summaryrefslogtreecommitdiffstats
path: root/applypatch
diff options
context:
space:
mode:
Diffstat (limited to 'applypatch')
-rw-r--r--applypatch/Android.mk22
-rw-r--r--applypatch/imgdiff.cpp1555
-rw-r--r--applypatch/include/applypatch/imgdiff_image.h303
3 files changed, 1312 insertions, 568 deletions
diff --git a/applypatch/Android.mk b/applypatch/Android.mk
index a7412d238..59aa0ce6c 100644
--- a/applypatch/Android.mk
+++ b/applypatch/Android.mk
@@ -37,6 +37,7 @@ LOCAL_STATIC_LIBRARIES := \
libz
LOCAL_CFLAGS := \
-DZLIB_CONST \
+ -Wall \
-Werror
include $(BUILD_STATIC_LIBRARY)
@@ -59,6 +60,7 @@ LOCAL_STATIC_LIBRARIES := \
libz
LOCAL_CFLAGS := \
-DZLIB_CONST \
+ -Wall \
-Werror
include $(BUILD_STATIC_LIBRARY)
@@ -82,6 +84,7 @@ LOCAL_STATIC_LIBRARIES := \
libz
LOCAL_CFLAGS := \
-DZLIB_CONST \
+ -Wall \
-Werror
include $(BUILD_HOST_STATIC_LIBRARY)
@@ -97,7 +100,7 @@ LOCAL_STATIC_LIBRARIES := \
libbase \
libedify \
libcrypto
-LOCAL_CFLAGS := -Werror
+LOCAL_CFLAGS := -Wall -Werror
include $(BUILD_STATIC_LIBRARY)
# applypatch (target executable)
@@ -119,15 +122,17 @@ LOCAL_SHARED_LIBRARIES := \
libbase \
libz \
libcutils
-LOCAL_CFLAGS := -Werror
+LOCAL_CFLAGS := -Wall -Werror
include $(BUILD_EXECUTABLE)
libimgdiff_src_files := imgdiff.cpp
# libbsdiff is compiled with -D_FILE_OFFSET_BITS=64.
libimgdiff_cflags := \
+ -Wall \
-Werror \
- -D_FILE_OFFSET_BITS=64
+ -D_FILE_OFFSET_BITS=64 \
+ -DZLIB_CONST
libimgdiff_static_libraries := \
libbsdiff \
@@ -150,7 +155,8 @@ LOCAL_CFLAGS := \
LOCAL_STATIC_LIBRARIES := \
$(libimgdiff_static_libraries)
LOCAL_C_INCLUDES := \
- $(LOCAL_PATH)/include
+ $(LOCAL_PATH)/include \
+ bootable/recovery
LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include
include $(BUILD_STATIC_LIBRARY)
@@ -165,7 +171,8 @@ LOCAL_CFLAGS := \
LOCAL_STATIC_LIBRARIES := \
$(libimgdiff_static_libraries)
LOCAL_C_INCLUDES := \
- $(LOCAL_PATH)/include
+ $(LOCAL_PATH)/include \
+ bootable/recovery
LOCAL_EXPORT_C_INCLUDE_DIRS := $(LOCAL_PATH)/include
include $(BUILD_HOST_STATIC_LIBRARY)
@@ -174,9 +181,12 @@ include $(BUILD_HOST_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_SRC_FILES := imgdiff_main.cpp
LOCAL_MODULE := imgdiff
-LOCAL_CFLAGS := -Werror
+LOCAL_CFLAGS := -Wall -Werror
LOCAL_STATIC_LIBRARIES := \
libimgdiff \
$(libimgdiff_static_libraries) \
libbz
+LOCAL_C_INCLUDES := \
+ $(LOCAL_PATH)/include \
+ bootable/recovery
include $(BUILD_HOST_EXECUTABLE)
diff --git a/applypatch/imgdiff.cpp b/applypatch/imgdiff.cpp
index fc240644f..2eb618fbf 100644
--- a/applypatch/imgdiff.cpp
+++ b/applypatch/imgdiff.cpp
@@ -125,6 +125,7 @@
#include <errno.h>
#include <fcntl.h>
+#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@@ -139,15 +140,19 @@
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/memory.h>
+#include <android-base/parseint.h>
#include <android-base/unique_fd.h>
-#include <ziparchive/zip_archive.h>
-
#include <bsdiff.h>
+#include <ziparchive/zip_archive.h>
#include <zlib.h>
+#include "applypatch/imgdiff_image.h"
+#include "rangeset.h"
+
using android::base::get_unaligned;
-static constexpr auto BUFFER_SIZE = 0x8000;
+static constexpr size_t BLOCK_SIZE = 4096;
+static constexpr size_t BUFFER_SIZE = 0x8000;
// If we use this function to write the offset and length (type size_t), their values should not
// exceed 2^63; because the signed bit will be casted away.
@@ -161,99 +166,78 @@ static inline bool Write4(int fd, int32_t value) {
return android::base::WriteFully(fd, &value, sizeof(int32_t));
}
-class ImageChunk {
- public:
- static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
- static constexpr auto MEMLEVEL = 8; // the default value.
