// filters.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"

#ifndef CRYPTOPP_IMPORTS

#include "filters.h"
#include "mqueue.h"
#include "fltrimpl.h"
#include "argnames.h"
#include <memory>
#include <functional>

NAMESPACE_BEGIN(CryptoPP)

Filter::Filter(BufferedTransformation *attachment)
	: m_attachment(attachment), m_continueAt(0)
{
}

BufferedTransformation * Filter::NewDefaultAttachment() const
{
	return new MessageQueue;
}

BufferedTransformation * Filter::AttachedTransformation()
{
	if (m_attachment.get() == NULL)
		m_attachment.reset(NewDefaultAttachment());
	return m_attachment.get();
}

const BufferedTransformation *Filter::AttachedTransformation() const
{
	if (m_attachment.get() == NULL)
		const_cast<Filter *>(this)->m_attachment.reset(NewDefaultAttachment());
	return m_attachment.get();
}

void Filter::Detach(BufferedTransformation *newOut)
{
	m_attachment.reset(newOut);
}

void Filter::Insert(Filter *filter)
{
	filter->m_attachment.reset(m_attachment.release());
	m_attachment.reset(filter);
}

size_t Filter::CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end, const std::string &channel, bool blocking) const
{
	return AttachedTransformation()->CopyRangeTo2(target, begin, end, channel, blocking);
}

size_t Filter::TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel, bool blocking)
{
	return AttachedTransformation()->TransferTo2(target, transferBytes, channel, blocking);
}

void Filter::Initialize(const NameValuePairs &parameters, int propagation)
{
	m_continueAt = 0;
	IsolatedInitialize(parameters);
	PropagateInitialize(parameters, propagation);
}

bool Filter::Flush(bool hardFlush, int propagation, bool blocking)
{
	switch (m_continueAt)
	{
	case 0:
		if (IsolatedFlush(hardFlush, blocking))
			return true;
	case 1:
		if (OutputFlush(1, hardFlush, propagation, blocking))
			return true;
	}
	return false;
}

bool Filter::MessageSeriesEnd(int propagation, bool blocking)
{
	switch (m_continueAt)
	{
	case 0:
		if (IsolatedMessageSeriesEnd(blocking))
			return true;
	case 1:
		if (ShouldPropagateMessageSeriesEnd() && OutputMessageSeriesEnd(1, propagation, blocking))
			return true;
	}
	return false;
}

void Filter::PropagateInitialize(const NameValuePairs &parameters, int propagation)
{
	if (propagation)
		AttachedTransformation()->Initialize(parameters, propagation-1);
}

size_t Filter::OutputModifiable(int outputSite, byte *inString, size_t length, int messageEnd, bool blocking, const std::string &channel)
{
	if (messageEnd)
		messageEnd--;
	size_t result = AttachedTransformation()->ChannelPutModifiable2(channel, inString, length, messageEnd, blocking);
	m_continueAt = result ? outputSite : 0;
	return result;
}

size_t Filter::Output(int outputSite, const byte *inString, size_t length, int messageEnd, bool blocking, const std::string &channel)
{
	if (messageEnd)
		messageEnd--;
	size_t result = AttachedTransformation()->ChannelPut2(channel, inString, length, messageEnd, blocking);
	m_continueAt = result ? outputSite : 0;
	return result;
}

bool Filter::OutputFlush(int outputSite, bool hardFlush, int propagation, bool blocking, const std::string &channel)
{
	if (propagation && AttachedTransformation()->ChannelFlush(channel, hardFlush, propagation-1, blocking))
	{
		m_continueAt = outputSite;
		return true;
	}
	m_continueAt = 0;
	return false;
}

bool Filter::OutputMessageSeriesEnd(int outputSite, int propagation, bool blocking, const std::string &channel)
{
	if (propagation && AttachedTransformation()->ChannelMessageSeriesEnd(channel, propagation-1, blocking))
	{
		m_continueAt = outputSite;
		return true;
	}
	m_continueAt = 0;
	return false;
}

// *************************************************************

void MeterFilter::ResetMeter()
{
	m_currentMessageBytes = m_totalBytes = m_currentSeriesMessages = m_totalMessages = m_totalMessageSeries = 0;
	m_rangesToSkip.clear();
}

void MeterFilter::AddRangeToSkip(unsigned int message, lword position, lword size, bool sortNow)
{
	MessageRange r = {message, position, size};
	m_rangesToSkip.push_back(r);
	if (sortNow)
		std::sort(m_rangesToSkip.begin(), m_rangesToSkip.end());
}

size_t MeterFilter::PutMaybeModifiable(byte *begin, size_t length, int messageEnd, bool blocking, bool modifiable)
{
	if (!m_transparent)
		return 0;

	size_t t;
	FILTER_BEGIN;

	m_begin = begin;
	m_length = length;

