// Nosie3DGenerator.cpp
// Generates terrain using 3D noise, rather than composing. Is a test.
#include "Globals.h"
#include "Noise3DGenerator.h"
#include "../OSSupport/File.h"
#include "../OSSupport/Timer.h"
#include "../IniFile.h"
#include "../LinearInterpolation.h"
#include "../LinearUpscale.h"
/*
// Perform an automatic test of upscaling upon program start (use breakpoints to debug):
class Test
{
public:
Test(void)
{
DoTest1();
DoTest2();
}
void DoTest1(void)
{
float In[3 * 3 * 3];
for (size_t i = 0; i < ARRAYCOUNT(In); i++)
{
In[i] = (float)(i % 5);
}
Debug3DNoise(In, 3, 3, 3, "Upscale3D in");
float Out[17 * 33 * 35];
LinearUpscale3DArray(In, 3, 3, 3, Out, 8, 16, 17);
Debug3DNoise(Out, 17, 33, 35, "Upscale3D test");
}
void DoTest2(void)
{
float In[3 * 3];
for (size_t i = 0; i < ARRAYCOUNT(In); i++)
{
In[i] = (float)(i % 5);
}
Debug2DNoise(In, 3, 3, "Upscale2D in");
float Out[17 * 33];
LinearUpscale2DArray(In, 3, 3, Out, 8, 16);
Debug2DNoise(Out, 17, 33, "Upscale2D test");
}
} gTest;
//*/
#if 0
// Perform speed test of the cInterpolNoise class
static class cInterpolNoiseSpeedTest
{
public:
cInterpolNoiseSpeedTest(void)
{
TestSpeed2D();
TestSpeed3D();
printf("InterpolNoise speed comparison finished.\n");
}
/** Compare the speed of the 3D InterpolNoise vs 3D CubicNoise. */
void TestSpeed3D(void)
{
printf("Evaluating 3D noise performance...\n");
static const int SIZE_X = 128;
static const int SIZE_Y = 128;
static const int SIZE_Z = 128;
static const NOISE_DATATYPE MUL = 80;
std::unique_ptr<NOISE_DATATYPE[]> arr(new NOISE_DATATYPE[SIZE_X * SIZE_Y * SIZE_Z]);
cTimer timer;
// Test the cInterpolNoise:
cInterpolNoise<Interp5Deg> interpNoise(1);
long long start = timer.GetNowTime();
for (int i = 0; i < 30; i++)
{
interpNoise.Generate3D(arr.get(), SIZE_X, SIZE_Y, SIZE_Z, MUL * i, MUL * i + MUL, 0, MUL, 0, MUL);
}
long long end = timer.GetNowTime();
printf("InterpolNoise took %.02f sec\n", static_cast<float>(end - start) / 1000);
// Test the cCubicNoise:
cCubicNoise cubicNoise(1);
start = timer.GetNowTime();
for (int i = 0; i < 30; i++)
{
cubicNoise.Generate3D(arr.get(), SIZE_X, SIZE_Y, SIZE_Z, MUL * i, MUL * i + MUL, 0, MUL, 0, MUL);
}
end = timer.GetNowTime();
printf("CubicNoise took %.02f sec\n", static_cast<float>(end - start) / 1000);
printf("3D noise performance comparison finished.\n");
}
/** Compare the speed of the 2D InterpolNoise vs 2D CubicNoise. */
void TestSpeed2D(void)
{
printf("Evaluating 2D noise performance...\n");
static const int SIZE_X = 128;
static const int SIZE_Y = 128;
static const NOISE_DATATYPE MUL = 80;
std::unique_ptr<NOISE_DATATYPE[]> arr(new NOISE_DATATYPE[SIZE_X * SIZE_Y]);
cTimer timer;
// Test the cInterpolNoise:
cInterpolNoise<Interp5Deg> interpNoise(1);
long long start = timer.GetNowTime();
for (int i = 0; i < 500; i++)
{
interpNoise.Generate2D(arr.get(), SIZE_X, SIZE_Y, MUL * i, MUL * i + MUL, 0, MUL);
}
long long end = timer.GetNowTime();
printf("InterpolNoise took %.02f sec\n", static_cast<float>(end - start) / 1000);
// Test the cCubicNoise:
cCubicNoise cubicNoise(1);
start = timer.GetNowTime();
for (int i = 0; i < 500; i++)
{
cubicNoise.Generate2D(arr.get(), SIZE_X, SIZE_Y, MUL * i, MUL * i + MUL, 0, MUL);