- static constexpr auto METHOD = Z_DEFLATED;
- static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
-
- ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len)
- : type_(type),
- start_(start),
- input_file_ptr_(file_content),
- raw_data_len_(raw_data_len),
- compress_level_(6),
- source_start_(0),
- source_len_(0),
- source_uncompressed_len_(0) {
- CHECK(file_content != nullptr) << "input file container can't be nullptr";
- }
-
- int GetType() const {
- return type_;
- }
- size_t GetRawDataLength() const {
- return raw_data_len_;
- }
- const std::string& GetEntryName() const {
- return entry_name_;
- }
-
- // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
- // the raw data.
- const uint8_t * DataForPatch() const;
- size_t DataLengthForPatch() const;
-
- void Dump() const {
- printf("type %d start %zu len %zu\n", type_, start_, DataLengthForPatch());
- }
-
- void SetSourceInfo(const ImageChunk& other);
- void SetEntryName(std::string entryname);
- void SetUncompressedData(std::vector<uint8_t> data);
- bool SetBonusData(const std::vector<uint8_t>& bonus_data);
-
- bool operator==(const ImageChunk& other) const;
- bool operator!=(const ImageChunk& other) const {
- return !(*this == other);
- }
-
- size_t GetHeaderSize(size_t patch_size) const;
- // Return the offset of the next patch into the patch data.
- size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset);
-
- /*
- * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
- * of uninterpreted data). The resulting patch will likely be about
- * as big as the target file, but it lets us handle the case of images
- * where some gzip chunks are reconstructible but others aren't (by
- * treating the ones that aren't as normal chunks).
- */
- void ChangeDeflateChunkToNormal();
- bool ChangeChunkToRaw(size_t patch_size);
-
- /*
- * Verify that we can reproduce exactly the same compressed data that
- * we started with. Sets the level, method, windowBits, memLevel, and
- * strategy fields in the chunk to the encoding parameters needed to
- * produce the right output.
- */
- bool ReconstructDeflateChunk();
- bool IsAdjacentNormal(const ImageChunk& other) const;
- void MergeAdjacentNormal(const ImageChunk& other);
-
- private:
- int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
- size_t start_; // offset of chunk in the original input file
- const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
- size_t raw_data_len_;
-
- // --- for CHUNK_DEFLATE chunks only: ---
- std::vector<uint8_t> uncompressed_data_;
- std::string entry_name_; // used for zip entries
-
- // deflate encoder parameters
- int compress_level_;
-
- size_t source_start_;
- size_t source_len_;
- size_t source_uncompressed_len_;
-
- const uint8_t* GetRawData() const;
- bool TryReconstruction(int level);
+// Trim the head or tail to align with the block size. Return false if the chunk has nothing left
+// after alignment.
+static bool AlignHead(size_t* start, size_t* length) {
+ size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
+
+ if (*length <= residual) {
+ *length = 0;
+ return false;
+ }
+
+ // Trim the data in the beginning.
+ *start += residual;
+ *length -= residual;
+ return true;
+}
+
+static bool AlignTail(size_t* start, size_t* length) {
+ size_t residual = (*start + *length) % BLOCK_SIZE;
+ if (*length <= residual) {
+ *length = 0;
+ return false;
+ }
+
+ // Trim the data in the end.
+ *length -= residual;
+ return true;
+}
+
+// Remove the used blocks from the source chunk to make sure the source ranges are mutually
+// exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
+// a case, we'll skip the entire source chunk.
+static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
+ if (!used_ranges.Overlaps(*start, *length)) {
+ return true;
+ }
+
+ // TODO find the largest non-overlap chunk.
+ printf("Removing block %s from %zu - %zu\n", used_ranges.ToString().c_str(), *start,
+ *start + *length - 1);
+
+ // If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
+ // trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
+ if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
+ return true;
+ }
+ if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
+ return true;
+ }
+
+ printf("Failed to remove the overlapped block ranges; skip the source\n");
+ return false;
+}
+
+static const struct option OPTIONS[] = {
+ { "zip-mode", no_argument, nullptr, 'z' },
+ { "bonus-file", required_argument, nullptr, 'b' },
+ { "block-limit", required_argument, nullptr, 0 },
+ { "debug-dir", required_argument, nullptr, 0 },
+ { nullptr, 0, nullptr, 0 },
};
+ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
+ size_t raw_data_len, std::string entry_name)
+ : type_(type),
+ start_(start),
+ input_file_ptr_(file_content),
+ raw_data_len_(raw_data_len),
+ compress_level_(6),
+ entry_name_(std::move(entry_name)) {
+ CHECK(file_content != nullptr) << "input file container can't be nullptr";
+}
+
const uint8_t* ImageChunk::GetRawData() const {
CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
return input_file_ptr_->data() + start_;
@@ -281,20 +265,6 @@ bool ImageChunk::operator==(const ImageChunk& other) const {
memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
}
-void ImageChunk::SetSourceInfo(const ImageChunk& src) {
- source_start_ = src.start_;
- if (type_ == CHUNK_NORMAL) {
- source_len_ = src.raw_data_len_;
- } else if (type_ == CHUNK_DEFLATE) {
- source_len_ = src.raw_data_len_;
- source_uncompressed_len_ = src.uncompressed_data_.size();
- }
-}
-
-void ImageChunk::SetEntryName(std::string entryname) {
- entry_name_ = std::move(entryname);
-}
-
void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
uncompressed_data_ = std::move(data);
}
@@ -307,80 +277,13 @@ bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
return true;
}
-// Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the target size is
-// smaller. Also take the header size into account during size comparison.