	while (m_length > 0 || messageEnd)
	{
		if (m_length > 0  && !m_rangesToSkip.empty() && m_rangesToSkip.front().message == m_totalMessages && m_currentMessageBytes + m_length > m_rangesToSkip.front().position)
		{
			FILTER_OUTPUT_MAYBE_MODIFIABLE(1, m_begin, t = (size_t)SaturatingSubtract(m_rangesToSkip.front().position, m_currentMessageBytes), false, modifiable);

			assert(t < m_length);
			m_begin += t;
			m_length -= t;
			m_currentMessageBytes += t;
			m_totalBytes += t;

			if (m_currentMessageBytes + m_length < m_rangesToSkip.front().position + m_rangesToSkip.front().size)
				t = m_length;
			else
			{
				t = (size_t)SaturatingSubtract(m_rangesToSkip.front().position + m_rangesToSkip.front().size, m_currentMessageBytes);
				assert(t <= m_length);
				m_rangesToSkip.pop_front();
			}

			m_begin += t;
			m_length -= t;
			m_currentMessageBytes += t;
			m_totalBytes += t;
		}
		else
		{
			FILTER_OUTPUT_MAYBE_MODIFIABLE(2, m_begin, m_length, messageEnd, modifiable);

			m_currentMessageBytes += m_length;
			m_totalBytes += m_length;
			m_length = 0;

			if (messageEnd)
			{
				m_currentMessageBytes = 0;
				m_currentSeriesMessages++;
				m_totalMessages++;
				messageEnd = false;
			}
		}
	}

	FILTER_END_NO_MESSAGE_END;
}

size_t MeterFilter::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	return PutMaybeModifiable(const_cast<byte *>(begin), length, messageEnd, blocking, false);
}

size_t MeterFilter::PutModifiable2(byte *begin, size_t length, int messageEnd, bool blocking)
{
	return PutMaybeModifiable(begin, length, messageEnd, blocking, true);
}

bool MeterFilter::IsolatedMessageSeriesEnd(bool blocking)
{
	m_currentMessageBytes = 0;
	m_currentSeriesMessages = 0;
	m_totalMessageSeries++;
	return false;
}

// *************************************************************

void FilterWithBufferedInput::BlockQueue::ResetQueue(size_t blockSize, size_t maxBlocks)
{
	m_buffer.New(blockSize * maxBlocks);
	m_blockSize = blockSize;
	m_maxBlocks = maxBlocks;
	m_size = 0;
	m_begin = m_buffer;
}

byte *FilterWithBufferedInput::BlockQueue::GetBlock()
{
	if (m_size >= m_blockSize)
	{
		byte *ptr = m_begin;
		if ((m_begin+=m_blockSize) == m_buffer.end())
			m_begin = m_buffer;
		m_size -= m_blockSize;
		return ptr;
	}
	else
		return NULL;
}

byte *FilterWithBufferedInput::BlockQueue::GetContigousBlocks(size_t &numberOfBytes)
{
	numberOfBytes = STDMIN(numberOfBytes, STDMIN(size_t(m_buffer.end()-m_begin), m_size));
	byte *ptr = m_begin;
	m_begin += numberOfBytes;
	m_size -= numberOfBytes;
	if (m_size == 0 || m_begin == m_buffer.end())
		m_begin = m_buffer;
	return ptr;
}

size_t FilterWithBufferedInput::BlockQueue::GetAll(byte *outString)
{
	size_t size = m_size;
	size_t numberOfBytes = m_maxBlocks*m_blockSize;
	const byte *ptr = GetContigousBlocks(numberOfBytes);
	memcpy(outString, ptr, numberOfBytes);
	memcpy(outString+numberOfBytes, m_begin, m_size);
	m_size = 0;
	return size;
}

void FilterWithBufferedInput::BlockQueue::Put(const byte *inString, size_t length)
{
	assert(m_size + length <= m_buffer.size());
	byte *end = (m_size < size_t(m_buffer.end()-m_begin)) ? m_begin + m_size : m_begin + m_size - m_buffer.size();
	size_t len = STDMIN(length, size_t(m_buffer.end()-end));
	memcpy(end, inString, len);
	if (len < length)
		memcpy(m_buffer, inString+len, length-len);
	m_size += length;
}

FilterWithBufferedInput::FilterWithBufferedInput(BufferedTransformation *attachment)
	: Filter(attachment)
{
}

