Func>
void ForEachSection(const cChunkData & a_Data, Func a_Func)
{
	for (size_t SectionIdx = 0; SectionIdx < cChunkData::NumSections; ++SectionIdx)
	{
		auto Section = a_Data.GetSection(SectionIdx);
		if (Section != nullptr)
		{
			a_Func(*Section);
		}
	}
}





////////////////////////////////////////////////////////////////////////////////
// cChunkDataSerializer:

cChunkDataSerializer::cChunkDataSerializer(
	int                   a_ChunkX,
	int                   a_ChunkZ,
	const cChunkData &    a_Data,
	const unsigned char * a_BiomeData,
	const eDimension      a_Dimension
) :
	m_ChunkX(a_ChunkX),
	m_ChunkZ(a_ChunkZ),
	m_Data(a_Data),
	m_BiomeData(a_BiomeData),
	m_Dimension(a_Dimension)
{
}





void cChunkDataSerializer::SendToClients(const std::unordered_set<cClientHandle *> & a_SendTo)
{
	std::unordered_map<cProtocol::Version, std::vector<cClientHandle *>> ClientProtocolVersions;

	for (const auto Client : a_SendTo)
	{
		const auto ClientProtocol = static_cast<cProtocol::Version>(Client->GetProtocolVersion());
		ClientProtocolVersions[ClientProtocol].emplace_back(Client);
	}

	for (const auto & Entry : ClientProtocolVersions)
	{
		switch (Entry.first)
		{
			case cProtocol::Version::Version_1_8_0:
			{
				Serialize47(Entry.second);
				continue;
			}
			case cProtocol::Version::Version_1_9_0:
			case cProtocol::Version::Version_1_9_1:
			case cProtocol::Version::Version_1_9_2:
			{
				Serialize107(Entry.second);
				continue;
			}
			case cProtocol::Version::Version_1_9_4:
			case cProtocol::Version::Version_1_10_0:
			case cProtocol::Version::Version_1_11_0:
			case cProtocol::Version::Version_1_11_1:
			case cProtocol::Version::Version_1_12:
			case cProtocol::Version::Version_1_12_1:
			case cProtocol::Version::Version_1_12_2:
			{
				Serialize110(Entry.second);
				continue;
			}
			case cProtocol::Version::Version_1_13:
			{
				Serialize393And401<&Palette_1_13::FromBlock>(Entry.second);  // This version didn't last very long xD
				continue;
			}
			case cProtocol::Version::Version_1_13_1:
			case cProtocol::Version::Version_1_13_2:
			{
				Serialize393And401<&Palette_1_13_1::FromBlock>(Entry.second);
				continue;
			}
		}

		LOGERROR("cChunkDataSerializer::Serialize(): Unknown version: %d", Entry.first);
		ASSERT(!"Unknown chunk data serialization version");
	}
}





void cChunkDataSerializer::Serialize47(const std::vector<cClientHandle *> & a_SendTo)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x21);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(m_ChunkX);
	Packet.WriteBEInt32(m_ChunkZ);
	Packet.WriteBool(true);      // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteBEUInt16(m_Data.GetSectionBitmask());

	// Write the chunk size:
	const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	UInt32 ChunkSize = (
		m_Data.NumPresentSections() * cChunkData::SectionBlockCount * 3 +  // Blocks and lighting
		BiomeDataSize    // Biome data
	);
	Packet.WriteVarInt32(ChunkSize);

	// Chunk written as seperate arrays of (blocktype + meta), blocklight and skylight
	// each array stores all present sections of the same kind packed together

	// Write the block types to the packet:
	ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
		{
			for (size_t BlockIdx = 0; BlockIdx != cChunkData::SectionBlockCount; ++BlockIdx)
			{
				BLOCKTYPE BlockType = a_Section.m_BlockTypes[BlockIdx] & 0xFF;
				NIBBLETYPE BlockMeta = a_Section.m_BlockMetas[BlockIdx / 2] >> ((BlockIdx & 1) * 4) & 0x0f;
				Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
				Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
			}
		}
	);

	// Write the block lights:
	ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
		{
			Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
		}
	);

	// Write the sky lights:
	ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
		{
			Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
		}
	);

	// Write the biome data:
	Packet.WriteBuf(m_BiomeData, BiomeDataSize);

	CompressAndSend(Packet, a_SendTo);
}





void cChunkDataSerializer::Serialize107(const std::vector<cClientHandle *> & a_SendTo)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x20);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(m_ChunkX);
	Packet.WriteBEInt32(m_ChunkZ);
	Packet.WriteBool(true);        // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteVarInt32(m_Data.GetSectionBitmask());
	// Write the chunk size:
	const size_t BitsPerEntry = 13;
	const size_t Mask = (1 << BitsPerEntry) - 1;  // Creates a mask that is 13 bits long, ie 0b1111111111111
	const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8;  // Convert from bit count to long count
	size_t ChunkSectionSize = (
		1 +                                // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
		1 +                                // Palette length
		2 +                                // Data array length VarInt - 2 bytes for the current value
		ChunkSectionDataArraySize * 8 +    // Actual block data - multiplied by 8 because first number is longs
		cChunkData::SectionBlockCount / 2  // Block light
	);

	if (m_Dimension == dimOverworld)
	{
		// Sky light is only sent in the overworld.
		ChunkSectionSize += cChunkData::SectionBlockCount / 2;
	}

	const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	size_t ChunkSize = (
		ChunkSectionSize * m_Data.NumPresentSections() +
		BiomeDataSize
	);
	Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));