}
end = timer.GetNowTime();
printf("CubicNoise took %.02f sec\n", static_cast<float>(end - start) / 1000);
printf("2D noise performance comparison finished.\n");
}
} g_InterpolNoiseSpeedTest;
#endif
////////////////////////////////////////////////////////////////////////////////
// cNoise3DGenerator:
cNoise3DGenerator::cNoise3DGenerator(cChunkGenerator & a_ChunkGenerator) :
super(a_ChunkGenerator),
m_Perlin(1000),
m_Cubic(1000)
{
m_Perlin.AddOctave(1, 1);
m_Perlin.AddOctave(2, 0.5);
m_Perlin.AddOctave(4, 0.25);
m_Perlin.AddOctave(8, 0.125);
m_Perlin.AddOctave(16, 0.0625);
m_Cubic.AddOctave(1, 1);
m_Cubic.AddOctave(2, 0.5);
m_Cubic.AddOctave(4, 0.25);
m_Cubic.AddOctave(8, 0.125);
m_Cubic.AddOctave(16, 0.0625);
}
cNoise3DGenerator::~cNoise3DGenerator()
{
// Nothing needed yet
}
void cNoise3DGenerator::Initialize(cIniFile & a_IniFile)
{
// Params:
m_SeaLevel = a_IniFile.GetValueSetI("Generator", "SeaLevel", 62);
m_HeightAmplification = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DHeightAmplification", 0.1);
m_MidPoint = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DMidPoint", 68);
m_FrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyX", 8);
m_FrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyY", 8);
m_FrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyZ", 8);
m_AirThreshold = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DAirThreshold", 0.5);
}
void cNoise3DGenerator::GenerateBiomes(int a_ChunkX, int a_ChunkZ, cChunkDef::BiomeMap & a_BiomeMap)
{
for (size_t i = 0; i < ARRAYCOUNT(a_BiomeMap); i++)
{
a_BiomeMap[i] = biExtremeHills;
}
}
void cNoise3DGenerator::DoGenerate(int a_ChunkX, int a_ChunkZ, cChunkDesc & a_ChunkDesc)
{
NOISE_DATATYPE Noise[17 * 257 * 17];
GenerateNoiseArray(a_ChunkX, a_ChunkZ, Noise);
// Output noise into chunk:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
int idx = z * 17 * 257 + y * 17;
for (int x = 0; x < cChunkDef::Width; x++)
{
NOISE_DATATYPE n = Noise[idx++];
BLOCKTYPE BlockType;
if (n > m_AirThreshold)
{
BlockType = (y > m_SeaLevel) ? E_BLOCK_AIR : E_BLOCK_STATIONARY_WATER;
}
else
{
BlockType = E_BLOCK_STONE;
}
a_ChunkDesc.SetBlockType(x, y, z, BlockType);
}
}
}
UpdateHeightmap(a_ChunkDesc);
ComposeTerrain (a_ChunkDesc);
}
void cNoise3DGenerator::GenerateNoiseArray(int a_ChunkX, int a_ChunkZ, NOISE_DATATYPE * a_OutNoise)
{
NOISE_DATATYPE NoiseO[DIM_X * DIM_Y * DIM_Z]; // Output for the Perlin noise
NOISE_DATATYPE NoiseW[DIM_X * DIM_Y * DIM_Z]; // Workspace that the noise calculation can use and trash
// Our noise array has different layout, XZY, instead of regular chunk's XYZ, that's why the coords are "renamed"
NOISE_DATATYPE StartX = ((NOISE_DATATYPE)(a_ChunkX * cChunkDef::Width)) / m_FrequencyX;
NOISE_DATATYPE EndX = ((NOISE_DATATYPE)((a_ChunkX + 1) * cChunkDef::Width)) / m_FrequencyX;
NOISE_DATATYPE StartZ = ((NOISE_DATATYPE)(a_ChunkZ * cChunkDef::Width)) / m_FrequencyZ;
NOISE_DATATYPE EndZ = ((NOISE_DATATYPE)((a_ChunkZ + 1) * cChunkDef::Width)) / m_FrequencyZ;
NOISE_DATATYPE StartY = 0;
NOISE_DATATYPE EndY = ((NOISE_DATATYPE)256) / m_FrequencyY;
m_Perlin.Generate3D(NoiseO, DIM_X, DIM_Y, DIM_Z, StartX, EndX, StartY, EndY, StartZ, EndZ, NoiseW);
