1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// MCADefrag.cpp
// Implements the main app entrypoint and the cMCADefrag class representing the entire app
#include "Globals.h"
#include "MCADefrag.h"
#include "Logger.h"
#include "LoggerListeners.h"
#include "zlib/zlib.h"
// An array of 4096 zero bytes, used for writing the padding
static const Byte g_Zeroes[4096] = {0};
int main(int argc, char ** argv)
{
auto consoleLogListener = MakeConsoleListener(false);
auto consoleAttachment = cLogger::GetInstance().AttachListener(std::move(consoleLogListener));
auto fileLogListenerRet = MakeFileListener();
if (!fileLogListenerRet.first)
{
LOGERROR("Failed to open log file, aborting");
return EXIT_FAILURE;
}
auto fileAttachment = cLogger::GetInstance().AttachListener(std::move(fileLogListenerRet.second));
cLogger::InitiateMultithreading();
cMCADefrag Defrag;
if (!Defrag.Init(argc, argv))
{
return EXIT_FAILURE;
}
Defrag.Run();
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// cMCADefrag:
cMCADefrag::cMCADefrag(void) :
m_NumThreads(4),
m_ShouldRecompress(true)
{
}
bool cMCADefrag::Init(int argc, char ** argv)
{
// Nothing needed yet
return true;
}
void cMCADefrag::Run(void)
{
// Fill the queue with MCA files
m_Queue = cFile::GetFolderContents(".");
// Start the processing threads:
for (int i = 0; i < m_NumThreads; i++)
{
StartThread();
}
// Wait for all the threads to finish:
while (!m_Threads.empty())
{
m_Threads.front()->Wait();
delete m_Threads.front();
m_Threads.pop_front();
}
}
void cMCADefrag::StartThread(void)
{
cThread * Thread = new cThread(*this);
m_Threads.push_back(Thread);
Thread->Start();
}
AString cMCADefrag::GetNextFileName(void)
{
cCSLock Lock(m_CS);
if (m_Queue.empty())
{
return AString();
}
AString res = m_Queue.back();
m_Queue.pop_back();
return res;
}
////////////////////////////////////////////////////////////////////////////////
// cMCADefrag::cThread:
cMCADefrag::cThread::cThread(cMCADefrag & a_Parent) :
super("MCADefrag thread"),
m_Parent(a_Parent),
m_IsChunkUncompressed(false)
{
}
void cMCADefrag::cThread::Execute(void)
{
for (;;)
{
AString FileName = m_Parent.GetNextFileName();
if (FileName.empty())
{
return;
}
ProcessFile(FileName);
}
}
void cMCADefrag::cThread::ProcessFile(const AString & a_FileName)
{
// Filter out non-MCA files:
if ((a_FileName.length() < 4) || (a_FileName.substr(a_FileName.length() - 4, 4) != ".mca"))
{
return;
}
LOGINFO("%s", a_FileName.c_str());
// Open input and output files:
AString OutFileName = a_FileName + ".new";
cFile In, Out;
if (!In.Open(a_FileName, cFile::fmRead))
{
LOGWARNING("Cannot open file %s for reading, skipping file.", a_FileName.c_str());
return;
}
if (!Out.Open(OutFileName.c_str(), cFile::fmWrite))
{
LOGWARNING("Cannot open file %s for writing, skipping file.", OutFileName.c_str());
return;
}
// Read the Locations and Timestamps from the input file:
Byte Locations[4096];
UInt32 Timestamps[1024];
if (In.Read(Locations, sizeof(Locations)) != sizeof(Locations))
{
LOGWARNING("Cannot read Locations in file %s, skipping file.", a_FileName.c_str());
return;
}
if (In.Read(Timestamps, sizeof(Timestamps)) != sizeof(Timestamps))
