1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
// StructGen.h
#include "Globals.h"
#include "StructGen.h"
#include "Trees.h"
#include "../BlockArea.h"
#include "../LinearUpscale.h"
#include "../BlockInfo.h"
////////////////////////////////////////////////////////////////////////////////
// cStructGenTrees:
void cStructGenTrees::GenFinish(cChunkDesc & a_ChunkDesc)
{
int ChunkX = a_ChunkDesc.GetChunkX();
int ChunkZ = a_ChunkDesc.GetChunkZ();
cChunkDesc WorkerDesc({ChunkX, ChunkZ});
// Generate trees:
for (int x = 0; x <= 2; x++)
{
int BaseX = ChunkX + x - 1;
for (int z = 0; z <= 2; z++)
{
int BaseZ = ChunkZ + z - 1;
cChunkDesc * Dest;
if ((x != 1) || (z != 1))
{
Dest = &WorkerDesc;
WorkerDesc.SetChunkCoords({BaseX, BaseZ});
// TODO: This may cause a lot of wasted calculations, instead of pulling data out of a single
// (cChunkDesc) cache
cChunkDesc::Shape workerShape;
m_BiomeGen.GenBiomes({BaseX, BaseZ}, WorkerDesc.GetBiomeMap());
m_ShapeGen.GenShape({BaseX, BaseZ}, workerShape);
WorkerDesc.SetHeightFromShape(workerShape);
m_CompositionGen.ComposeTerrain(WorkerDesc, workerShape);
}
else
{
Dest = &a_ChunkDesc;
}
double NumTrees = GetNumTrees(BaseX, BaseZ, Dest->GetBiomeMap());
sSetBlockVector OutsideLogs, OutsideOther;
if (NumTrees < 1)
{
Vector3i Pos;
Pos.x = (m_Noise.IntNoise3DInt(BaseX + BaseZ, BaseZ, 0) / 19) % cChunkDef::Width;
Pos.z = (m_Noise.IntNoise3DInt(BaseX - BaseZ, 0, BaseZ) / 19) % cChunkDef::Width;
Pos.y = Dest->GetHeight(Pos.x, Pos.z);
if (std::abs(
m_Noise.IntNoise3D(BaseX * cChunkDef::Width + Pos.x, Pos.y, BaseZ * cChunkDef::Width + Pos.z)
) <= NumTrees)
{
GenerateSingleTree(BaseX, BaseZ, 0, Pos, *Dest, OutsideLogs, OutsideOther);
}
}
else
{
for (int i = 0; i < NumTrees; i++)
{
Vector3i Pos;
Pos.x = (m_Noise.IntNoise3DInt(BaseX + BaseZ, BaseZ, i) / 19) % cChunkDef::Width;
Pos.z = (m_Noise.IntNoise3DInt(BaseX - BaseZ, i, BaseZ) / 19) % cChunkDef::Width;
Pos.y = Dest->GetHeight(Pos.x, Pos.z);
GenerateSingleTree(BaseX, BaseZ, i, Pos, *Dest, OutsideLogs, OutsideOther);
}
}
sSetBlockVector IgnoredOverflow;
IgnoredOverflow.reserve(OutsideOther.size());
ApplyTreeImage(ChunkX, ChunkZ, a_ChunkDesc, OutsideOther, IgnoredOverflow);
IgnoredOverflow.clear();
IgnoredOverflow.reserve(OutsideLogs.size());
ApplyTreeImage(ChunkX, ChunkZ, a_ChunkDesc, OutsideLogs, IgnoredOverflow);
} // for z
} // for x
a_ChunkDesc.UpdateHeightmap();
}
void cStructGenTrees::GenerateSingleTree(
int a_ChunkX,
int a_ChunkZ,
int a_Seq,
Vector3i a_Pos,
cChunkDesc & a_ChunkDesc,
sSetBlockVector & a_OutsideLogs,
sSetBlockVector & a_OutsideOther
)
{
if ((a_Pos.y <= 0) || (a_Pos.y >= 230))