// DEBUG: Debug3DNoise(NoiseO, DIM_X, DIM_Y, DIM_Z, Printf("Chunk_%d_%d_orig", a_ChunkX, a_ChunkZ));
// Precalculate a "height" array:
NOISE_DATATYPE Height[DIM_X * DIM_Z]; // Output for the cubic noise heightmap ("source")
m_Cubic.Generate2D(Height, DIM_X, DIM_Z, StartX / 5, EndX / 5, StartZ / 5, EndZ / 5);
for (size_t i = 0; i < ARRAYCOUNT(Height); i++)
{
Height[i] = Height[i] * m_HeightAmplification;
}
// Modify the noise by height data:
for (int y = 0; y < DIM_Y; y++)
{
NOISE_DATATYPE AddHeight = (y * UPSCALE_Y - m_MidPoint) / 30;
// AddHeight *= AddHeight * AddHeight;
for (int z = 0; z < DIM_Z; z++)
{
NOISE_DATATYPE * CurRow = &(NoiseO[y * DIM_X + z * DIM_X * DIM_Y]);
for (int x = 0; x < DIM_X; x++)
{
CurRow[x] += AddHeight + Height[x + DIM_X * z];
}
}
}
// DEBUG: Debug3DNoise(NoiseO, DIM_X, DIM_Y, DIM_Z, Printf("Chunk_%d_%d_hei", a_ChunkX, a_ChunkZ));
// Upscale the Perlin noise into full-blown chunk dimensions:
LinearUpscale3DArray(
NoiseO, DIM_X, DIM_Y, DIM_Z,
a_OutNoise, UPSCALE_X, UPSCALE_Y, UPSCALE_Z
);
// DEBUG: Debug3DNoise(a_OutNoise, 17, 257, 17, Printf("Chunk_%d_%d_lerp", a_ChunkX, a_ChunkZ));
}
void cNoise3DGenerator::UpdateHeightmap(cChunkDesc & a_ChunkDesc)
{
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = cChunkDef::Height - 1; y > 0; y--)
{
if (a_ChunkDesc.GetBlockType(x, y, z) != E_BLOCK_AIR)
{
a_ChunkDesc.SetHeight(x, z, y);
break;
}
} // for y
} // for x
} // for z
}
void cNoise3DGenerator::ComposeTerrain(cChunkDesc & a_ChunkDesc)
{
// Make basic terrain composition:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
int LastAir = a_ChunkDesc.GetHeight(x, z) + 1;
bool HasHadWater = false;
for (int y = LastAir - 1; y > 0; y--)
{
switch (a_ChunkDesc.GetBlockType(x, y, z))
{
case E_BLOCK_AIR:
{
LastAir = y;
break;
}
case E_BLOCK_STONE:
{
if (LastAir - y > 3)
{
break;
}
if (HasHadWater)
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_SAND);
}
else
{
a_ChunkDesc.SetBlockType(x, y, z, (LastAir == y + 1) ? E_BLOCK_GRASS : E_BLOCK_DIRT);
}
break;
}
case E_BLOCK_STATIONARY_WATER:
{
LastAir = y;
HasHadWater = true;
break;
}
} // switch (GetBlockType())
} // for y
a_ChunkDesc.SetBlockType(x, 0, z, E_BLOCK_BEDROCK);
} // for x
} // for z
}
////////////////////////////////////////////////////////////////////////////////
// cNoise3DComposable:
cNoise3DComposable::cNoise3DComposable(int a_Seed) :
m_ChoiceNoise(a_Seed),
m_DensityNoiseA(a_Seed + 1),
m_DensityNoiseB(a_Seed + 2),
m_BaseNoise(a_Seed + 3)
{
}
void cNoise3DComposable::Initialize(cIniFile & a_IniFile)
{
// Params:
// The defaults generate extreme hills terrain
m_HeightAmplification = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DHeightAmplification", 0.045);
m_MidPoint = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DMidPoint", 75);
m_FrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyX", 40);
m_FrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyY", 40);
m_FrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DFrequencyZ", 40);
m_BaseFrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DBaseFrequencyX", 40);
m_BaseFrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DBaseFrequencyZ", 40);