FilterWithBufferedInput::FilterWithBufferedInput(size_t firstSize, size_t blockSize, size_t lastSize, BufferedTransformation *attachment)
	: Filter(attachment), m_firstSize(firstSize), m_blockSize(blockSize), m_lastSize(lastSize)
	, m_firstInputDone(false)
{
	if (m_firstSize < 0 || m_blockSize < 1 || m_lastSize < 0)
		throw InvalidArgument("FilterWithBufferedInput: invalid buffer size");

	m_queue.ResetQueue(1, m_firstSize);
}

void FilterWithBufferedInput::IsolatedInitialize(const NameValuePairs &parameters)
{
	InitializeDerivedAndReturnNewSizes(parameters, m_firstSize, m_blockSize, m_lastSize);
	if (m_firstSize < 0 || m_blockSize < 1 || m_lastSize < 0)
		throw InvalidArgument("FilterWithBufferedInput: invalid buffer size");
	m_queue.ResetQueue(1, m_firstSize);
	m_firstInputDone = false;
}

bool FilterWithBufferedInput::IsolatedFlush(bool hardFlush, bool blocking)
{
	if (!blocking)
		throw BlockingInputOnly("FilterWithBufferedInput");
	
	if (hardFlush)
		ForceNextPut();
	FlushDerived();
	
	return false;
}

size_t FilterWithBufferedInput::PutMaybeModifiable(byte *inString, size_t length, int messageEnd, bool blocking, bool modifiable)
{
	if (!blocking)
		throw BlockingInputOnly("FilterWithBufferedInput");

	if (length != 0)
	{
		size_t newLength = m_queue.CurrentSize() + length;

		if (!m_firstInputDone && newLength >= m_firstSize)
		{
			size_t len = m_firstSize - m_queue.CurrentSize();
			m_queue.Put(inString, len);
			FirstPut(m_queue.GetContigousBlocks(m_firstSize));
			assert(m_queue.CurrentSize() == 0);
			m_queue.ResetQueue(m_blockSize, (2*m_blockSize+m_lastSize-2)/m_blockSize);

			inString += len;
			newLength -= m_firstSize;
			m_firstInputDone = true;
		}

		if (m_firstInputDone)
		{
			if (m_blockSize == 1)
			{
				while (newLength > m_lastSize && m_queue.CurrentSize() > 0)
				{
					size_t len = newLength - m_lastSize;
					byte *ptr = m_queue.GetContigousBlocks(len);
					NextPutModifiable(ptr, len);
					newLength -= len;
				}

				if (newLength > m_lastSize)
				{
					size_t len = newLength - m_lastSize;
					NextPutMaybeModifiable(inString, len, modifiable);
					inString += len;
					newLength -= len;
				}
			}
			else
			{
				while (newLength >= m_blockSize + m_lastSize && m_queue.CurrentSize() >= m_blockSize)
				{
					NextPutModifiable(m_queue.GetBlock(), m_blockSize);
					newLength -= m_blockSize;
				}

				if (newLength >= m_blockSize + m_lastSize && m_queue.CurrentSize() > 0)
				{
					assert(m_queue.CurrentSize() < m_blockSize);
					size_t len = m_blockSize - m_queue.CurrentSize();
					m_queue.Put(inString, len);
					inString += len;
					NextPutModifiable(m_queue.GetBlock(), m_blockSize);
					newLength -= m_blockSize;
				}

				if (newLength >= m_blockSize + m_lastSize)
				{
					size_t len = RoundDownToMultipleOf(newLength - m_lastSize, m_blockSize);
					NextPutMaybeModifiable(inString, len, modifiable);
					inString += len;
					newLength -= len;
				}
			}
		}

		m_queue.Put(inString, newLength - m_queue.CurrentSize());
	}

	if (messageEnd)
	{
		if (!m_firstInputDone && m_firstSize==0)
			FirstPut(NULL);

		SecByteBlock temp(m_queue.CurrentSize());
		m_queue.GetAll(temp);
		LastPut(temp, temp.size());

		m_firstInputDone = false;
		m_queue.ResetQueue(1, m_firstSize);

		Output(1, NULL, 0, messageEnd, blocking);
	}
	return 0;
}

void FilterWithBufferedInput::ForceNextPut()
{
	if (!m_firstInputDone)
		return;
	
	if (m_blockSize > 1)
	{
		while (m_queue.CurrentSize() >= m_blockSize)
			NextPutModifiable(m_queue.GetBlock(), m_blockSize);
	}
	else
	{
		size_t len;
		while ((len = m_queue.CurrentSize()) > 0)
			NextPutModifiable(m_queue.GetContigousBlocks(len), len);
	}
}

void FilterWithBufferedInput::NextPutMultiple(const byte *inString, size_t length)
{
	assert(m_blockSize > 1);	// m_blockSize = 1 should always override this function
	while (length > 0)
	{
		assert(length >= m_blockSize);
		NextPutSingle(inString);
		inString += m_blockSize;
		length -= m_blockSize;
	}
}

// *************************************************************

void Redirector::Initialize(const NameValuePairs &parameters, int propagation)
{
	m_target = parameters.GetValueWithDefault("RedirectionTargetPointer", (BufferedTransformation*)NULL);
	m_behavior = parameters.GetIntValueWithDefault("RedirectionBehavior", PASS_EVERYTHING);

	if (m_target && GetPassSignals())
		m_target->Initialize(parameters, propagation);
}