{
return;
}
// Check the block underneath the tree:
BLOCKTYPE TopBlock = a_ChunkDesc.GetBlockType(a_Pos.x, a_Pos.y, a_Pos.z);
if ((TopBlock != E_BLOCK_DIRT) && (TopBlock != E_BLOCK_GRASS) && (TopBlock != E_BLOCK_FARMLAND) &&
(TopBlock != E_BLOCK_MYCELIUM))
{
return;
}
sSetBlockVector TreeLogs, TreeOther;
GetTreeImageByBiome(
{a_ChunkX * cChunkDef::Width + a_Pos.x, a_Pos.y + 1, a_ChunkZ * cChunkDef::Width + a_Pos.z},
m_Noise,
a_Seq,
a_ChunkDesc.GetBiome(a_Pos.x, a_Pos.z),
TreeLogs,
TreeOther
);
// Check if the generated image fits the terrain. Only the logs are checked:
for (sSetBlockVector::const_iterator itr = TreeLogs.begin(); itr != TreeLogs.end(); ++itr)
{
if ((itr->m_ChunkX != a_ChunkX) || (itr->m_ChunkZ != a_ChunkZ))
{
// Outside the chunk
continue;
}
if (itr->m_RelY >= cChunkDef::Height)
{
// Above the chunk, cut off (this shouldn't happen too often, we're limiting trees to y < 230)
continue;
}
BLOCKTYPE Block = a_ChunkDesc.GetBlockType(itr->m_RelX, itr->m_RelY, itr->m_RelZ);
switch (Block)
{
CASE_TREE_ALLOWED_BLOCKS:
{
break;
}
default:
{
// There's something in the way, abort this tree altogether
return;
}
}
}
ApplyTreeImage(a_ChunkX, a_ChunkZ, a_ChunkDesc, TreeOther, a_OutsideOther);
ApplyTreeImage(a_ChunkX, a_ChunkZ, a_ChunkDesc, TreeLogs, a_OutsideLogs);
}
void cStructGenTrees::ApplyTreeImage(
int a_ChunkX,
int a_ChunkZ,
cChunkDesc & a_ChunkDesc,
const sSetBlockVector & a_Image,
sSetBlockVector & a_Overflow
)
{
// Put the generated image into a_BlockTypes, push things outside this chunk into a_Blocks
for (sSetBlockVector::const_iterator itr = a_Image.begin(), end = a_Image.end(); itr != end; ++itr)
{
if ((itr->m_ChunkX == a_ChunkX) && (itr->m_ChunkZ == a_ChunkZ) && (itr->m_RelY < cChunkDef::Height))
{
// Inside this chunk, integrate into a_ChunkDesc:
switch (a_ChunkDesc.GetBlockType(itr->m_RelX, itr->m_RelY, itr->m_RelZ))
{
case E_BLOCK_NEW_LEAVES:
case E_BLOCK_LEAVES:
case E_BLOCK_HUGE_BROWN_MUSHROOM:
case E_BLOCK_HUGE_RED_MUSHROOM:
{
if ((itr->m_BlockType != E_BLOCK_LOG) && (itr->m_BlockType != E_BLOCK_NEW_LOG))
{
break;
}
// fallthrough:
}
CASE_TREE_OVERWRITTEN_BLOCKS:
{
a_ChunkDesc
.SetBlockTypeMeta(itr->m_RelX, itr->m_RelY, itr->m_RelZ, itr->m_BlockType, itr->m_BlockMeta);
// If grass is below our tree, turn it to dirt
if ((cBlockInfo::IsSolid(itr->m_BlockType)) &&
(a_ChunkDesc.GetBlockType(itr->m_RelX, itr->m_RelY - 1, itr->m_RelZ) == E_BLOCK_GRASS))
{
a_ChunkDesc.SetBlockType(itr->m_RelX, itr->m_RelY - 1, itr->m_RelZ, E_BLOCK_DIRT);
}
break;
}
} // switch (GetBlock())
continue;
}
// Outside the chunk, push into a_Overflow.
