// ProbabDistrib.cpp // Implements the cProbabDistrib class representing a discrete probability distribution curve and random generator #include "Globals.h" #include "ProbabDistrib.h" cProbabDistrib::cProbabDistrib(int a_MaxValue) : m_MaxValue(a_MaxValue), m_Sum(-1) { } void cProbabDistrib::SetPoints(const cProbabDistrib::cPoints & a_Points) { ASSERT(!a_Points.empty()); m_Sum = 0; m_Cumulative.clear(); m_Cumulative.reserve(a_Points.size() + 1); int ProbSum = 0; int LastProb = 0; int LastValue = -1; if (a_Points[0].m_Value != 0) { m_Cumulative.emplace_back(0, 0); // Always push in the [0, 0] point for easier search algorithm bounds LastValue = 0; } for (cPoints::const_iterator itr = a_Points.begin(), end = a_Points.end(); itr != end; ++itr) { if (itr->m_Value == LastValue) { continue; } // Add the current trapezoid to the sum: ProbSum += (LastProb + itr->m_Probability) * (itr->m_Value - LastValue) / 2; LastProb = itr->m_Probability; LastValue = itr->m_Value; m_Cumulative.emplace_back(itr->m_Value, ProbSum); } // for itr - a_Points[] if (LastValue != m_MaxValue) { m_Cumulative.emplace_back(m_MaxValue, 0); // Always push in the last point for easier search algorithm bounds } m_Sum = ProbSum; } bool cProbabDistrib::SetDefString(const AString & a_DefString) { AStringVector Points = StringSplitAndTrim(a_DefString, ";"); if (Points.empty()) { return false; } cPoints Pts; for (AStringVector::const_iterator itr = Points.begin(), end = Points.end(); itr != end; ++itr) { AStringVector Split = StringSplitAndTrim(*itr, ","); if (Split.size() != 2) { // Bad format return false; } int Value = atoi(Split[0].c_str()); int Prob = atoi(Split[1].c_str()); if (((Value == 0) && (Split[0] != "0")) || ((Prob == 0) && (Split[1] != "0"))) { // Number parse error return false; } Pts.emplace_back(Value, Prob); } // for itr - Points[] SetPoints(Pts); return true; } int cProbabDistrib::Random(MTRand & a_Rand) const { return MapValue(a_Rand.RandInt(m_Sum)); } int cProbabDistrib::MapValue(int a_OrigValue) const { ASSERT(a_OrigValue >= 0); ASSERT(a_OrigValue < m_Sum); // Binary search through m_Cumulative for placement: size_t Lo = 0; size_t Hi = m_Cumulative.size() - 1; while (Hi - Lo > 1) { size_t Mid = (Lo + Hi) / 2; int MidProbab = m_Cumulative[Mid].m_Probability; if (MidProbab < a_OrigValue) { Lo = Mid; } else { Hi = Mid; } } ASSERT(Hi - Lo == 1); // Linearly interpolate between Lo and Hi: int ProbDif = m_Cumulative[Hi].m_Probability - m_Cumulative[Lo].m_Probability; ProbDif = (ProbDif != 0) ? ProbDif : 1; int ValueDif = m_Cumulative[Hi].m_Value - m_Cumulative[Lo].m_Value; return m_Cumulative[Lo].m_Value + (a_OrigValue - m_Cumulative[Lo].m_Probability) * ValueDif / ProbDif; }