m_ChoiceFrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DChoiceFrequencyX", 40);
m_ChoiceFrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DChoiceFrequencyY", 80);
m_ChoiceFrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DChoiceFrequencyZ", 40);
m_AirThreshold = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DAirThreshold", 0);
int NumChoiceOctaves = a_IniFile.GetValueSetI("Generator", "Noise3DNumChoiceOctaves", 4);
int NumDensityOctaves = a_IniFile.GetValueSetI("Generator", "Noise3DNumDensityOctaves", 6);
int NumBaseOctaves = a_IniFile.GetValueSetI("Generator", "Noise3DNumBaseOctaves", 6);
NOISE_DATATYPE BaseNoiseAmplitude = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "Noise3DBaseAmplitude", 1);
// Add octaves for the choice noise:
NOISE_DATATYPE wavlen = 1, ampl = 0.5;
for (int i = 0; i < NumChoiceOctaves; i++)
{
m_ChoiceNoise.AddOctave(wavlen, ampl);
wavlen = wavlen * 2;
ampl = ampl / 2;
}
// Add octaves for the density noises:
wavlen = 1, ampl = 1;
for (int i = 0; i < NumDensityOctaves; i++)
{
m_DensityNoiseA.AddOctave(wavlen, ampl);
m_DensityNoiseB.AddOctave(wavlen, ampl);
wavlen = wavlen * 2;
ampl = ampl / 2;
}
// Add octaves for the base noise:
wavlen = 1, ampl = BaseNoiseAmplitude;
for (int i = 0; i < NumBaseOctaves; i++)
{
m_BaseNoise.AddOctave(wavlen, ampl);
wavlen = wavlen * 2;
ampl = ampl / 2;
}
}
void cNoise3DComposable::GenerateNoiseArrayIfNeeded(int a_ChunkX, int a_ChunkZ)
{
if ((a_ChunkX == m_LastChunkX) && (a_ChunkZ == m_LastChunkZ))
{
// The noise for this chunk is already generated in m_NoiseArray
return;
}
m_LastChunkX = a_ChunkX;
m_LastChunkZ = a_ChunkZ;
// Generate all the noises:
NOISE_DATATYPE ChoiceNoise[5 * 5 * 33];
NOISE_DATATYPE Workspace[5 * 5 * 33];
NOISE_DATATYPE DensityNoiseA[5 * 5 * 33];
NOISE_DATATYPE DensityNoiseB[5 * 5 * 33];
NOISE_DATATYPE BaseNoise[5 * 5];
NOISE_DATATYPE BlockX = static_cast<NOISE_DATATYPE>(a_ChunkX * cChunkDef::Width);
NOISE_DATATYPE BlockZ = static_cast<NOISE_DATATYPE>(a_ChunkZ * cChunkDef::Width);
// Note that we have to swap the X and Y coords, because noise generator uses [x + SizeX * y + SizeX * SizeY * z] ordering and we want "BlockY" to be "x":
m_ChoiceNoise.Generate3D (ChoiceNoise, 33, 5, 5, 0, 257 / m_ChoiceFrequencyY, BlockX / m_ChoiceFrequencyX, (BlockX + 17) / m_ChoiceFrequencyX, BlockZ / m_ChoiceFrequencyZ, (BlockZ + 17) / m_ChoiceFrequencyZ, Workspace);
m_DensityNoiseA.Generate3D(DensityNoiseA, 33, 5, 5, 0, 257 / m_FrequencyY, BlockX / m_FrequencyX, (BlockX + 17) / m_FrequencyX, BlockZ / m_FrequencyZ, (BlockZ + 17) / m_FrequencyZ, Workspace);
m_DensityNoiseB.Generate3D(DensityNoiseB, 33, 5, 5, 0, 257 / m_FrequencyY, BlockX / m_FrequencyX, (BlockX + 17) / m_FrequencyX, BlockZ / m_FrequencyZ, (BlockZ + 17) / m_FrequencyZ, Workspace);
m_BaseNoise.Generate2D (BaseNoise, 5, 5, BlockX / m_BaseFrequencyX, (BlockX + 17) / m_BaseFrequencyX, BlockZ / m_FrequencyZ, (BlockZ + 17) / m_FrequencyZ, Workspace);
// Calculate the final noise based on the partial noises:
for (int z = 0; z < 5; z++)
{
for (int x = 0; x < 5; x++)
{
NOISE_DATATYPE curBaseNoise = BaseNoise[x + 5 * z];
for (int y = 0; y < 33; y++)
{
NOISE_DATATYPE AddHeight = (static_cast<NOISE_DATATYPE>(y * 8) - m_MidPoint) * m_HeightAmplification;