-bool ImageChunk::ChangeChunkToRaw(size_t patch_size) {
- if (type_ == CHUNK_RAW) {
- return true;
- } else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) {
- type_ = CHUNK_RAW;
- return true;
- }
- return false;
-}
-
void ImageChunk::ChangeDeflateChunkToNormal() {
if (type_ != CHUNK_DEFLATE) return;
type_ = CHUNK_NORMAL;
- entry_name_.clear();
+ // No need to clear the entry name.
uncompressed_data_.clear();
}
-// Header size:
-// header_type 4 bytes
-// CHUNK_NORMAL 8*3 = 24 bytes
-// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
-// CHUNK_RAW 4 bytes + patch_size
-size_t ImageChunk::GetHeaderSize(size_t patch_size) const {
- switch (type_) {
- case CHUNK_NORMAL:
- return 4 + 8 * 3;
- case CHUNK_DEFLATE:
- return 4 + 8 * 5 + 4 * 5;
- case CHUNK_RAW:
- return 4 + 4 + patch_size;
- default:
- CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
- return 0;
- }
-}
-
-size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) {
- Write4(fd, type_);
- switch (type_) {
- case CHUNK_NORMAL:
- printf("normal (%10zu, %10zu) %10zu\n", start_, raw_data_len_, patch.size());
- Write8(fd, static_cast<int64_t>(source_start_));
- Write8(fd, static_cast<int64_t>(source_len_));
- Write8(fd, static_cast<int64_t>(offset));
- return offset + patch.size();
- case CHUNK_DEFLATE:
- printf("deflate (%10zu, %10zu) %10zu %s\n", start_, raw_data_len_, patch.size(),
- entry_name_.c_str());
- Write8(fd, static_cast<int64_t>(source_start_));
- Write8(fd, static_cast<int64_t>(source_len_));
- Write8(fd, static_cast<int64_t>(offset));
- Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
- Write8(fd, static_cast<int64_t>(uncompressed_data_.size()));
- Write4(fd, compress_level_);
- Write4(fd, METHOD);
- Write4(fd, WINDOWBITS);
- Write4(fd, MEMLEVEL);
- Write4(fd, STRATEGY);
- return offset + patch.size();
- case CHUNK_RAW:
- printf("raw (%10zu, %10zu)\n", start_, raw_data_len_);
- Write4(fd, static_cast<int32_t>(patch.size()));
- if (!android::base::WriteFully(fd, patch.data(), patch.size())) {
- CHECK(false) << "failed to write " << patch.size() <<" bytes patch";
- }
- return offset;
- default:
- CHECK(false) << "unexpected chunk type: " << type_;
- return offset;
- }
-}
-
bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
return false;
@@ -393,14 +296,61 @@ void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
raw_data_len_ = raw_data_len_ + other.raw_data_len_;
}
+bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
+ std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache) {
+#if defined(__ANDROID__)
+ char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
+#else
+ char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
+#endif
+
+ int fd = mkstemp(ptemp);
+ if (fd == -1) {
+ printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
+ return false;
+ }
+ close(fd);
+
+ int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
+ tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
+ if (r != 0) {
+ printf("bsdiff() failed: %d\n", r);
+ return false;
+ }
+
+ android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
+ if (patch_fd == -1) {
+ printf("failed to open %s: %s\n", ptemp, strerror(errno));
+ return false;
+ }
+ struct stat st;
+ if (fstat(patch_fd, &st) != 0) {
+ printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
+ return false;
+ }
+
+ size_t sz = static_cast<size_t>(st.st_size);
+
+ patch_data->resize(sz);
+ if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
+ printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
+ unlink(ptemp);
+ return false;
+ }
+
+ unlink(ptemp);
+
+ return true;
+}
+
bool ImageChunk::ReconstructDeflateChunk() {
if (type_ != CHUNK_DEFLATE) {
printf("attempt to reconstruct non-deflate chunk\n");
return false;
}
- // We only check two combinations of encoder parameters: level 6
- // (the default) and level 9 (the maximum).
+ // We only check two combinations of encoder parameters: level 6 (the default) and level 9
+ // (the maximum).
for (int level = 6; level <= 9; level += 3) {
if (TryReconstruction(level)) {
compress_level_ = level;
@@ -412,10 +362,9 @@ bool ImageChunk::ReconstructDeflateChunk() {
}
/*
- * Takes the uncompressed data stored in the chunk, compresses it
- * using the zlib parameters stored in the chunk, and checks that it
- * matches exactly the compressed data we started with (also stored in
- * the chunk).
+ * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
+ * in the chunk, and checks that it matches exactly the compressed data we started with (also
+ * stored in the chunk).
*/
bool ImageChunk::TryReconstruction(int level) {
z_stream strm;
@@ -458,195 +407,785 @@ bool ImageChunk::TryReconstruction(int level) {
return true;
}
-// EOCD record
-// offset 0: signature 0x06054b50, 4 bytes
-// offset 4: number of this disk, 2 bytes
-// ...