{
LOGWARNING("Cannot read Timestamps in file %s, skipping file.", a_FileName.c_str());
return;
}
// Write dummy Locations to the Out file (will be overwritten once the correct ones are known)
if (Out.Write(Locations, sizeof(Locations)) != sizeof(Locations))
{
LOGWARNING("Cannot write Locations to file %s, skipping file.", OutFileName.c_str());
return;
}
m_CurrentSectorOut = 2;
// Write a copy of the Timestamps into the Out file:
if (Out.Write(Timestamps, sizeof(Timestamps)) != sizeof(Timestamps))
{
LOGWARNING("Cannot write Timestamps to file %s, skipping file.", OutFileName.c_str());
return;
}
// Process each chunk:
for (size_t i = 0; i < 1024; i++)
{
size_t idx = i * 4;
if (
(Locations[idx] == 0) &&
(Locations[idx + 1] == 0) &&
(Locations[idx + 2] == 0) &&
(Locations[idx + 3] == 0)
)
{
// Chunk not present
continue;
}
m_IsChunkUncompressed = false;
if (!ReadChunk(In, Locations + idx))
{
LOGWARNING("Cannot read chunk #%d from file %s. Skipping file.", i, a_FileName.c_str());
return;
}
if (!WriteChunk(Out, Locations + idx))
{
LOGWARNING("Cannot write chunk #%d to file %s. Skipping file.", i, OutFileName.c_str());
return;
}
}
// Write the new Locations into the MCA header:
Out.Seek(0);
if (Out.Write(Locations, sizeof(Locations)) != sizeof(Locations))
{
LOGWARNING("Cannot write updated Locations to file %s, skipping file.", OutFileName.c_str());
return;
}
// Close the files, delete orig, rename new:
In.Close();
Out.Close();
cFile::Delete(a_FileName);
cFile::Rename(OutFileName, a_FileName);
}
bool cMCADefrag::cThread::ReadChunk(cFile & a_File, const Byte * a_LocationRaw)
{
int SectorNum = (a_LocationRaw[0] << 16) | (a_LocationRaw[1] << 8) | a_LocationRaw[2];
int SizeInSectors = a_LocationRaw[3] * (4 KiB);
if (a_File.Seek(SectorNum * (4 KiB)) < 0)
{
LOGWARNING("Failed to seek to chunk data - file pos %llu (%d KiB, %.02f MiB)!",
static_cast<Int64>(SectorNum) * (4 KiB), SectorNum * 4,
static_cast<double>(SectorNum) / 256
);
return false;
}
// Read the exact size:
Byte Buf[4];
if (a_File.Read(Buf, 4) != 4)
{
LOGWARNING("Failed to read chunk data length");
return false;
}
m_CompressedChunkDataSize = (Buf[0] << 24) | (Buf[1] << 16) | (Buf[2] << 8) | Buf[3];
if ((m_CompressedChunkDataSize > SizeInSectors) || (m_CompressedChunkDataSize < 0))
{
LOGWARNING("Invalid chunk data - SizeInSectors (%d) smaller that RealSize (%d)", SizeInSectors, m_CompressedChunkDataSize);
return false;
}
// Read the data:
if (a_File.Read(m_CompressedChunkData, static_cast<size_t>(m_CompressedChunkDataSize)) != m_CompressedChunkDataSize)
{
LOGWARNING("Failed to read chunk data!");
return false;
}
// Uncompress the data if recompression is active
if (m_Parent.m_ShouldRecompress)
{
m_IsChunkUncompressed = UncompressChunk();
if (!m_IsChunkUncompressed)
{
LOGINFO("Chunk failed to uncompress, will be copied verbatim instead.");
}
}
return true;
}
bool cMCADefrag::cThread::WriteChunk(cFile & a_File, Byte * a_LocationRaw)
{
// Recompress the data if recompression is active:
if (m_Parent.m_ShouldRecompress)
{
if (!CompressChunk())
{
LOGINFO("Chunk failed to recompress, will be coped verbatim instead.");
}
}