// *************************************************************

ProxyFilter::ProxyFilter(BufferedTransformation *filter, size_t firstSize, size_t lastSize, BufferedTransformation *attachment)
	: FilterWithBufferedInput(firstSize, 1, lastSize, attachment), m_filter(filter)
{
	if (m_filter.get())
		m_filter->Attach(new OutputProxy(*this, false));
}

bool ProxyFilter::IsolatedFlush(bool hardFlush, bool blocking)
{
	return m_filter.get() ? m_filter->Flush(hardFlush, -1, blocking) : false;
}

void ProxyFilter::SetFilter(Filter *filter)
{
	m_filter.reset(filter);
	if (filter)
	{
		OutputProxy *proxy;
		std::auto_ptr<OutputProxy> temp(proxy = new OutputProxy(*this, false));
		m_filter->TransferAllTo(*proxy);
		m_filter->Attach(temp.release());
	}
}

void ProxyFilter::NextPutMultiple(const byte *s, size_t len)
{
	if (m_filter.get())
		m_filter->Put(s, len);
}

void ProxyFilter::NextPutModifiable(byte *s, size_t len)
{
	if (m_filter.get())
		m_filter->PutModifiable(s, len);
}

// *************************************************************

void RandomNumberSink::IsolatedInitialize(const NameValuePairs &parameters)
{
	parameters.GetRequiredParameter("RandomNumberSink", "RandomNumberGeneratorPointer", m_rng);
}

size_t RandomNumberSink::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	m_rng->IncorporateEntropy(begin, length);
	return 0;
}

size_t ArraySink::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (m_buf+m_total != begin)
		memcpy(m_buf+m_total, begin, STDMIN(length, SaturatingSubtract(m_size, m_total)));
	m_total += length;
	return 0;
}

byte * ArraySink::CreatePutSpace(size_t &size)
{
	size = SaturatingSubtract(m_size, m_total);
	return m_buf + m_total;
}

void ArraySink::IsolatedInitialize(const NameValuePairs &parameters)
{
	ByteArrayParameter array;
	if (!parameters.GetValue(Name::OutputBuffer(), array))
		throw InvalidArgument("ArraySink: missing OutputBuffer argument");
	m_buf = array.begin();
	m_size = array.size();
	m_total = 0;
}

size_t ArrayXorSink::Put2(const byte *begin, size_t length, int messageEnd, bool blocking)
{
	xorbuf(m_buf+m_total, begin, STDMIN(length, SaturatingSubtract(m_size, m_total)));
	m_total += length;
	return 0;
}

// *************************************************************

StreamTransformationFilter::StreamTransformationFilter(StreamTransformation &c, BufferedTransformation *attachment, BlockPaddingScheme padding, bool allowAuthenticatedSymmetricCipher)
   : FilterWithBufferedInput(attachment)
	, m_cipher(c)
{
	assert(c.MinLastBlockSize() == 0 || c.MinLastBlockSize() > c.MandatoryBlockSize());

	if (!allowAuthenticatedSymmetricCipher && dynamic_cast<AuthenticatedSymmetricCipher *>(&c) != 0)
		throw InvalidArgument("StreamTransformationFilter: please use AuthenticatedEncryptionFilter and AuthenticatedDecryptionFilter for AuthenticatedSymmetricCipher");

	IsolatedInitialize(MakeParameters(Name::BlockPaddingScheme(), padding));
}

size_t StreamTransformationFilter::LastBlockSize(StreamTransformation &c, BlockPaddingScheme padding)
{
	if (c.MinLastBlockSize() > 0)
		return c.MinLastBlockSize();
	else if (c.MandatoryBlockSize() > 1 && !c.IsForwardTransformation() && padding != NO_PADDING && padding != ZEROS_PADDING)
		return c.MandatoryBlockSize();
	else
		return 0;
}

void StreamTransformationFilter::InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize)
{
	BlockPaddingScheme padding = parameters.GetValueWithDefault(Name::BlockPaddingScheme(), DEFAULT_PADDING);
	bool isBlockCipher = (m_cipher.MandatoryBlockSize() > 1 && m_cipher.MinLastBlockSize() == 0);

	if (padding == DEFAULT_PADDING)
		m_padding = isBlockCipher ? PKCS_PADDING : NO_PADDING;
	else
		m_padding = padding;

	if (!isBlockCipher && (m_padding == PKCS_PADDING || m_padding == ONE_AND_ZEROS_PADDING))
		throw InvalidArgument("StreamTransformationFilter: PKCS_PADDING and ONE_AND_ZEROS_PADDING cannot be used with " + m_cipher.AlgorithmName());

	firstSize = 0;
	blockSize = m_cipher.MandatoryBlockSize();
	lastSize = LastBlockSize(m_cipher, m_padding);
}

void StreamTransformationFilter::FirstPut(const byte *inString)
{
	m_optimalBufferSize = m_cipher.OptimalBlockSize();
	m_optimalBufferSize = (unsigned int)STDMAX(m_optimalBufferSize, RoundDownToMultipleOf(4096U, m_optimalBufferSize));
}