-// offset 20: comment length, 2 bytes
-// offset 22: comment, n bytes
-static bool GetZipFileSize(const std::vector<uint8_t>& zip_file, size_t* input_file_size) {
- if (zip_file.size() < 22) {
- printf("file is too small to be a zip file\n");
- return false;
+PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
+ : type_(tgt.GetType()),
+ source_start_(src.GetStartOffset()),
+ source_len_(src.GetRawDataLength()),
+ source_uncompressed_len_(src.DataLengthForPatch()),
+ target_start_(tgt.GetStartOffset()),
+ target_len_(tgt.GetRawDataLength()),
+ target_uncompressed_len_(tgt.DataLengthForPatch()),
+ target_compress_level_(tgt.GetCompressLevel()),
+ data_(std::move(data)) {}
+
+// Construct a CHUNK_RAW patch from the target data directly.
+PatchChunk::PatchChunk(const ImageChunk& tgt)
+ : type_(CHUNK_RAW),
+ source_start_(0),
+ source_len_(0),
+ source_uncompressed_len_(0),
+ target_start_(tgt.GetStartOffset()),
+ target_len_(tgt.GetRawDataLength()),
+ target_uncompressed_len_(tgt.DataLengthForPatch()),
+ target_compress_level_(tgt.GetCompressLevel()),
+ data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
+
+// Return true if raw data is smaller than the patch size.
+bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
+ size_t target_len = tgt.GetRawDataLength();
+ return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
+}
+
+void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
+ if (type_ == CHUNK_DEFLATE) {
+ source_start_ = src_range.GetOffsetInRangeSet(source_start_);
}
+}
- // Look for End of central directory record of the zip file, and calculate the actual
- // zip_file size.
- for (int i = zip_file.size() - 22; i >= 0; i--) {
- if (zip_file[i] == 0x50) {
- if (get_unaligned<uint32_t>(&zip_file[i]) == 0x06054b50) {
- // double-check: this archive consists of a single "disk".
- CHECK_EQ(get_unaligned<uint16_t>(&zip_file[i + 4]), 0);
+// Header size:
+// header_type 4 bytes
+// CHUNK_NORMAL 8*3 = 24 bytes
+// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
+// CHUNK_RAW 4 bytes + patch_size
+size_t PatchChunk::GetHeaderSize() const {
+ switch (type_) {
+ case CHUNK_NORMAL:
+ return 4 + 8 * 3;
+ case CHUNK_DEFLATE:
+ return 4 + 8 * 5 + 4 * 5;
+ case CHUNK_RAW:
+ return 4 + 4 + data_.size();
+ default:
+ CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
+ return 0;
+ }
+}
- uint16_t comment_length = get_unaligned<uint16_t>(&zip_file[i + 20]);
- size_t file_size = i + 22 + comment_length;
- CHECK_LE(file_size, zip_file.size());
- *input_file_size = file_size;
- return true;
+// Return the offset of the next patch into the patch data.
+size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const {
+ Write4(fd, type_);
+ switch (type_) {
+ case CHUNK_NORMAL:
+ printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size());
+ Write8(fd, static_cast<int64_t>(source_start_));
+ Write8(fd, static_cast<int64_t>(source_len_));
+ Write8(fd, static_cast<int64_t>(offset));
+ return offset + data_.size();
+ case CHUNK_DEFLATE:
+ printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size());
+ Write8(fd, static_cast<int64_t>(source_start_));
+ Write8(fd, static_cast<int64_t>(source_len_));
+ Write8(fd, static_cast<int64_t>(offset));
+ Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
+ Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
+ Write4(fd, target_compress_level_);
+ Write4(fd, ImageChunk::METHOD);
+ Write4(fd, ImageChunk::WINDOWBITS);
+ Write4(fd, ImageChunk::MEMLEVEL);
+ Write4(fd, ImageChunk::STRATEGY);
+ return offset + data_.size();
+ case CHUNK_RAW:
+ printf("raw (%10zu, %10zu)\n", target_start_, target_len_);
+ Write4(fd, static_cast<int32_t>(data_.size()));
+ if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
+ CHECK(false) << "failed to write " << data_.size() << " bytes patch";
}
+ return offset;
+ default:
+ CHECK(false) << "unexpected chunk type: " << type_;
+ return offset;
+ }
+}
+
+// Write the contents of |patch_chunks| to |patch_fd|.
+bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
+ // Figure out how big the imgdiff file header is going to be, so that we can correctly compute
+ // the offset of each bsdiff patch within the file.
+ size_t total_header_size = 12;
+ for (const auto& patch : patch_chunks) {
+ total_header_size += patch.GetHeaderSize();
+ }
+
+ size_t offset = total_header_size;
+
+ // Write out the headers.
+ if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
+ printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno));
+ return false;
+ }
+
+ Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
+ for (size_t i = 0; i < patch_chunks.size(); ++i) {
+ printf("chunk %zu: ", i);
+ offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset);
+ }
+
+ // Append each chunk's bsdiff patch, in order.