// If "underground", make the terrain smoother by forcing the vertical linear gradient into steeper slope:
if (AddHeight < 0)
{
AddHeight *= 4;
}
// If too high, cut off any terrain:
if (y > 28)
{
AddHeight = AddHeight + static_cast<NOISE_DATATYPE>(y - 28) / 4;
}
// Decide between the two density noises:
int idx = 33 * x + 33 * 5 * z + y;
Workspace[idx] = ClampedLerp(DensityNoiseA[idx], DensityNoiseB[idx], 8 * (ChoiceNoise[idx] + 0.5f)) + AddHeight + curBaseNoise;
}
}
}
LinearUpscale3DArray<NOISE_DATATYPE>(Workspace, 33, 5, 5, m_NoiseArray, 8, 4, 4);
}
void cNoise3DComposable::GenShape(int a_ChunkX, int a_ChunkZ, cChunkDesc::Shape & a_Shape)
{
GenerateNoiseArrayIfNeeded(a_ChunkX, a_ChunkZ);
// Translate the noise array into Shape:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
a_Shape[y + x * 256 + z * 256 * 16] = (m_NoiseArray[y + 257 * x + 257 * 17 * z] > m_AirThreshold) ? 0 : 1;
}
} // for x
} // for z
}
////////////////////////////////////////////////////////////////////////////////
// cBiomalNoise3DComposable:
cBiomalNoise3DComposable::cBiomalNoise3DComposable(int a_Seed, cBiomeGenPtr a_BiomeGen) :
m_ChoiceNoise(a_Seed),
m_DensityNoiseA(a_Seed + 1),
m_DensityNoiseB(a_Seed + 2),
m_BaseNoise(a_Seed + 3),
m_BiomeGen(a_BiomeGen),
m_LastChunkX(0x7fffffff), // Set impossible coords for the chunk so that it's always considered stale
m_LastChunkZ(0x7fffffff)
{
// Generate the weight distribution for summing up neighboring biomes:
m_WeightSum = 0;
for (int z = 0; z <= AVERAGING_SIZE * 2; z++)
{
for (int x = 0; x <= AVERAGING_SIZE * 2; x++)
{
m_Weight[z][x] = static_cast<NOISE_DATATYPE>((AVERAGING_SIZE - std::abs(AVERAGING_SIZE - x)) + (AVERAGING_SIZE - std::abs(AVERAGING_SIZE - z)));
m_WeightSum += m_Weight[z][x];
}
}
}
void cBiomalNoise3DComposable::Initialize(cIniFile & a_IniFile)
{
// Params:
// The defaults generate extreme hills terrain
m_SeaLevel = a_IniFile.GetValueSetI("Generator", "SeaLevel", 62);
m_FrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DFrequencyX", 40);
m_FrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DFrequencyY", 40);
m_FrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DFrequencyZ", 40);
m_BaseFrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DBaseFrequencyX", 40);
m_BaseFrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DBaseFrequencyZ", 40);
m_ChoiceFrequencyX = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DChoiceFrequencyX", 40);
m_ChoiceFrequencyY = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DChoiceFrequencyY", 80);
m_ChoiceFrequencyZ = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DChoiceFrequencyZ", 40);
m_AirThreshold = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DAirThreshold", 0);
int NumChoiceOctaves = a_IniFile.GetValueSetI("Generator", "BiomalNoise3DNumChoiceOctaves", 4);
int NumDensityOctaves = a_IniFile.GetValueSetI("Generator", "BiomalNoise3DNumDensityOctaves", 6);
int NumBaseOctaves = a_IniFile.GetValueSetI("Generator", "BiomalNoise3DNumBaseOctaves", 6);
NOISE_DATATYPE BaseNoiseAmplitude = (NOISE_DATATYPE)a_IniFile.GetValueSetF("Generator", "BiomalNoise3DBaseAmplitude", 1);