void StreamTransformationFilter::NextPutMultiple(const byte *inString, size_t length)
{
	if (!length)
		return;

	size_t s = m_cipher.MandatoryBlockSize();

	do
	{
		size_t len = m_optimalBufferSize;
		byte *space = HelpCreatePutSpace(*AttachedTransformation(), DEFAULT_CHANNEL, s, length, len);
		if (len < length)
		{
			if (len == m_optimalBufferSize)
				len -= m_cipher.GetOptimalBlockSizeUsed();
			len = RoundDownToMultipleOf(len, s);
		}
		else
			len = length;
		m_cipher.ProcessString(space, inString, len);
		AttachedTransformation()->PutModifiable(space, len);
		inString += len;
		length -= len;
	}
	while (length > 0);
}

void StreamTransformationFilter::NextPutModifiable(byte *inString, size_t length)
{
	m_cipher.ProcessString(inString, length);
	AttachedTransformation()->PutModifiable(inString, length);
}

void StreamTransformationFilter::LastPut(const byte *inString, size_t length)
{
	byte *space = NULL;
	
	switch (m_padding)
	{
	case NO_PADDING:
	case ZEROS_PADDING:
		if (length > 0)
		{
			size_t minLastBlockSize = m_cipher.MinLastBlockSize();
			bool isForwardTransformation = m_cipher.IsForwardTransformation();

			if (isForwardTransformation && m_padding == ZEROS_PADDING && (minLastBlockSize == 0 || length < minLastBlockSize))
			{
				// do padding
				size_t blockSize = STDMAX(minLastBlockSize, (size_t)m_cipher.MandatoryBlockSize());
				space = HelpCreatePutSpace(*AttachedTransformation(), DEFAULT_CHANNEL, blockSize);
				memcpy(space, inString, length);
				memset(space + length, 0, blockSize - length);
				m_cipher.ProcessLastBlock(space, space, blockSize);
				AttachedTransformation()->Put(space, blockSize);
			}
			else
			{
				if (minLastBlockSize == 0)
				{
					if (isForwardTransformation)
						throw InvalidDataFormat("StreamTransformationFilter: plaintext length is not a multiple of block size and NO_PADDING is specified");
					else
						throw InvalidCiphertext("StreamTransformationFilter: ciphertext length is not a multiple of block size");
				}

				space = HelpCreatePutSpace(*AttachedTransformation(), DEFAULT_CHANNEL, length, m_optimalBufferSize);
				m_cipher.ProcessLastBlock(space, inString, length);
				AttachedTransformation()->Put(space, length);
			}
		}
		break;

	case PKCS_PADDING:
	case ONE_AND_ZEROS_PADDING:
		unsigned int s;
		s = m_cipher.MandatoryBlockSize();
		assert(s > 1);
		space = HelpCreatePutSpace(*AttachedTransformation(), DEFAULT_CHANNEL, s, m_optimalBufferSize);
		if (m_cipher.IsForwardTransformation())
		{
			assert(length < s);
			memcpy(space, inString, length);
			if (m_padding == PKCS_PADDING)
			{
				assert(s < 256);
				byte pad = byte(s-length);
				memset(space+length, pad, s-length);
			}
			else
			{
				space[length] = 0x80;
				memset(space+length+1, 0, s-length-1);
			}
			m_cipher.ProcessData(space, space, s);
			AttachedTransformation()->Put(space, s);
		}
		else
		{
			if (length != s)
				throw InvalidCiphertext("StreamTransformationFilter: ciphertext length is not a multiple of block size");
			m_cipher.ProcessData(space, inString, s);
			if (m_padding == PKCS_PADDING)
			{
				byte pad = space[s-1];
				if (pad < 1 || pad > s || std::find_if(space+s-pad, space+s, std::bind2nd(std::not_equal_to<byte>(), pad)) != space+s)
					throw InvalidCiphertext("StreamTransformationFilter: invalid PKCS #7 block padding found");
				length = s-pad;
			}
			else
			{
				while (length > 1 && space[length-1] == 0)
					--length;
				if (space[--length] != 0x80)
					throw InvalidCiphertext("StreamTransformationFilter: invalid ones-and-zeros padding found");
			}
			AttachedTransformation()->Put(space, length);
		}
		break;

	default:
		assert(false);
	}
}

// *************************************************************

HashFilter::HashFilter(HashTransformation &hm, BufferedTransformation *attachment, bool putMessage, int truncatedDigestSize, const std::string &messagePutChannel, const std::string &hashPutChannel)
	: m_hashModule(hm), m_putMessage(putMessage), m_messagePutChannel(messagePutChannel), m_hashPutChannel(hashPutChannel)
{
	m_digestSize = truncatedDigestSize < 0 ? m_hashModule.DigestSize() : truncatedDigestSize;
	Detach(attachment);
}