+ for (const auto& patch : patch_chunks) {
+ if (patch.type_ == CHUNK_RAW) {
+ continue;
+ }
+ if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
+ printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size());
+ return false;
}
}
- // EOCD not found, this file is likely not a valid zip file.
- return false;
+ return true;
}
-static bool ReadZip(const char* filename, std::vector<ImageChunk>* chunks,
- std::vector<uint8_t>* zip_file, bool include_pseudo_chunk) {
- CHECK(chunks != nullptr && zip_file != nullptr);
+ImageChunk& Image::operator[](size_t i) {
+ CHECK_LT(i, chunks_.size());
+ return chunks_[i];
+}
- android::base::unique_fd fd(open(filename, O_RDONLY));
+const ImageChunk& Image::operator[](size_t i) const {
+ CHECK_LT(i, chunks_.size());
+ return chunks_[i];
+}
+
+void Image::MergeAdjacentNormalChunks() {
+ size_t merged_last = 0, cur = 0;
+ while (cur < chunks_.size()) {
+ // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
+ // length of the current normal chunk.
+ size_t to_check = cur + 1;
+ while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
+ chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
+ to_check++;
+ }
+
+ if (merged_last != cur) {
+ chunks_[merged_last] = std::move(chunks_[cur]);
+ }
+ merged_last++;
+ cur = to_check;
+ }
+ if (merged_last < chunks_.size()) {
+ chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
+ }
+}
+
+void Image::DumpChunks() const {
+ std::string type = is_source_ ? "source" : "target";
+ printf("Dumping chunks for %s\n", type.c_str());
+ for (size_t i = 0; i < chunks_.size(); ++i) {
+ printf("chunk %zu: ", i);
+ chunks_[i].Dump();
+ }
+}
+
+bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
+ CHECK(file_content != nullptr);
+
+ android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
if (fd == -1) {
- printf("failed to open \"%s\" %s\n", filename, strerror(errno));
+ printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno));
return false;
}
struct stat st;
if (fstat(fd, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
+ printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno));
return false;
}
size_t sz = static_cast<size_t>(st.st_size);
- zip_file->resize(sz);
- if (!android::base::ReadFully(fd, zip_file->data(), sz)) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
+ file_content->resize(sz);
+ if (!android::base::ReadFully(fd, file_content->data(), sz)) {
+ printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno));
return false;
}
fd.reset();
- // Trim the trailing zeros before we pass the file to ziparchive handler.
+ return true;
+}
+
+bool ZipModeImage::Initialize(const std::string& filename) {
+ if (!ReadFile(filename, &file_content_)) {
+ return false;
+ }
+
+ // Omit the trailing zeros before we pass the file to ziparchive handler.
size_t zipfile_size;
- if (!GetZipFileSize(*zip_file, &zipfile_size)) {
- printf("failed to parse the actual size of %s\n", filename);
+ if (!GetZipFileSize(&zipfile_size)) {
+ printf("failed to parse the actual size of %s\n", filename.c_str());
return false;
}
ZipArchiveHandle handle;
- int err = OpenArchiveFromMemory(zip_file->data(), zipfile_size, filename, &handle);
+ int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
+ filename.c_str(), &handle);
if (err != 0) {
- printf("failed to open zip file %s: %s\n", filename, ErrorCodeString(err));
+ printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err));
CloseArchive(handle);
return false;
}
- // Create a list of deflated zip entries, sorted by offset.
- std::vector<std::pair<std::string, ZipEntry>> temp_entries;
+ if (!InitializeChunks(filename, handle)) {
+ CloseArchive(handle);
+ return false;
+ }
+
+ CloseArchive(handle);
+ return true;
+}
+
+// Iterate the zip entries and compose the image chunks accordingly.
+bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
void* cookie;
int ret = StartIteration(handle, &cookie, nullptr, nullptr);
if (ret != 0) {
- printf("failed to iterate over entries in %s: %s\n", filename, ErrorCodeString(ret));
- CloseArchive(handle);
+ printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret));
return false;
}
+ // Create a list of deflated zip entries, sorted by offset.
+ std::vector<std::pair<std::string, ZipEntry>> temp_entries;
ZipString name;
ZipEntry entry;
while ((ret = Next(cookie, &entry, &name)) == 0) {
- if (entry.method == kCompressDeflated) {
- std::string entryname(name.name, name.name + name.name_length);
- temp_entries.push_back(std::make_pair(entryname, entry));
+ if (entry.method == kCompressDeflated || limit_ > 0) {
+ std::string entry_name(name.name, name.name + name.name_length);
+ temp_entries.emplace_back(entry_name, entry);
}
}
if (ret != -1) {
printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
- CloseArchive(handle);
return false;
}
std::sort(temp_entries.begin(), temp_entries.end(),
- [](auto& entry1, auto& entry2) {
- return entry1.second.offset < entry2.second.offset;
- });
+ [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
EndIteration(cookie);
- if (include_pseudo_chunk) {
- chunks->emplace_back(CHUNK_NORMAL, 0, zip_file, zip_file->size());
+ // For source chunks, we don't need to compose chunks for the metadata.
+ if (is_source_) {
+ for (auto& entry : temp_entries) {
+ if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
+ printf("Failed to add %s to source chunks\n", entry.first.c_str());
+ return false;
+ }
+ }
+
+ // Add the end of zip file (mainly central directory) as a normal chunk.