	// Write each chunk section...
	ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
		{
			Packet.WriteBEUInt8(static_cast<UInt8>(BitsPerEntry));
			Packet.WriteVarInt32(0);  // Palette length is 0
			Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));

			UInt64 TempLong = 0;  // Temporary value that will be stored into
			UInt64 CurrentlyWrittenIndex = 0;  // "Index" of the long that would be written to

			for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++)
			{
				UInt64 Value = static_cast<UInt64>(a_Section.m_BlockTypes[Index] << 4);
				if (Index % 2 == 0)
				{
					Value |= a_Section.m_BlockMetas[Index / 2] & 0x0f;
				}
				else
				{
					Value |= a_Section.m_BlockMetas[Index / 2] >> 4;
				}
				Value &= Mask;  // It shouldn't go out of bounds, but it's still worth being careful

				// Painful part where we write data into the long array.  Based off of the normal code.
				size_t BitPosition = Index * BitsPerEntry;
				size_t FirstIndex = BitPosition / 64;
				size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
				size_t BitOffset = BitPosition % 64;

				if (FirstIndex != CurrentlyWrittenIndex)
				{
					// Write the current data before modifiying it.
					Packet.WriteBEUInt64(TempLong);
					TempLong = 0;
					CurrentlyWrittenIndex = FirstIndex;
				}

				TempLong |= (Value << BitOffset);

				if (FirstIndex != SecondIndex)
				{
					// Part of the data is now in the second long; write the first one first
					Packet.WriteBEUInt64(TempLong);
					CurrentlyWrittenIndex = SecondIndex;

					TempLong = (Value >> (64 - BitOffset));
				}
			}
			// The last long will generally not be written
			Packet.WriteBEUInt64(TempLong);

			// Write lighting:
			Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
			if (m_Dimension == dimOverworld)
			{
				// Skylight is only sent in the overworld; the nether and end do not use it
				Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
			}
		}
	);

	// Write the biome data
	Packet.WriteBuf(m_BiomeData, BiomeDataSize);

	CompressAndSend(Packet, a_SendTo);
}





void cChunkDataSerializer::Serialize110(const std::vector<cClientHandle *> & a_SendTo)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x20);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(m_ChunkX);
	Packet.WriteBEInt32(m_ChunkZ);
	Packet.WriteBool(true);        // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteVarInt32(m_Data.GetSectionBitmask());
	// Write the chunk size:
	const size_t BitsPerEntry = 13;
	const size_t Mask = (1 << BitsPerEntry) - 1;  // Creates a mask that is 13 bits long, ie 0b1111111111111
	const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8;  // Convert from bit count to long count
	size_t ChunkSectionSize = (
		1 +                                // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
		1 +                                // Palette length
		2 +                                // Data array length VarInt - 2 bytes for the current value
		ChunkSectionDataArraySize * 8 +    // Actual block data - multiplied by 8 because first number is longs
		cChunkData::SectionBlockCount / 2  // Block light
	);

	if (m_Dimension == dimOverworld)
	{
		// Sky light is only sent in the overworld.
		ChunkSectionSize += cChunkData::SectionBlockCount / 2;
	}

	const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	size_t ChunkSize = (
		ChunkSectionSize * m_Data.NumPresentSections() +
		BiomeDataSize
	);
	Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));

	// Write each chunk section...
	ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
		{
			Packet.WriteBEUInt8(static_cast<UInt8>(BitsPerEntry));
			Packet.WriteVarInt32(0);  // Palette length is 0
			Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));

			UInt64 TempLong = 0;  // Temporary value that will be stored into
			UInt64 CurrentlyWrittenIndex = 0;  // "Index" of the long that would be written to

			for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++)
			{
				UInt64 Value = static_cast<UInt64>(a_Section.m_BlockTypes[Index] << 4);
				if (Index % 2 == 0)
				{
					Value |= a_Section.m_BlockMetas[Index / 2] & 0x0f;
				}
				else
				{
					Value |= a_Section.m_BlockMetas[Index / 2] >> 4;
				}
				Value &= Mask;  // It shouldn't go out of bounds, but it's still worth being careful

				// Painful part where we write data into the long array.  Based off of the normal code.
				size_t BitPosition = Index * BitsPerEntry;
				size_t FirstIndex = BitPosition / 64;
				size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
				size_t BitOffset = BitPosition % 64;

				if (FirstIndex != CurrentlyWrittenIndex)
				{
					// Write the current data before modifiying it.
					Packet.WriteBEUInt64(TempLong);
					TempLong = 0;
					CurrentlyWrittenIndex = FirstIndex;
				}

				TempLong |= (Value << BitOffset);

				if (FirstIndex != SecondIndex)
				{
					// Part of the data is now in the second long; write the first one first
					Packet.WriteBEUInt64(TempLong);
					CurrentlyWrittenIndex = SecondIndex;