// Don't check if already present there, by separating logs and others we don't need the checks anymore:
a_Overflow.push_back(*itr);
}
}
double cStructGenTrees::GetNumTrees(int a_ChunkX, int a_ChunkZ, const cChunkDef::BiomeMap & a_Biomes)
{
auto BiomeTrees = [](EMCSBiome a_Biome)
{
switch (a_Biome)
{
case biOcean: return 2.0;
case biPlains: return 0.03125;
case biDesert: return 0.0;
case biExtremeHills: return 3.0;
case biForest: return 30.0;
case biTaiga: return 30.0;
case biSwampland: return 8.0;
case biRiver: return 0.0;
case biNether: return 0.0;
case biEnd: return 0.0;
case biFrozenOcean: return 0.0;
case biFrozenRiver: return 0.0;
case biIcePlains: return 0.03125;
case biIceMountains: return 0.125;
case biMushroomIsland: return 3.0;
case biMushroomShore: return 3.0;
case biBeach: return 0.0;
case biDesertHills: return 0.0;
case biForestHills: return 20.0;
case biTaigaHills: return 20.0;
case biExtremeHillsEdge: return 5.0;
case biJungle: return 120.0;
case biJungleHills: return 90.0;
case biJungleEdge: return 90.0;
case biDeepOcean: return 0.0;
case biStoneBeach: return 0.0;
case biColdBeach: return 0.0;
case biBirchForest: return 30.0;
case biBirchForestHills: return 20.0;
case biRoofedForest: return 50.0;
case biColdTaiga: return 20.0;
case biColdTaigaHills: return 15.0;
case biMegaTaiga: return 15.0;
case biMegaTaigaHills: return 15.0;
case biExtremeHillsPlus: return 3.0;
case biSavanna: return 8.0;
case biSavannaPlateau: return 12.0;
case biMesa: return 2.0;
case biMesaPlateauF: return 8.0;
case biMesaPlateau: return 8.0;
// Biome variants
case biSunflowerPlains: return 0.03125;
case biDesertM: return 0.0;
case biExtremeHillsM: return 4.0;
case biFlowerForest: return 2.0;
case biTaigaM: return 30.0;
case biSwamplandM: return 8.0;
case biIcePlainsSpikes: return 0.0078125;
case biJungleM: return 120.0;
case biJungleEdgeM: return 90.0;
case biBirchForestM: return 30.0;
case biBirchForestHillsM: return 20.0;
case biRoofedForestM: return 40.0;
case biColdTaigaM: return 30.0;
case biMegaSpruceTaiga: return 15.0;
case biMegaSpruceTaigaHills: return 15.0;
case biExtremeHillsPlusM: return 4.0;
case biSavannaM: return 8.0;
case biSavannaPlateauM: return 12.0;
case biMesaBryce: return 4.0;
case biMesaPlateauFM: return 12.0;
case biMesaPlateauM: return 12.0;
// Non-biomes
case biInvalidBiome:
case biNumBiomes:
case biVariant:
case biNumVariantBiomes:
{
break;
}
}
UNREACHABLE("Unsupported biome");
};
double NumTrees = 0.0;
for (auto Biome : a_Biomes)
{
NumTrees += BiomeTrees(Biome);
}
return NumTrees / (cChunkDef::Width * cChunkDef::Width * 4);
}
////////////////////////////////////////////////////////////////////////////////
// cStructGenLakes:
void cStructGenLakes::GenFinish(cChunkDesc & a_ChunkDesc)
{
int ChunkX = a_ChunkDesc.GetChunkX();
int ChunkZ = a_ChunkDesc.GetChunkZ();
for (int z = -1; z < 2; z++)
for (int x = -1; x < 2; x++)
{
if (((m_Noise.IntNoise2DInt(ChunkX + x, ChunkZ + z) / 17) % 100) > m_Probability)
{
continue;
}
cBlockArea Lake;
CreateLakeImage(ChunkX + x, ChunkZ + z, a_ChunkDesc.GetMinHeight(), Lake);
int OfsX = Lake.GetOriginX() + x * cChunkDef::Width;
int OfsZ = Lake.GetOriginZ() + z * cChunkDef::Width;
// Merge the lake into the current data
a_ChunkDesc.WriteBlockArea(Lake, OfsX, Lake.GetOriginY(), OfsZ, cBlockArea::msLake);
} // for x, z - neighbor chunks
}
void cStructGenLakes::CreateLakeImage(int a_ChunkX, int a_ChunkZ, int a_MaxLakeHeight, cBlockArea & a_Lake)
{
a_Lake.Create(16, 8, 16);
a_Lake.Fill(cBlockArea::baTypes, E_BLOCK_SPONGE); // Sponge is the NOP blocktype for lake merging strategy
// Make a random position in the chunk by using a random 16 block XZ offset and random height up to chunk's max
// height minus 6
int MinHeight = std::max(a_MaxLakeHeight - 6, 2);
int Rnd = m_Noise.IntNoise3DInt(a_ChunkX, 128, a_ChunkZ) / 11;
// Random offset [-8 .. 8], with higher probability around 0; add up four three-bit-wide randoms [0 .. 28], divide
// and subtract to get range
int OffsetX = 4 * ((Rnd & 0x07) + ((Rnd & 0x38) >> 3) + ((Rnd & 0x1c0) >> 6) + ((Rnd & 0xe00) >> 9)) / 7 - 8;
Rnd >>= 12;
// Random offset [-8 .. 8], with higher probability around 0; add up four three-bit-wide randoms [0 .. 28], divide
// and subtract to get range
int OffsetZ = 4 * ((Rnd & 0x07) + ((Rnd & 0x38) >> 3) + ((Rnd & 0x1c0) >> 6) + ((Rnd & 0xe00) >> 9)) / 7 - 8;
Rnd = m_Noise.IntNoise3DInt(a_ChunkX, 512, a_ChunkZ) / 13;
// Random height [1 .. MinHeight] with preference to center heights
int HeightY = 1 + (((Rnd & 0x1ff) % MinHeight) + (((Rnd >> 9) & 0x1ff) % MinHeight)) / 2;
a_Lake.SetOrigin(OffsetX, HeightY, OffsetZ);
// Hollow out a few bubbles inside the blockarea:
int NumBubbles = 4 + ((Rnd >> 18) & 0x03); // 4 .. 7 bubbles
BLOCKTYPE * BlockTypes = a_Lake.GetBlockTypes();
for (int i = 0; i < NumBubbles; i++)
{
int BubbleRnd = m_Noise.IntNoise3DInt(a_ChunkX, i, a_ChunkZ) / 13;
const int BubbleR = 2 + (BubbleRnd & 0x03); // 2 .. 5
const int Range = 16 - 2 * BubbleR;
const int BubbleX = BubbleR + (BubbleRnd % Range);
BubbleRnd >>= 4;
const int BubbleY = 4 + (BubbleRnd & 0x01); // 4 .. 5
BubbleRnd >>= 1;
const int BubbleZ = BubbleR + (BubbleRnd % Range);
const int HalfR = BubbleR / 2; // 1 .. 2
const int RSquared = BubbleR * BubbleR;
for (int y = -HalfR; y <= HalfR; y++)
{
// BubbleY + y is in the [0, 7] bounds
int DistY = 4 * y * y / 3;
int IdxY = (BubbleY + y) * 16 * 16;