+ size_t entries_end = 0;
+ if (!temp_entries.empty()) {
+ entries_end = static_cast<size_t>(temp_entries.back().second.offset +
+ temp_entries.back().second.compressed_length);
+ }
+ CHECK_LT(entries_end, file_content_.size());
+ chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
+ file_content_.size() - entries_end);
+
+ return true;
}
+ // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
+ // deflate entries as CHUNK_NORMAL.
size_t pos = 0;
size_t nextentry = 0;
- while (pos < zip_file->size()) {
+ while (pos < file_content_.size()) {
if (nextentry < temp_entries.size() &&
static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
- // compose the next deflate chunk.
- std::string entryname = temp_entries[nextentry].first;
- size_t uncompressed_len = temp_entries[nextentry].second.uncompressed_length;
- std::vector<uint8_t> uncompressed_data(uncompressed_len);
- if ((ret = ExtractToMemory(handle, &temp_entries[nextentry].second, uncompressed_data.data(),
- uncompressed_len)) != 0) {
- printf("failed to extract %s with size %zu: %s\n", entryname.c_str(), uncompressed_len,
- ErrorCodeString(ret));
- CloseArchive(handle);
+ // Add the next zip entry.
+ std::string entry_name = temp_entries[nextentry].first;
+ if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
+ printf("Failed to add %s to target chunks\n", entry_name.c_str());
return false;
}
- size_t compressed_len = temp_entries[nextentry].second.compressed_length;
- ImageChunk curr(CHUNK_DEFLATE, pos, zip_file, compressed_len);
- curr.SetEntryName(std::move(entryname));
- curr.SetUncompressedData(std::move(uncompressed_data));
- chunks->push_back(curr);
-
- pos += compressed_len;
+ pos += temp_entries[nextentry].second.compressed_length;
++nextentry;
continue;
}
- // Use a normal chunk to take all the data up to the start of the next deflate section.
+ // Use a normal chunk to take all the data up to the start of the next entry.
size_t raw_data_len;
if (nextentry < temp_entries.size()) {
raw_data_len = temp_entries[nextentry].second.offset - pos;
} else {
- raw_data_len = zip_file->size() - pos;
+ raw_data_len = file_content_.size() - pos;
}
- chunks->emplace_back(CHUNK_NORMAL, pos, zip_file, raw_data_len);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
pos += raw_data_len;
}
- CloseArchive(handle);
return true;
}
-// Read the given file and break it up into chunks, and putting the data in to a vector.
-static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
- std::vector<uint8_t>* img) {
- CHECK(chunks != nullptr && img != nullptr);
+bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
+ ZipEntry* entry) {
+ size_t compressed_len = entry->compressed_length;
+ if (compressed_len == 0) return true;
+
+ // Split the entry into several normal chunks if it's too large.
+ if (limit_ > 0 && compressed_len > limit_) {
+ int count = 0;
+ while (compressed_len > 0) {
+ size_t length = std::min(limit_, compressed_len);
+ std::string name = entry_name + "-" + std::to_string(count);
+ chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
+ name);
+
+ count++;
+ compressed_len -= length;
+ }
+ } else if (entry->method == kCompressDeflated) {
+ size_t uncompressed_len = entry->uncompressed_length;
+ std::vector<uint8_t> uncompressed_data(uncompressed_len);
+ int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
+ if (ret != 0) {
+ printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len,
+ ErrorCodeString(ret));
+ return false;
+ }
+ ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
+ curr.SetUncompressedData(std::move(uncompressed_data));
+ chunks_.push_back(std::move(curr));
+ } else {
+ chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
+ }
- android::base::unique_fd fd(open(filename, O_RDONLY));
- if (fd == -1) {
- printf("failed to open \"%s\" %s\n", filename, strerror(errno));
+ return true;
+}
+
+// EOCD record
+// offset 0: signature 0x06054b50, 4 bytes
+// offset 4: number of this disk, 2 bytes
+// ...
+// offset 20: comment length, 2 bytes
+// offset 22: comment, n bytes
+bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
+ if (file_content_.size() < 22) {
+ printf("file is too small to be a zip file\n");
return false;
}
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
+
+ // Look for End of central directory record of the zip file, and calculate the actual
+ // zip_file size.
+ for (int i = file_content_.size() - 22; i >= 0; i--) {
+ if (file_content_[i] == 0x50) {
+ if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
+ // double-check: this archive consists of a single "disk".
+ CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
+
+ uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
+ size_t file_size = i + 22 + comment_length;
+ CHECK_LE(file_size, file_content_.size());
+ *input_file_size = file_size;
+ return true;
+ }
+ }
+ }
+
+ // EOCD not found, this file is likely not a valid zip file.
+ return false;
+}
+
+ImageChunk ZipModeImage::PseudoSource() const {
+ CHECK(is_source_);
+ return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
+}
+
+const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
+ if (name.empty()) {
+ return nullptr;
+ }
+ for (auto& chunk : chunks_) {
+ if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
+ continue;
+ }
+
+ if (chunk.GetEntryName() == name) {
+ return &chunk;
+ }
+
+ // Edge case when target chunk is split due to size limit but source chunk isn't.