					TempLong = (Value >> (64 - BitOffset));
				}
			}
			// The last long will generally not be written
			Packet.WriteBEUInt64(TempLong);

			// Write lighting:
			Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
			if (m_Dimension == dimOverworld)
			{
				// Skylight is only sent in the overworld; the nether and end do not use it
				Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
			}
		}
	);

	// Write the biome data
	Packet.WriteBuf(m_BiomeData, BiomeDataSize);

	// Identify 1.9.4's tile entity list as empty
	Packet.WriteBEUInt8(0);

	CompressAndSend(Packet, a_SendTo);
}





template <auto Palette>
void cChunkDataSerializer::Serialize393And401(const std::vector<cClientHandle *> & a_SendTo)
{
	// This function returns the fully compressed packet (including packet size), not the raw packet!

	// Create the packet:
	cByteBuffer Packet(512 KiB);
	Packet.WriteVarInt32(0x22);  // Packet id (Chunk Data packet)
	Packet.WriteBEInt32(m_ChunkX);
	Packet.WriteBEInt32(m_ChunkZ);
	Packet.WriteBool(true);  // "Ground-up continuous", or rather, "biome data present" flag
	Packet.WriteVarInt32(m_Data.GetSectionBitmask());

	// Write the chunk size in bytes:
	const size_t BitsPerEntry = 14;
	const size_t Mask = (1 << BitsPerEntry) - 1;
	const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8;
	size_t ChunkSectionSize = (
		1 +  // Bits per entry, BEUInt8, 1 byte
		Packet.GetVarIntSize(static_cast<UInt32>(ChunkSectionDataArraySize)) +  // Field containing "size of whole section", VarInt32, variable size
		ChunkSectionDataArraySize * 8 +  // Actual section data, lots of bytes (multiplier 1 long = 8 bytes)
		cChunkData::SectionBlockCount / 2  // Size of blocklight which is always sent
	);

	if (m_Dimension == dimOverworld)
	{
		// Sky light is only sent in the overworld.
		ChunkSectionSize += cChunkData::SectionBlockCount / 2;
	}

	const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
	size_t ChunkSize = (
		ChunkSectionSize * m_Data.NumPresentSections() +
		BiomeDataSize * 4  // Biome data now BE ints
	);
	Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));

	// Write each chunk section...
	ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section)
		{
			Packet.WriteBEUInt8(static_cast<UInt8>(BitsPerEntry));
			Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));

			UInt64 TempLong = 0;  // Temporary value that will be stored into
			UInt64 CurrentlyWrittenIndex = 0;  // "Index" of the long that would be written to

			for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++)
			{
				UInt32 blockType = a_Section.m_BlockTypes[Index];
				UInt32 blockMeta = (a_Section.m_BlockMetas[Index / 2] >> ((Index % 2) * 4)) & 0x0f;
				UInt64 Value = Palette(PaletteUpgrade::FromBlock(blockType, blockMeta));
				Value &= Mask;  // It shouldn't go out of bounds, but it's still worth being careful

				// Painful part where we write data into the long array.  Based off of the normal code.
				size_t BitPosition = Index * BitsPerEntry;
				size_t FirstIndex = BitPosition / 64;
				size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
				size_t BitOffset = BitPosition % 64;

				if (FirstIndex != CurrentlyWrittenIndex)
				{
					// Write the current data before modifiying it.
					Packet.WriteBEUInt64(TempLong);
					TempLong = 0;
					CurrentlyWrittenIndex = FirstIndex;
				}

				TempLong |= (Value << BitOffset);

				if (FirstIndex != SecondIndex)
				{
					// Part of the data is now in the second long; write the first one first
					Packet.WriteBEUInt64(TempLong);
					CurrentlyWrittenIndex = SecondIndex;

					TempLong = (Value >> (64 - BitOffset));
				}
			}
			// The last long will generally not be written
			Packet.WriteBEUInt64(TempLong);

			// Write lighting:
			Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight));
			if (m_Dimension == dimOverworld)
			{
				// Skylight is only sent in the overworld; the nether and end do not use it
				Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight));
			}
		}
	);

	// Write the biome data
	for (size_t i = 0; i != BiomeDataSize; i++)
	{
		Packet.WriteBEUInt32(static_cast<UInt32>(m_BiomeData[i]) & 0xff);
	}

	// Identify 1.9.4's tile entity list as empty
	Packet.WriteVarInt32(0);

	CompressAndSend(Packet, a_SendTo);
}





void cChunkDataSerializer::CompressAndSend(cByteBuffer & a_Packet, const std::vector<cClientHandle *> & a_SendTo)
{
	AString PacketData;
	a_Packet.ReadAll(PacketData);

	AString ToSend;
	if (!cProtocol_1_8_0::CompressPacket(PacketData, ToSend))
	{
		ASSERT(!"Packet compression failed.");
		return;
	}

	for (const auto Client : a_SendTo)
	{
		Client->SendChunkData(m_ChunkX, m_ChunkZ, ToSend);
	}
}