for (int z = -BubbleR; z <= BubbleR; z++)
{
int DistYZ = DistY + z * z;
if (DistYZ >= RSquared)
{
continue;
}
int IdxYZ = BubbleX + IdxY + (BubbleZ + z) * 16;
for (int x = -BubbleR; x <= BubbleR; x++)
{
if (x * x + DistYZ < RSquared)
{
BlockTypes[x + IdxYZ] = E_BLOCK_AIR;
}
} // for x
} // for z
} // for y
} // for i - bubbles
// Turn air in the bottom half into liquid:
for (int y = 0; y < 4; y++)
{
for (int z = 0; z < 16; z++)
for (int x = 0; x < 16; x++)
{
if (BlockTypes[x + z * 16 + y * 16 * 16] == E_BLOCK_AIR)
{
BlockTypes[x + z * 16 + y * 16 * 16] = m_Fluid;
}
} // for z, x
} // for y
// TODO: Turn sponge next to lava into stone
// a_Lake.SaveToSchematicFile(fmt::format(FMT_STRING("Lake_{}_{}.schematic"), a_ChunkX, a_ChunkZ));
}
////////////////////////////////////////////////////////////////////////////////
// cStructGenDirectOverhangs:
cStructGenDirectOverhangs::cStructGenDirectOverhangs(int a_Seed) :
m_Noise1(a_Seed), m_Noise2(a_Seed + 1000)
{
}
void cStructGenDirectOverhangs::GenFinish(cChunkDesc & a_ChunkDesc)
{
// If there is no column of the wanted biome, bail out:
if (!HasWantedBiome(a_ChunkDesc))
{
return;
}
HEIGHTTYPE MaxHeight = a_ChunkDesc.GetMaxHeight();
const int SEGMENT_HEIGHT = 8;
const int INTERPOL_X = 16; // Must be a divisor of 16
const int INTERPOL_Z = 16; // Must be a divisor of 16
// Interpolate the chunk in 16 * SEGMENT_HEIGHT * 16 "segments", each SEGMENT_HEIGHT blocks high and each linearly
// interpolated separately. Have two buffers, one for the lowest floor and one for the highest floor, so that
// Y-interpolation can be done between them Then swap the buffers and use the previously-top one as the
// current-bottom, without recalculating it.
int FloorBuf1[17 * 17];
int FloorBuf2[17 * 17];
int * FloorHi = FloorBuf1;
int * FloorLo = FloorBuf2;
int BaseX = a_ChunkDesc.GetChunkX() * cChunkDef::Width;
int BaseZ = a_ChunkDesc.GetChunkZ() * cChunkDef::Width;
int BaseY = 63;
// Interpolate the lowest floor:
for (int z = 0; z <= 16 / INTERPOL_Z; z++)
for (int x = 0; x <= 16 / INTERPOL_X; x++)
{
FloorLo[INTERPOL_X * x + 17 * INTERPOL_Z * z] =
m_Noise1.IntNoise3DInt(BaseX + INTERPOL_X * x, BaseY, BaseZ + INTERPOL_Z * z) *
m_Noise2.IntNoise3DInt(BaseX + INTERPOL_X * x, BaseY, BaseZ + INTERPOL_Z * z) / 256;
} // for x, z - FloorLo[]
LinearUpscale2DArrayInPlace<17, 17, INTERPOL_X, INTERPOL_Z>(FloorLo);
// Interpolate segments:
for (int Segment = BaseY; Segment < MaxHeight; Segment += SEGMENT_HEIGHT)
{
// First update the high floor:
for (int z = 0; z <= 16 / INTERPOL_Z; z++)
for (int x = 0; x <= 16 / INTERPOL_X; x++)
{
FloorHi[INTERPOL_X * x + 17 * INTERPOL_Z * z] =
(m_Noise1.IntNoise3DInt(BaseX + INTERPOL_X * x, Segment + SEGMENT_HEIGHT, BaseZ + INTERPOL_Z * z) *