// Add octaves for the choice noise:
NOISE_DATATYPE wavlen = 1, ampl = 0.5;
for (int i = 0; i < NumChoiceOctaves; i++)
{
m_ChoiceNoise.AddOctave(wavlen, ampl);
wavlen = wavlen * 2;
ampl = ampl / 2;
}
// Add octaves for the density noises:
wavlen = 1, ampl = 1;
for (int i = 0; i < NumDensityOctaves; i++)
{
m_DensityNoiseA.AddOctave(wavlen, ampl);
m_DensityNoiseB.AddOctave(wavlen, ampl);
wavlen = wavlen * 2;
ampl = ampl / 2;
}
// Add octaves for the base noise:
wavlen = 1, ampl = BaseNoiseAmplitude;
for (int i = 0; i < NumBaseOctaves; i++)
{
m_BaseNoise.AddOctave(wavlen, ampl);
wavlen = wavlen * 2;
ampl = ampl / 2;
}
}
void cBiomalNoise3DComposable::GenerateNoiseArrayIfNeeded(int a_ChunkX, int a_ChunkZ)
{
if ((a_ChunkX == m_LastChunkX) && (a_ChunkZ == m_LastChunkZ))
{
// The noise for this chunk is already generated in m_NoiseArray
return;
}
m_LastChunkX = a_ChunkX;
m_LastChunkZ = a_ChunkZ;
// Calculate the parameters for the biomes:
ChunkParam MidPoint;
ChunkParam HeightAmp;
CalcBiomeParamArrays(a_ChunkX, a_ChunkZ, HeightAmp, MidPoint);
// Generate all the noises:
NOISE_DATATYPE ChoiceNoise[5 * 5 * 33];
NOISE_DATATYPE Workspace[5 * 5 * 33];
NOISE_DATATYPE DensityNoiseA[5 * 5 * 33];
NOISE_DATATYPE DensityNoiseB[5 * 5 * 33];
NOISE_DATATYPE BaseNoise[5 * 5];
NOISE_DATATYPE BlockX = static_cast<NOISE_DATATYPE>(a_ChunkX * cChunkDef::Width);
NOISE_DATATYPE BlockZ = static_cast<NOISE_DATATYPE>(a_ChunkZ * cChunkDef::Width);
// Note that we have to swap the X and Y coords, because noise generator uses [x + SizeX * y + SizeX * SizeY * z] ordering and we want "BlockY" to be "x":
m_ChoiceNoise.Generate3D (ChoiceNoise, 33, 5, 5, 0, 257 / m_ChoiceFrequencyY, BlockX / m_ChoiceFrequencyX, (BlockX + 17) / m_ChoiceFrequencyX, BlockZ / m_ChoiceFrequencyZ, (BlockZ + 17) / m_ChoiceFrequencyZ, Workspace);
m_DensityNoiseA.Generate3D(DensityNoiseA, 33, 5, 5, 0, 257 / m_FrequencyY, BlockX / m_FrequencyX, (BlockX + 17) / m_FrequencyX, BlockZ / m_FrequencyZ, (BlockZ + 17) / m_FrequencyZ, Workspace);
m_DensityNoiseB.Generate3D(DensityNoiseB, 33, 5, 5, 0, 257 / m_FrequencyY, BlockX / m_FrequencyX, (BlockX + 17) / m_FrequencyX, BlockZ / m_FrequencyZ, (BlockZ + 17) / m_FrequencyZ, Workspace);
m_BaseNoise.Generate2D (BaseNoise, 5, 5, BlockX / m_BaseFrequencyX, (BlockX + 17) / m_BaseFrequencyX, BlockZ / m_FrequencyZ, (BlockZ + 17) / m_FrequencyZ, Workspace);
// Calculate the final noise based on the partial noises:
for (int z = 0; z < 5; z++)
{
for (int x = 0; x < 5; x++)
{
NOISE_DATATYPE curMidPoint = MidPoint[x + 5 * z];
NOISE_DATATYPE curHeightAmp = HeightAmp[x + 5 * z];
NOISE_DATATYPE curBaseNoise = BaseNoise[x + 5 * z];
for (int y = 0; y < 33; y++)
{
NOISE_DATATYPE AddHeight = (static_cast<NOISE_DATATYPE>(y * 8) - curMidPoint) * curHeightAmp;
// If "underground", make the terrain smoother by forcing the vertical linear gradient into steeper slope:
if (AddHeight < 0)
{
AddHeight *= 4;
}
// If too high, cut off any terrain:
if (y > 28)
{
AddHeight = AddHeight + static_cast<NOISE_DATATYPE>(y - 28) / 4;
}
// Decide between the two density noises:
int idx = 33 * x + y + 33 * 5 * z;
Workspace[idx] = ClampedLerp(DensityNoiseA[idx], DensityNoiseB[idx], 8 * (ChoiceNoise[idx] + 0.5f)) + AddHeight + curBaseNoise;