+ if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
+ return &chunk;
+ }
+
+ // TODO handle the .so files with incremental version number.
+ // (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
+ }
+
+ return nullptr;
+}
+
+ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
+ return const_cast<ImageChunk*>(
+ static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
+}
+
+bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
+ for (auto& tgt_chunk : *tgt_image) {
+ if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
+ continue;
+ }
+
+ ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
+ if (src_chunk == nullptr) {
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ } else if (tgt_chunk == *src_chunk) {
+ // If two deflate chunks are identical (eg, the kernel has not changed between two builds),
+ // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
+ // patch to the compressed data, rather than uncompressing and recompressing to apply the
+ // trivial patch to the uncompressed data.
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk->ChangeDeflateChunkToNormal();
+ } else if (!tgt_chunk.ReconstructDeflateChunk()) {
+ // We cannot recompress the data and get exactly the same bits as are in the input target
+ // image. Treat the chunk as a normal non-deflated chunk.
+ printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n",
+ tgt_chunk.GetEntryName().c_str());
+
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk->ChangeDeflateChunkToNormal();
+ }
+ }
+
+ // For zips, we only need merge normal chunks for the target: deflated chunks are matched via
+ // filename, and normal chunks are patched using the entire source file as the source.
+ if (tgt_image->limit_ == 0) {
+ tgt_image->MergeAdjacentNormalChunks();
+ tgt_image->DumpChunks();
+ }
+
+ return true;
+}
+
+// For each target chunk, look for the corresponding source chunk by the zip_entry name. If
+// found, add the range of this chunk in the original source file to the block aligned source
+// ranges. Construct the split src & tgt image once the size of source range reaches limit.
+bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images,
+ std::vector<SortedRangeSet>* split_src_ranges) {
+ CHECK_EQ(tgt_image.limit_, src_image.limit_);
+ size_t limit = tgt_image.limit_;
+
+ src_image.DumpChunks();
+ printf("Splitting %zu tgt chunks...\n", tgt_image.NumOfChunks());
+
+ SortedRangeSet used_src_ranges; // ranges used for previous split source images.
+
+ // Reserve the central directory in advance for the last split image.
+ const auto& central_directory = src_image.cend() - 1;
+ CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
+ used_src_ranges.Insert(central_directory->GetStartOffset(),
+ central_directory->DataLengthForPatch());
+
+ SortedRangeSet src_ranges;
+ std::vector<ImageChunk> split_src_chunks;
+ std::vector<ImageChunk> split_tgt_chunks;
+ for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
+ const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
+ if (src == nullptr) {
+ split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
+ tgt->GetRawDataLength());
+ continue;
+ }
+
+ size_t src_offset = src->GetStartOffset();
+ size_t src_length = src->GetRawDataLength();
+
+ CHECK(src_length > 0);
+ CHECK_LE(src_length, limit);
+
+ // Make sure this source range hasn't been used before so that the src_range pieces don't
+ // overlap with each other.
+ if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
+ split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
+ tgt->GetRawDataLength());
+ } else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
+ src_ranges.Insert(src_offset, src_length);
+
+ // Add the deflate source chunk if it hasn't been aligned.
+ if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
+ split_src_chunks.push_back(*src);
+ split_tgt_chunks.push_back(*tgt);
+ } else {
+ // TODO split smarter to avoid alignment of large deflate chunks
+ split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
+ tgt->GetRawDataLength());
+ }
+ } else {
+ ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks,
+ split_src_chunks, split_tgt_images,
+ split_src_images);
+
+ split_tgt_chunks.clear();
+ split_src_chunks.clear();
+ used_src_ranges.Insert(src_ranges);
+ split_src_ranges->push_back(std::move(src_ranges));
+ src_ranges.Clear();
+
+ // We don't have enough space for the current chunk; start a new split image and handle
+ // this chunk there.
+ tgt--;
+ }
+ }
+
+ // TODO Trim it in case the CD exceeds limit too much.
+ src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
+ ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks,
+ split_src_chunks, split_tgt_images, split_src_images);
+ split_src_ranges->push_back(std::move(src_ranges));
+
+ ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
+ tgt_image.file_content_.size());
+
+ return true;
+}
+
+void ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ const SortedRangeSet& split_src_ranges,
+ const std::vector<ImageChunk>& split_tgt_chunks,
+ const std::vector<ImageChunk>& split_src_chunks,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images) {
+ CHECK(!split_tgt_chunks.empty());
+ // Target chunks should occupy at least one block.
+ // TODO put a warning and change the type to raw if it happens in extremely rare cases.
+ size_t tgt_size = split_tgt_chunks.back().GetStartOffset() +
+ split_tgt_chunks.back().DataLengthForPatch() -
+ split_tgt_chunks.front().GetStartOffset();
+ CHECK_GE(tgt_size, BLOCK_SIZE);
+
+ std::vector<ImageChunk> aligned_tgt_chunks;
+
+ // Align the target chunks in the beginning with BLOCK_SIZE.
+ size_t i = 0;
+ while (i < split_tgt_chunks.size()) {
+ size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
+ size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
+
+ // Current ImageChunk is long enough to align.