// Update the Location:
a_LocationRaw[0] = static_cast<Byte>(m_CurrentSectorOut >> 16);
a_LocationRaw[1] = (m_CurrentSectorOut >> 8) & 0xff;
a_LocationRaw[2] = m_CurrentSectorOut & 0xff;
a_LocationRaw[3] = static_cast<Byte>((m_CompressedChunkDataSize + (4 KiB) + 3) / (4 KiB)); // +3 because the m_CompressedChunkDataSize doesn't include the exact-length
m_CurrentSectorOut += a_LocationRaw[3];
// Write the data length:
Byte Buf[4];
Buf[0] = static_cast<Byte>(m_CompressedChunkDataSize >> 24);
Buf[1] = (m_CompressedChunkDataSize >> 16) & 0xff;
Buf[2] = (m_CompressedChunkDataSize >> 8) & 0xff;
Buf[3] = m_CompressedChunkDataSize & 0xff;
if (a_File.Write(Buf, 4) != 4)
{
LOGWARNING("Failed to write chunk length!");
return false;
}
// Write the data:
if (a_File.Write(m_CompressedChunkData, static_cast<size_t>(m_CompressedChunkDataSize)) != m_CompressedChunkDataSize)
{
LOGWARNING("Failed to write chunk data!");
return false;
}
// Pad onto the next sector:
int NumPadding = a_LocationRaw[3] * 4096 - (m_CompressedChunkDataSize + 4);
ASSERT(NumPadding >= 0);
if ((NumPadding > 0) && (a_File.Write(g_Zeroes, static_cast<size_t>(NumPadding)) != NumPadding))
{
LOGWARNING("Failed to write padding");
return false;
}
return true;
}
bool cMCADefrag::cThread::UncompressChunk(void)
{
switch (m_CompressedChunkData[0])
{
case COMPRESSION_GZIP: return UncompressChunkGzip();
case COMPRESSION_ZLIB: return UncompressChunkZlib();
}
LOGINFO("Chunk is compressed with in an unknown algorithm");
return false;
}
bool cMCADefrag::cThread::UncompressChunkGzip(void)
{
// TODO
// This format is not used in practice
return false;
}
bool cMCADefrag::cThread::UncompressChunkZlib(void)
{
// Uncompress the data:
z_stream strm;
strm.zalloc = nullptr;
strm.zfree = nullptr;
strm.opaque = nullptr;
inflateInit(&strm);
strm.next_out = m_RawChunkData;
strm.avail_out = sizeof(m_RawChunkData);
strm.next_in = m_CompressedChunkData + 1; // The first byte is the compression method, skip it
strm.avail_in = static_cast<uInt>(m_CompressedChunkDataSize);
int res = inflate(&strm, Z_FINISH);
inflateEnd(&strm);
if (res != Z_STREAM_END)
{
LOGWARNING("Failed to uncompress chunk data: %s", strm.msg);
return false;
}
ASSERT(strm.total_out < static_cast<uLong>(std::numeric_limits<int>::max()));
m_RawChunkDataSize = static_cast<int>(strm.total_out);
return true;
}
bool cMCADefrag::cThread::CompressChunk(void)
{
// Check that the compressed data can fit:
uLongf CompressedSize = compressBound(static_cast<uLong>(m_RawChunkDataSize));
if (CompressedSize > sizeof(m_CompressedChunkData))
{
LOGINFO("Too much data for the internal compression buffer!");
return false;
}
// Compress the data using the highest compression factor:
int errorcode = compress2(m_CompressedChunkData + 1, &CompressedSize, m_RawChunkData, static_cast<uLong>(m_RawChunkDataSize), Z_BEST_COMPRESSION);
if (errorcode != Z_OK)
{
LOGINFO("Recompression failed: %d", errorcode);
return false;
}
m_CompressedChunkData[0] = COMPRESSION_ZLIB;
ASSERT(CompressedSize < static_cast<uLong>(std::numeric_limits<int>::max()));
m_CompressedChunkDataSize = static_cast<int>(CompressedSize + 1);
return true;
}
|