diff options
Diffstat (limited to '')
-rw-r--r-- | CryptoPP/xtr.h | 215 |
1 files changed, 215 insertions, 0 deletions
diff --git a/CryptoPP/xtr.h b/CryptoPP/xtr.h new file mode 100644 index 000000000..89d39f03e --- /dev/null +++ b/CryptoPP/xtr.h @@ -0,0 +1,215 @@ +#ifndef CRYPTOPP_XTR_H +#define CRYPTOPP_XTR_H + +/** \file + "The XTR public key system" by Arjen K. Lenstra and Eric R. Verheul +*/ + +#include "modarith.h" + +NAMESPACE_BEGIN(CryptoPP) + +//! an element of GF(p^2) +class GFP2Element +{ +public: + GFP2Element() {} + GFP2Element(const Integer &c1, const Integer &c2) : c1(c1), c2(c2) {} + GFP2Element(const byte *encodedElement, unsigned int size) + : c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {} + + void Encode(byte *encodedElement, unsigned int size) + { + c1.Encode(encodedElement, size/2); + c2.Encode(encodedElement+size/2, size/2); + } + + bool operator==(const GFP2Element &rhs) const {return c1 == rhs.c1 && c2 == rhs.c2;} + bool operator!=(const GFP2Element &rhs) const {return !operator==(rhs);} + + void swap(GFP2Element &a) + { + c1.swap(a.c1); + c2.swap(a.c2); + } + + static const GFP2Element & Zero(); + + Integer c1, c2; +}; + +//! GF(p^2), optimal normal basis +template <class F> +class GFP2_ONB : public AbstractRing<GFP2Element> +{ +public: + typedef F BaseField; + + GFP2_ONB(const Integer &p) : modp(p) + { + if (p%3 != 2) + throw InvalidArgument("GFP2_ONB: modulus must be equivalent to 2 mod 3"); + } + + const Integer& GetModulus() const {return modp.GetModulus();} + + GFP2Element ConvertIn(const Integer &a) const + { + t = modp.Inverse(modp.ConvertIn(a)); + return GFP2Element(t, t); + } + + GFP2Element ConvertIn(const GFP2Element &a) const + {return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));} + + GFP2Element ConvertOut(const GFP2Element &a) const + {return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));} + + bool Equal(const GFP2Element &a, const GFP2Element &b) const + { + return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2); + } + + const Element& Identity() const + { + return GFP2Element::Zero(); + } + + const Element& Add(const Element &a, const Element &b) const + { + result.c1 = modp.Add(a.c1, b.c1); + result.c2 = modp.Add(a.c2, b.c2); + return result; + } + + const Element& Inverse(const Element &a) const + { + result.c1 = modp.Inverse(a.c1); + result.c2 = modp.Inverse(a.c2); + return result; + } + + const Element& Double(const Element &a) const + { + result.c1 = modp.Double(a.c1); + result.c2 = modp.Double(a.c2); + return result; + } + + const Element& Subtract(const Element &a, const Element &b) const + { + result.c1 = modp.Subtract(a.c1, b.c1); + result.c2 = modp.Subtract(a.c2, b.c2); + return result; + } + + Element& Accumulate(Element &a, const Element &b) const + { + modp.Accumulate(a.c1, b.c1); + modp.Accumulate(a.c2, b.c2); + return a; + } + + Element& Reduce(Element &a, const Element &b) const + { + modp.Reduce(a.c1, b.c1); + modp.Reduce(a.c2, b.c2); + return a; + } + + bool IsUnit(const Element &a) const + { + return a.c1.NotZero() || a.c2.NotZero(); + } + + const Element& MultiplicativeIdentity() const + { + result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity()); + return result; + } + + const Element& Multiply(const Element &a, const Element &b) const + { + t = modp.Add(a.c1, a.c2); + t = modp.Multiply(t, modp.Add(b.c1, b.c2)); + result.c1 = modp.Multiply(a.c1, b.c1); + result.c2 = modp.Multiply(a.c2, b.c2); + result.c1.swap(result.c2); + modp.Reduce(t, result.c1); + modp.Reduce(t, result.c2); + modp.Reduce(result.c1, t); + modp.Reduce(result.c2, t); + return result; + } + + const Element& MultiplicativeInverse(const Element &a) const + { + return result = Exponentiate(a, modp.GetModulus()-2); + } + + const Element& Square(const Element &a) const + { + const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1; + result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2); + result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1); + return result; + } + + Element Exponentiate(const Element &a, const Integer &e) const + { + Integer edivp, emodp; + Integer::Divide(emodp, edivp, e, modp.GetModulus()); + Element b = PthPower(a); + return AbstractRing<GFP2Element>::CascadeExponentiate(a, emodp, b, edivp); + } + + const Element & PthPower(const Element &a) const + { + result = a; + result.c1.swap(result.c2); + return result; + } + + void RaiseToPthPower(Element &a) const + { + a.c1.swap(a.c2); + } + + // a^2 - 2a^p + const Element & SpecialOperation1(const Element &a) const + { + assert(&a != &result); + result = Square(a); + modp.Reduce(result.c1, a.c2); + modp.Reduce(result.c1, a.c2); + modp.Reduce(result.c2, a.c1); + modp.Reduce(result.c2, a.c1); + return result; + } + + // x * z - y * z^p + const Element & SpecialOperation2(const Element &x, const Element &y, const Element &z) const + { + assert(&x != &result && &y != &result && &z != &result); + t = modp.Add(x.c2, y.c2); + result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t)); + modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1))); + t = modp.Add(x.c1, y.c1); + result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t)); + modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2))); + return result; + } + +protected: + BaseField modp; + mutable GFP2Element result; + mutable Integer t; +}; + +void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits); + +GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p); + +NAMESPACE_END + +#endif |