}
}
}
LinearUpscale3DArray<NOISE_DATATYPE>(Workspace, 33, 5, 5, m_NoiseArray, 8, 4, 4);
}
void cBiomalNoise3DComposable::CalcBiomeParamArrays(int a_ChunkX, int a_ChunkZ, ChunkParam & a_HeightAmp, ChunkParam & a_MidPoint)
{
// Generate the 3*3 chunks of biomes around this chunk:
cChunkDef::BiomeMap neighborBiomes[3 * 3];
for (int z = 0; z < 3; z++)
{
for (int x = 0; x < 3; x++)
{
m_BiomeGen->GenBiomes(a_ChunkX + x - 1, a_ChunkZ + z - 1, neighborBiomes[x + 3 * z]);
}
}
// Sum up the biome values:
for (int z = 0; z < 5; z++)
{
for (int x = 0; x < 5; x++)
{
NOISE_DATATYPE totalHeightAmp = 0;
NOISE_DATATYPE totalMidPoint = 0;
// Add up the biomes around this point:
for (int relz = 0; relz <= AVERAGING_SIZE * 2; ++relz)
{
int colz = 16 + z * 4 + relz - AVERAGING_SIZE; // Biome Z coord relative to the neighborBiomes start
int neicellz = colz / 16; // Chunk Z coord relative to the neighborBiomes start
int neirelz = colz % 16; // Biome Z coord relative to cz in neighborBiomes
for (int relx = 0; relx <= AVERAGING_SIZE * 2; ++relx)
{
int colx = 16 + x * 4 + relx - AVERAGING_SIZE; // Biome X coord relative to the neighborBiomes start
int neicellx = colx / 16; // Chunk X coord relative to the neighborBiomes start
int neirelx = colx % 16; // Biome X coord relative to cz in neighborBiomes
EMCSBiome biome = cChunkDef::GetBiome(neighborBiomes[neicellx + neicellz * 3], neirelx, neirelz);
NOISE_DATATYPE heightAmp, midPoint;
GetBiomeParams(biome, heightAmp, midPoint);
totalHeightAmp += heightAmp * m_Weight[relz][relx];
totalMidPoint += midPoint * m_Weight[relz][relx];
} // for relx
} // for relz
a_HeightAmp[x + 5 * z] = totalHeightAmp / m_WeightSum;
a_MidPoint[x + 5 * z] = totalMidPoint / m_WeightSum;
} // for x
} // for z
}
void cBiomalNoise3DComposable::GetBiomeParams(EMCSBiome a_Biome, NOISE_DATATYPE & a_HeightAmp, NOISE_DATATYPE & a_MidPoint)
{
switch (a_Biome)
{
case biBeach: a_HeightAmp = 0.2f; a_MidPoint = 60; break;
case biBirchForest: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biBirchForestHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biBirchForestHillsM: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biBirchForestM: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biColdBeach: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biColdTaiga: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biColdTaigaM: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biColdTaigaHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biDesertHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biDeepOcean: a_HeightAmp = 0.17f; a_MidPoint = 35; break;
case biDesert: a_HeightAmp = 0.29f; a_MidPoint = 62; break;
case biDesertM: a_HeightAmp = 0.29f; a_MidPoint = 62; break;
case biEnd: a_HeightAmp = 0.15f; a_MidPoint = 64; break;
case biExtremeHills: a_HeightAmp = 0.045f; a_MidPoint = 75; break;
case biExtremeHillsEdge: a_HeightAmp = 0.1f; a_MidPoint = 70; break;
case biExtremeHillsM: a_HeightAmp = 0.045f; a_MidPoint = 75; break;
case biExtremeHillsPlus: a_HeightAmp = 0.04f; a_MidPoint = 80; break;
case biExtremeHillsPlusM: a_HeightAmp = 0.04f; a_MidPoint = 80; break;