m_Noise2.IntNoise3DInt(BaseX + INTERPOL_Z * x, Segment + SEGMENT_HEIGHT, BaseZ + INTERPOL_Z * z) /
256);
} // for x, z - FloorLo[]
LinearUpscale2DArrayInPlace<17, 17, INTERPOL_X, INTERPOL_Z>(FloorHi);
// Interpolate between FloorLo and FloorHi:
for (int z = 0; z < 16; z++)
for (int x = 0; x < 16; x++)
{
EMCSBiome biome = a_ChunkDesc.GetBiome(x, z);
if ((biome == biExtremeHills) || (biome == biExtremeHillsEdge))
{
int Lo = FloorLo[x + 17 * z] / 256;
int Hi = FloorHi[x + 17 * z] / 256;
for (int y = 0; y < SEGMENT_HEIGHT; y++)
{
int Val = Lo + (Hi - Lo) * y / SEGMENT_HEIGHT;
if (Val < 0)
{
a_ChunkDesc.SetBlockType(x, y + Segment, z, E_BLOCK_AIR);
}
} // for y
break;
} // if (biome)
} // for z, x
// Swap the floors:
std::swap(FloorLo, FloorHi);
}
}
bool cStructGenDirectOverhangs::HasWantedBiome(cChunkDesc & a_ChunkDesc) const
{
cChunkDef::BiomeMap & Biomes = a_ChunkDesc.GetBiomeMap();
for (size_t i = 0; i < ARRAYCOUNT(Biomes); i++)
{
switch (Biomes[i])
{
case biExtremeHills:
case biExtremeHillsEdge:
{
return true;
}
default:
{
break;
}
}
} // for i
return false;
}
////////////////////////////////////////////////////////////////////////////////
// cStructGenDistortedMembraneOverhangs:
cStructGenDistortedMembraneOverhangs::cStructGenDistortedMembraneOverhangs(int a_Seed) :
m_NoiseX(a_Seed + 1000), m_NoiseY(a_Seed + 2000), m_NoiseZ(a_Seed + 3000), m_NoiseH(a_Seed + 4000)
{
}
void cStructGenDistortedMembraneOverhangs::GenFinish(cChunkDesc & a_ChunkDesc)
{
const NOISE_DATATYPE Frequency = static_cast<NOISE_DATATYPE>(16);
const NOISE_DATATYPE Amount = static_cast<NOISE_DATATYPE>(1);
for (int y = 50; y < 128; y++)
{
NOISE_DATATYPE NoiseY = static_cast<NOISE_DATATYPE>(y) / 32;
// TODO: proper water level - where to get?
BLOCKTYPE ReplacementBlock = (y > 62) ? E_BLOCK_AIR : E_BLOCK_STATIONARY_WATER;
for (int z = 0; z < cChunkDef::Width; z++)
{
NOISE_DATATYPE NoiseZ =
static_cast<NOISE_DATATYPE>(a_ChunkDesc.GetChunkZ() * cChunkDef::Width + z) / Frequency;
for (int x = 0; x < cChunkDef::Width; x++)
{
NOISE_DATATYPE NoiseX =
static_cast<NOISE_DATATYPE>(a_ChunkDesc.GetChunkX() * cChunkDef::Width + x) / Frequency;
NOISE_DATATYPE DistortX = m_NoiseX.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * Amount;
NOISE_DATATYPE DistortY = m_NoiseY.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * Amount;
NOISE_DATATYPE DistortZ = m_NoiseZ.CubicNoise3D(NoiseX, NoiseY, NoiseZ) * Amount;
int MembraneHeight = 96 -
static_cast<int>((DistortY + m_NoiseH.CubicNoise2D(NoiseX + DistortX, NoiseZ + DistortZ)) * 30);
if (MembraneHeight < y)
{
a_ChunkDesc.SetBlockType(x, y, z, ReplacementBlock);
}
} // for y
} // for x
} // for z
}
|