void HashFilter::IsolatedInitialize(const NameValuePairs &parameters)
{
	m_putMessage = parameters.GetValueWithDefault(Name::PutMessage(), false);
	int s = parameters.GetIntValueWithDefault(Name::TruncatedDigestSize(), -1);
	m_digestSize = s < 0 ? m_hashModule.DigestSize() : s;
}

size_t HashFilter::Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
	FILTER_BEGIN;
	if (m_putMessage)
		FILTER_OUTPUT3(1, 0, inString, length, 0, m_messagePutChannel);
	m_hashModule.Update(inString, length);
	if (messageEnd)
	{
		{
			size_t size;
			m_space = HelpCreatePutSpace(*AttachedTransformation(), m_hashPutChannel, m_digestSize, m_digestSize, size = m_digestSize);
			m_hashModule.TruncatedFinal(m_space, m_digestSize);
		}
		FILTER_OUTPUT3(2, 0, m_space, m_digestSize, messageEnd, m_hashPutChannel);
	}
	FILTER_END_NO_MESSAGE_END;
}

// *************************************************************

HashVerificationFilter::HashVerificationFilter(HashTransformation &hm, BufferedTransformation *attachment, word32 flags, int truncatedDigestSize)
	: FilterWithBufferedInput(attachment)
	, m_hashModule(hm)
{
	IsolatedInitialize(MakeParameters(Name::HashVerificationFilterFlags(), flags)(Name::TruncatedDigestSize(), truncatedDigestSize));
}

void HashVerificationFilter::InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize)
{
	m_flags = parameters.GetValueWithDefault(Name::HashVerificationFilterFlags(), (word32)DEFAULT_FLAGS);
	int s = parameters.GetIntValueWithDefault(Name::TruncatedDigestSize(), -1);
	m_digestSize = s < 0 ? m_hashModule.DigestSize() : s;
	m_verified = false;
	firstSize = m_flags & HASH_AT_BEGIN ? m_digestSize : 0;
	blockSize = 1;
	lastSize = m_flags & HASH_AT_BEGIN ? 0 : m_digestSize;
}

void HashVerificationFilter::FirstPut(const byte *inString)
{
	if (m_flags & HASH_AT_BEGIN)
	{
		m_expectedHash.New(m_digestSize);
		memcpy(m_expectedHash, inString, m_expectedHash.size());
		if (m_flags & PUT_HASH)
			AttachedTransformation()->Put(inString, m_expectedHash.size());
	}
}

void HashVerificationFilter::NextPutMultiple(const byte *inString, size_t length)
{
	m_hashModule.Update(inString, length);
	if (m_flags & PUT_MESSAGE)
		AttachedTransformation()->Put(inString, length);
}

void HashVerificationFilter::LastPut(const byte *inString, size_t length)
{
	if (m_flags & HASH_AT_BEGIN)
	{
		assert(length == 0);
		m_verified = m_hashModule.TruncatedVerify(m_expectedHash, m_digestSize);
	}
	else
	{
		m_verified = (length==m_digestSize && m_hashModule.TruncatedVerify(inString, length));
		if (m_flags & PUT_HASH)
			AttachedTransformation()->Put(inString, length);
	}

	if (m_flags & PUT_RESULT)
		AttachedTransformation()->Put(m_verified);

	if ((m_flags & THROW_EXCEPTION) && !m_verified)
		throw HashVerificationFailed();
}

// *************************************************************

AuthenticatedEncryptionFilter::AuthenticatedEncryptionFilter(AuthenticatedSymmetricCipher &c, BufferedTransformation *attachment, 
								bool putAAD, int truncatedDigestSize, const std::string &macChannel, BlockPaddingScheme padding)
	: StreamTransformationFilter(c, attachment, padding, true)
	, m_hf(c, new OutputProxy(*this, false), putAAD, truncatedDigestSize, AAD_CHANNEL, macChannel)
{
	assert(c.IsForwardTransformation());
}

void AuthenticatedEncryptionFilter::IsolatedInitialize(const NameValuePairs &parameters)
{
	m_hf.IsolatedInitialize(parameters);
	StreamTransformationFilter::IsolatedInitialize(parameters);
}

byte * AuthenticatedEncryptionFilter::ChannelCreatePutSpace(const std::string &channel, size_t &size)
{
	if (channel.empty())
		return StreamTransformationFilter::CreatePutSpace(size);

	if (channel == AAD_CHANNEL)
		return m_hf.CreatePutSpace(size);

	throw InvalidChannelName("AuthenticatedEncryptionFilter", channel);
}

size_t AuthenticatedEncryptionFilter::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (channel.empty())
		return StreamTransformationFilter::Put2(begin, length, messageEnd, blocking);

	if (channel == AAD_CHANNEL)
		return m_hf.Put2(begin, length, 0, blocking);

	throw InvalidChannelName("AuthenticatedEncryptionFilter", channel);
}

void AuthenticatedEncryptionFilter::LastPut(const byte *inString, size_t length)
{
	StreamTransformationFilter::LastPut(inString, length);
	m_hf.MessageEnd();
}