case biFlowerForest: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biForest: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biForestHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biFrozenRiver: a_HeightAmp = 0.4f; a_MidPoint = 54; break;
case biFrozenOcean: a_HeightAmp = 0.12f; a_MidPoint = 45; break;
case biIceMountains: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biIcePlains: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biIcePlainsSpikes: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biJungle: a_HeightAmp = 0.1f; a_MidPoint = 63; break;
case biJungleEdge: a_HeightAmp = 0.15f; a_MidPoint = 62; break;
case biJungleEdgeM: a_HeightAmp = 0.15f; a_MidPoint = 62; break;
case biJungleHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biJungleM: a_HeightAmp = 0.1f; a_MidPoint = 63; break;
case biMegaSpruceTaiga: a_HeightAmp = 0.09f; a_MidPoint = 64; break;
case biMegaSpruceTaigaHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biMegaTaiga: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biMegaTaigaHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
case biMesa: a_HeightAmp = 0.09f; a_MidPoint = 61; break;
case biMesaBryce: a_HeightAmp = 0.15f; a_MidPoint = 61; break;
case biMesaPlateau: a_HeightAmp = 0.25f; a_MidPoint = 86; break;
case biMesaPlateauF: a_HeightAmp = 0.25f; a_MidPoint = 96; break;
case biMesaPlateauFM: a_HeightAmp = 0.25f; a_MidPoint = 96; break;
case biMesaPlateauM: a_HeightAmp = 0.25f; a_MidPoint = 86; break;
case biMushroomShore: a_HeightAmp = 0.075f; a_MidPoint = 60; break;
case biMushroomIsland: a_HeightAmp = 0.06f; a_MidPoint = 80; break;
case biNether: a_HeightAmp = 0.01f; a_MidPoint = 64; break;
case biOcean: a_HeightAmp = 0.12f; a_MidPoint = 45; break;
case biPlains: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biRiver: a_HeightAmp = 0.4f; a_MidPoint = 54; break;
case biRoofedForest: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biRoofedForestM: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biSavanna: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biSavannaM: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biSavannaPlateau: a_HeightAmp = 0.3f; a_MidPoint = 85; break;
case biSavannaPlateauM: a_HeightAmp = 0.012f; a_MidPoint = 105; break;
case biStoneBeach: a_HeightAmp = 0.075f; a_MidPoint = 60; break;
case biSunflowerPlains: a_HeightAmp = 0.3f; a_MidPoint = 62; break;
case biSwampland: a_HeightAmp = 0.25f; a_MidPoint = 59; break;
case biSwamplandM: a_HeightAmp = 0.11f; a_MidPoint = 59; break;
case biTaiga: a_HeightAmp = 0.1f; a_MidPoint = 64; break;
case biTaigaM: a_HeightAmp = 0.1f; a_MidPoint = 70; break;
case biTaigaHills: a_HeightAmp = 0.075f; a_MidPoint = 68; break;
default:
{
// Make a crazy terrain so that it stands out
a_HeightAmp = 0.001f;
a_MidPoint = 90;
break;
}
}
}
void cBiomalNoise3DComposable::GenShape(int a_ChunkX, int a_ChunkZ, cChunkDesc::Shape & a_Shape)
{
GenerateNoiseArrayIfNeeded(a_ChunkX, a_ChunkZ);
// Translate the noise array into Shape:
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
a_Shape[y + x * 256 + z * 256 * 16] = (m_NoiseArray[y + 257 * x + 257 * 17 * z] > m_AirThreshold) ? 0 : 1;
}
} // for x
} // for z
}