#pragma once
#include "BlockHandler.h"
#include "../FastRandom.h"
#include "../World.h"
#include "../BlockArea.h"
// Leaves can be this many blocks that away (inclusive) from the log not to decay
#define LEAVES_CHECK_DISTANCE 6
#define PROCESS_NEIGHBOR(x, y, z) \
switch (a_Area.GetBlockType(x, y, z)) \
{ \
case E_BLOCK_LEAVES: a_Area.SetBlockType(x, y, z, (BLOCKTYPE)(E_BLOCK_SPONGE + i + 1)); break; \
case E_BLOCK_LOG: return true; \
case E_BLOCK_NEW_LEAVES: a_Area.SetBlockType(x, y, z, (BLOCKTYPE)(E_BLOCK_SPONGE + i + 1)); break; \
case E_BLOCK_NEW_LOG: return true; \
}
bool HasNearLog(cBlockArea &a_Area, int a_BlockX, int a_BlockY, int a_BlockZ);
class cBlockLeavesHandler :
public cBlockHandler
{
public:
cBlockLeavesHandler(BLOCKTYPE a_BlockType)
: cBlockHandler(a_BlockType)
{
}
virtual void ConvertToPickups(cItems & a_Pickups, NIBBLETYPE a_BlockMeta) override
{
cFastRandom rand;
// Old leaves - 3 bits contain display; new leaves - 1st bit, shifted left two for saplings to understand
if (rand.NextInt(20) == 0)
{
a_Pickups.push_back(
cItem(
E_BLOCK_SAPLING,
1,
(m_BlockType == E_BLOCK_LEAVES) ? (a_BlockMeta & 0x03) : static_cast<short>(2 << (a_BlockMeta & 0x01))
)
);
}
// 1 % chance of dropping an apple, if the leaves' type is Apple Leaves
if ((m_BlockType == E_BLOCK_LEAVES) && ((a_BlockMeta & 0x03) == E_META_LEAVES_APPLE))
{
if (rand.NextInt(101) == 0)
{
a_Pickups.push_back(cItem(E_ITEM_RED_APPLE, 1, 0));
}
}
}
virtual void OnNeighborChanged(cChunkInterface & a_ChunkInterface, int a_BlockX, int a_BlockY, int a_BlockZ) override
{
NIBBLETYPE Meta = a_ChunkInterface.GetBlockMeta(a_BlockX, a_BlockY, a_BlockZ);
a_ChunkInterface.SetBlockMeta(a_BlockX, a_BlockY, a_BlockZ, Meta & 0x7); // Unset 0x8 bit so it gets checked for decay
}
virtual void OnUpdate(cChunkInterface & a_ChunkInterface, cWorldInterface & a_WorldInterface, cBlockPluginInterface & a_PluginInterface, cChunk & a_Chunk, int a_RelX, int a_RelY, int a_RelZ) override
{
NIBBLETYPE Meta = a_Chunk.GetMeta(a_RelX, a_RelY, a_RelZ);
if ((Meta & 0x04) != 0)
{
// Player-placed leaves, don't decay
return;
}
if ((Meta & 0x8) != 0)
{
// These leaves have been checked for decay lately and nothing around them changed
return;
}
// Get the data around the leaves:
int BlockX = a_RelX + a_Chunk.GetPosX() * cChunkDef::Width;
int BlockZ = a_RelZ + a_Chunk.GetPosZ() * cChunkDef::Width;
cBlockArea Area;
if (!Area.Read(
a_Chunk.GetWorld(),
BlockX - LEAVES_CHECK_DISTANCE, BlockX + LEAVES_CHECK_DISTANCE,
a_RelY - LEAVES_CHECK_DISTANCE, a_RelY + LEAVES_CHECK_DISTANCE,
BlockZ - LEAVES_CHECK_DISTANCE, BlockZ + LEAVES_CHECK_DISTANCE,
cBlockArea::baTypes)
)
{
// Cannot check leaves, a chunk is missing too close
return;
}
if (HasNearLog(Area, BlockX, a_RelY, BlockZ))
{
// Wood found, the leaves stay; mark them as checked:
a_Chunk.SetMeta(a_RelX, a_RelY, a_RelZ, Meta | 0x8);
return;
}
// Decay the leaves:
DropBlock(a_ChunkInterface, a_WorldInterface, a_PluginInterface, nullptr, BlockX, a_RelY, BlockZ);
a_ChunkInterface.DigBlock(a_WorldInterface, BlockX, a_RelY, BlockZ);
}
} ;
bool HasNearLog(cBlockArea & a_Area, int a_BlockX, int a_BlockY, int a_BlockZ)
{
// Filter the blocks into a {leaves, log, other (air)} set:
BLOCKTYPE * Types = a_Area.GetBlockTypes();
for (size_t i = a_Area.GetBlockCount() - 1; i > 0; i--)
{
switch (Types[i])
{
case E_BLOCK_LEAVES:
case E_BLOCK_LOG:
case E_BLOCK_NEW_LEAVES:
case E_BLOCK_NEW_LOG:
{
break;
}
default:
{
Types[i] = E_BLOCK_AIR;
break;
}
}
} // for i - Types[]
// Perform a breadth-first search to see if there's a log connected within 4 blocks of the leaves block:
// Simply replace all reachable leaves blocks with a sponge block plus iteration (in the Area) and see if we can reach a log in 4 iterations
a_Area.SetBlockType(a_BlockX, a_BlockY, a_BlockZ, E_BLOCK_SPONGE);
for (int i = 0; i < LEAVES_CHECK_DISTANCE; i++)
{
for (int y = std::max(a_BlockY - i, 0); y <= std::min(a_BlockY + i, 255); y++)
{
for (int z = a_BlockZ - i; z <= a_BlockZ + i; z++)
{
for (int x = a_BlockX - i; x <= a_BlockX + i; x++)
{
if (a_Area.GetBlockType(x, y, z) != E_BLOCK_SPONGE + i)
{
continue;
}
PROCESS_NEIGHBOR(x - 1, y, z);
PROCESS_NEIGHBOR(x + 1, y, z);
PROCESS_NEIGHBOR(x, y, z - 1);
PROCESS_NEIGHBOR(x, y, z + 1);
PROCESS_NEIGHBOR(x, y + 1, z);
PROCESS_NEIGHBOR(x, y - 1, z);
} // for x
} // for z
} // for y
} // for i - BFS iterations
return false;
}