// *************************************************************

AuthenticatedDecryptionFilter::AuthenticatedDecryptionFilter(AuthenticatedSymmetricCipher &c, BufferedTransformation *attachment, word32 flags, int truncatedDigestSize, BlockPaddingScheme padding)
	: FilterWithBufferedInput(attachment)
	, m_hashVerifier(c, new OutputProxy(*this, false))
	, m_streamFilter(c, new OutputProxy(*this, false), padding, true)
{
	assert(!c.IsForwardTransformation() || c.IsSelfInverting());
	IsolatedInitialize(MakeParameters(Name::BlockPaddingScheme(), padding)(Name::AuthenticatedDecryptionFilterFlags(), flags)(Name::TruncatedDigestSize(), truncatedDigestSize));
}

void AuthenticatedDecryptionFilter::InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize)
{
	word32 flags = parameters.GetValueWithDefault(Name::AuthenticatedDecryptionFilterFlags(), (word32)DEFAULT_FLAGS);

	m_hashVerifier.Initialize(CombinedNameValuePairs(parameters, MakeParameters(Name::HashVerificationFilterFlags(), flags)));
	m_streamFilter.Initialize(parameters);

	firstSize = m_hashVerifier.m_firstSize;
	blockSize = 1;
	lastSize = m_hashVerifier.m_lastSize;
}

byte * AuthenticatedDecryptionFilter::ChannelCreatePutSpace(const std::string &channel, size_t &size)
{
	if (channel.empty())
		return m_streamFilter.CreatePutSpace(size);

	if (channel == AAD_CHANNEL)
		return m_hashVerifier.CreatePutSpace(size);

	throw InvalidChannelName("AuthenticatedDecryptionFilter", channel);
}

size_t AuthenticatedDecryptionFilter::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{
	if (channel.empty())
	{
		if (m_lastSize > 0)
			m_hashVerifier.ForceNextPut();
		return FilterWithBufferedInput::Put2(begin, length, messageEnd, blocking);
	}

	if (channel == AAD_CHANNEL)
		return m_hashVerifier.Put2(begin, length, 0, blocking);

	throw InvalidChannelName("AuthenticatedDecryptionFilter", channel);
}

void AuthenticatedDecryptionFilter::FirstPut(const byte *inString)
{
	m_hashVerifier.Put(inString, m_firstSize);
}

void AuthenticatedDecryptionFilter::NextPutMultiple(const byte *inString, size_t length)
{
	m_streamFilter.Put(inString, length);
}

void AuthenticatedDecryptionFilter::LastPut(const byte *inString, size_t length)
{
	m_streamFilter.MessageEnd();
	m_hashVerifier.PutMessageEnd(inString, length);
}

// *************************************************************

void SignerFilter::IsolatedInitialize(const NameValuePairs &parameters)
{
	m_putMessage = parameters.GetValueWithDefault(Name::PutMessage(), false);
	m_messageAccumulator.reset(m_signer.NewSignatureAccumulator(m_rng));
}

size_t SignerFilter::Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
	FILTER_BEGIN;
	m_messageAccumulator->Update(inString, length);
	if (m_putMessage)
		FILTER_OUTPUT(1, inString, length, 0);
	if (messageEnd)
	{
		m_buf.New(m_signer.SignatureLength());
		m_signer.Sign(m_rng, m_messageAccumulator.release(), m_buf);
		FILTER_OUTPUT(2, m_buf, m_buf.size(), messageEnd);
		m_messageAccumulator.reset(m_signer.NewSignatureAccumulator(m_rng));
	}
	FILTER_END_NO_MESSAGE_END;
}

SignatureVerificationFilter::SignatureVerificationFilter(const PK_Verifier &verifier, BufferedTransformation *attachment, word32 flags)
	: FilterWithBufferedInput(attachment)
	, m_verifier(verifier)
{
	IsolatedInitialize(MakeParameters(Name::SignatureVerificationFilterFlags(), flags));
}

void SignatureVerificationFilter::InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize)
{
	m_flags = parameters.GetValueWithDefault(Name::SignatureVerificationFilterFlags(), (word32)DEFAULT_FLAGS);
	m_messageAccumulator.reset(m_verifier.NewVerificationAccumulator());
	size_t size = m_verifier.SignatureLength();
	assert(size != 0);	// TODO: handle recoverable signature scheme
	m_verified = false;
	firstSize = m_flags & SIGNATURE_AT_BEGIN ? size : 0;
	blockSize = 1;
	lastSize = m_flags & SIGNATURE_AT_BEGIN ? 0 : size;
}

