blob: 87bdfd8dc9bb7929fa26a82fe8b4eed3dd3ee8d8 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
// ProbabDistrib.cpp
// Implements the cProbabDistrib class representing a discrete probability distribution curve and random generator
#include "Globals.h"
#include "ProbabDistrib.h"
cProbabDistrib::cProbabDistrib(int a_MaxValue) :
m_MaxValue(a_MaxValue), m_Sum(-1)
{
}
void cProbabDistrib::SetPoints(const cProbabDistrib::cPoints & a_Points)
{
ASSERT(!a_Points.empty());
m_Sum = 0;
m_Cumulative.clear();
m_Cumulative.reserve(a_Points.size() + 1);
int ProbSum = 0;
int LastProb = 0;
int LastValue = -1;
if (a_Points[0].m_Value != 0)
{
m_Cumulative.emplace_back(0, 0); // Always push in the [0, 0] point for easier search algorithm bounds
LastValue = 0;
}
for (cPoints::const_iterator itr = a_Points.begin(), end = a_Points.end(); itr != end; ++itr)
{
if (itr->m_Value == LastValue)
{
continue;
}
// Add the current trapezoid to the sum:
ProbSum += (LastProb + itr->m_Probability) * (itr->m_Value - LastValue) / 2;
LastProb = itr->m_Probability;
LastValue = itr->m_Value;
m_Cumulative.emplace_back(itr->m_Value, ProbSum);
} // for itr - a_Points[]
if (LastValue != m_MaxValue)
{
m_Cumulative.emplace_back(m_MaxValue, 0); // Always push in the last point for easier search algorithm bounds
}
m_Sum = ProbSum;
}
bool cProbabDistrib::SetDefString(const AString & a_DefString)
{
AStringVector Points = StringSplitAndTrim(a_DefString, ";");
if (Points.empty())
{
return false;
}
cPoints Pts;
for (AStringVector::const_iterator itr = Points.begin(), end = Points.end(); itr != end; ++itr)
{
AStringVector Split = StringSplitAndTrim(*itr, ",");
if (Split.size() != 2)
{
// Bad format
return false;
}
int Value = atoi(Split[0].c_str());
int Prob = atoi(Split[1].c_str());
if (((Value == 0) && (Split[0] != "0")) || ((Prob == 0) && (Split[1] != "0")))
{
// Number parse error
return false;
}
Pts.emplace_back(Value, Prob);
} // for itr - Points[]
SetPoints(Pts);
return true;
}
int cProbabDistrib::Random(MTRand & a_Rand) const
{
return MapValue(a_Rand.RandInt(m_Sum));
}
int cProbabDistrib::MapValue(int a_OrigValue) const
{
ASSERT(a_OrigValue >= 0);
ASSERT(a_OrigValue < m_Sum);
// Binary search through m_Cumulative for placement:
size_t Lo = 0;
size_t Hi = m_Cumulative.size() - 1;
while (Hi - Lo > 1)
{
size_t Mid = (Lo + Hi) / 2;
int MidProbab = m_Cumulative[Mid].m_Probability;
if (MidProbab < a_OrigValue)
{
Lo = Mid;
}
else
{
Hi = Mid;
}
}
ASSERT(Hi - Lo == 1);
// Linearly interpolate between Lo and Hi:
int ProbDif = m_Cumulative[Hi].m_Probability - m_Cumulative[Lo].m_Probability;
ProbDif = (ProbDif != 0) ? ProbDif : 1;
int ValueDif = m_Cumulative[Hi].m_Value - m_Cumulative[Lo].m_Value;
return m_Cumulative[Lo].m_Value + (a_OrigValue - m_Cumulative[Lo].m_Probability) * ValueDif / ProbDif;
}
|