void SignatureVerificationFilter::FirstPut(const byte *inString)
{
	if (m_flags & SIGNATURE_AT_BEGIN)
	{
		if (m_verifier.SignatureUpfront())
			m_verifier.InputSignature(*m_messageAccumulator, inString, m_verifier.SignatureLength());
		else
		{
			m_signature.New(m_verifier.SignatureLength());
			memcpy(m_signature, inString, m_signature.size());
		}

		if (m_flags & PUT_SIGNATURE)
			AttachedTransformation()->Put(inString, m_signature.size());
	}
	else
	{
		assert(!m_verifier.SignatureUpfront());
	}
}

void SignatureVerificationFilter::NextPutMultiple(const byte *inString, size_t length)
{
	m_messageAccumulator->Update(inString, length);
	if (m_flags & PUT_MESSAGE)
		AttachedTransformation()->Put(inString, length);
}

void SignatureVerificationFilter::LastPut(const byte *inString, size_t length)
{
	if (m_flags & SIGNATURE_AT_BEGIN)
	{
		assert(length == 0);
		m_verifier.InputSignature(*m_messageAccumulator, m_signature, m_signature.size());
		m_verified = m_verifier.VerifyAndRestart(*m_messageAccumulator);
	}
	else
	{
		m_verifier.InputSignature(*m_messageAccumulator, inString, length);
		m_verified = m_verifier.VerifyAndRestart(*m_messageAccumulator);
		if (m_flags & PUT_SIGNATURE)
			AttachedTransformation()->Put(inString, length);
	}

	if (m_flags & PUT_RESULT)
		AttachedTransformation()->Put(m_verified);

	if ((m_flags & THROW_EXCEPTION) && !m_verified)
		throw SignatureVerificationFailed();
}

// *************************************************************

size_t Source::PumpAll2(bool blocking)
{
	unsigned int messageCount = UINT_MAX;
	do {
		RETURN_IF_NONZERO(PumpMessages2(messageCount, blocking));
	} while(messageCount == UINT_MAX);

	return 0;
}

bool Store::GetNextMessage()
{
	if (!m_messageEnd && !AnyRetrievable())
	{
		m_messageEnd=true;
		return true;
	}
	else
		return false;
}

unsigned int Store::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
	if (m_messageEnd || count == 0)
		return 0;
	else
	{
		CopyTo(target, ULONG_MAX, channel);
		if (GetAutoSignalPropagation())
			target.ChannelMessageEnd(channel, GetAutoSignalPropagation()-1);
		return 1;
	}
}

void StringStore::StoreInitialize(const NameValuePairs &parameters)
{
	ConstByteArrayParameter array;
	if (!parameters.GetValue(Name::InputBuffer(), array))
		throw InvalidArgument("StringStore: missing InputBuffer argument");
	m_store = array.begin();
	m_length = array.size();
	m_count = 0;
}

size_t StringStore::TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel, bool blocking)
{
	lword position = 0;
	size_t blockedBytes = CopyRangeTo2(target, position, transferBytes, channel, blocking);
	m_count += (size_t)position;
	transferBytes = position;
	return blockedBytes;
}

size_t StringStore::CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end, const std::string &channel, bool blocking) const
{
	size_t i = UnsignedMin(m_length, m_count+begin);
	size_t len = UnsignedMin(m_length-i, end-begin);
	size_t blockedBytes = target.ChannelPut2(channel, m_store+i, len, 0, blocking);
	if (!blockedBytes)
		begin += len;
	return blockedBytes;
}

void RandomNumberStore::StoreInitialize(const NameValuePairs &parameters)
{
	parameters.GetRequiredParameter("RandomNumberStore", "RandomNumberGeneratorPointer", m_rng);
	int length;
	parameters.GetRequiredIntParameter("RandomNumberStore", "RandomNumberStoreSize", length);
	m_length = length;
}

size_t RandomNumberStore::TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel, bool blocking)
{
	if (!blocking)
		throw NotImplemented("RandomNumberStore: nonblocking transfer is not implemented by this object");

	transferBytes = UnsignedMin(transferBytes, m_length - m_count);
	m_rng->GenerateIntoBufferedTransformation(target, channel, transferBytes);
	m_count += transferBytes;

	return 0;
}

size_t NullStore::CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end, const std::string &channel, bool blocking) const
{
	static const byte nullBytes[128] = {0};
	while (begin < end)
	{
		size_t len = (size_t)STDMIN(end-begin, lword(128));
		size_t blockedBytes = target.ChannelPut2(channel, nullBytes, len, 0, blocking);
		if (blockedBytes)
			return blockedBytes;
		begin += len;
	}
	return 0;
}

size_t NullStore::TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel, bool blocking)
{
	lword begin = 0;
	size_t blockedBytes = NullStore::CopyRangeTo2(target, begin, transferBytes, channel, blocking);
	transferBytes = begin;
	m_size -= begin;
	return blockedBytes;
}

NAMESPACE_END

#endif