+ if (AlignHead(&tgt_start, &tgt_length)) {
+ aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
+ tgt_length);
+ break;
+ }
+
+ i++;
+ }
+ CHECK_LT(i, split_tgt_chunks.size());
+ aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
+ split_tgt_chunks.end());
+ CHECK(!aligned_tgt_chunks.empty());
+
+ // Add a normal chunk to align the contents in the end.
+ size_t end_offset =
+ aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
+ if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
+ aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
+ BLOCK_SIZE - (end_offset % BLOCK_SIZE));
+ }
+
+ ZipModeImage split_tgt_image(false);
+ split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {});
+ split_tgt_image.MergeAdjacentNormalChunks();
+
+ // Construct the dummy source file based on the src_ranges.
+ std::vector<uint8_t> src_content;
+ for (const auto& r : split_src_ranges) {
+ size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
+ src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE,
+ src_image.file_content_.begin() + end);
+ }
+
+ // We should not have an empty src in our design; otherwise we will encounter an error in
+ // bsdiff since src_content.data() == nullptr.
+ CHECK(!src_content.empty());
+
+ ZipModeImage split_src_image(true);
+ split_src_image.Initialize(split_src_chunks, std::move(src_content));
+
+ split_tgt_images->push_back(std::move(split_tgt_image));
+ split_src_images->push_back(std::move(split_src_image));
+}
+
+void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ std::vector<SortedRangeSet>& split_src_ranges,
+ size_t total_tgt_size) {
+ CHECK_EQ(split_tgt_images.size(), split_src_images.size());
+
+ printf("Validating %zu images\n", split_tgt_images.size());
+
+ // Verify that the target image pieces is continuous and can add up to the total size.
+ size_t last_offset = 0;
+ for (const auto& tgt_image : split_tgt_images) {
+ CHECK(!tgt_image.chunks_.empty());
+
+ CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
+ CHECK(last_offset % BLOCK_SIZE == 0);
+
+ // Check the target chunks within the split image are continuous.
+ for (const auto& chunk : tgt_image.chunks_) {
+ CHECK_EQ(last_offset, chunk.GetStartOffset());
+ last_offset += chunk.GetRawDataLength();
+ }
+ }
+ CHECK_EQ(total_tgt_size, last_offset);
+
+ // Verify that the source ranges are mutually exclusive.
+ CHECK_EQ(split_src_images.size(), split_src_ranges.size());
+ SortedRangeSet used_src_ranges;
+ for (size_t i = 0; i < split_src_ranges.size(); i++) {
+ CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
+ << "src range " << split_src_ranges[i].ToString() << " overlaps "
+ << used_src_ranges.ToString();
+ used_src_ranges.Insert(split_src_ranges[i]);
+ }
+}
+
+bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ std::vector<PatchChunk>* patch_chunks) {
+ printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
+ patch_chunks->clear();
+
+ saidx_t* bsdiff_cache = nullptr;
+ for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
+ const auto& tgt_chunk = tgt_image[i];
+
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
+ patch_chunks->emplace_back(tgt_chunk);
+ continue;
+ }
+
+ const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
+ ? nullptr
+ : src_image.FindChunkByName(tgt_chunk.GetEntryName());
+
+ const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
+ saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
+
+ std::vector<uint8_t> patch_data;
+ if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
+ printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str());
+ return false;
+ }
+
+ printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(),
+ tgt_chunk.GetRawDataLength());
+
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
+ patch_chunks->emplace_back(tgt_chunk);
+ } else {
+ patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
+ }
+ }
+ free(bsdiff_cache);
+
+ CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
+ return true;
+}
+
+bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
+ const std::string& patch_name) {
+ std::vector<PatchChunk> patch_chunks;
+
+ ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
+
+ CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
- size_t sz = static_cast<size_t>(st.st_size);
- img->resize(sz);
- if (!android::base::ReadFully(fd, img->data(), sz)) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
+ return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
+}
+
+bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ const std::vector<SortedRangeSet>& split_src_ranges,
+ const std::string& patch_name, const std::string& debug_dir) {
+ printf("Construct patches for %zu split images...\n", split_tgt_images.size());
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
- size_t pos = 0;
+ for (size_t i = 0; i < split_tgt_images.size(); i++) {
+ std::vector<PatchChunk> patch_chunks;
+ if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
+ &patch_chunks)) {
+ printf("failed to generate split patch\n");
+ return false;
+ }
+
+ for (auto& p : patch_chunks) {
+ p.UpdateSourceOffset(split_src_ranges[i]);
+ }
+
+ if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
+ return false;
+ }
+ // Write the split source & patch into the debug directory.
+ if (!debug_dir.empty()) {
+ std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
+ android::base::unique_fd fd(
+ open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+
+ if (fd == -1) {
+ printf("Failed to open %s\n", src_name.c_str());
+ return false;
+ }
+ if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
+ split_src_images[i].PseudoSource().DataLengthForPatch())) {
+ printf("Failed to write split source data into %s\n", src_name.c_str());
+ return false;
+ }
+
+ std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
+ fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+
+ if (fd == -1) {
+ printf("Failed to open %s\n", patch_name.c_str());
+ return false;
+ }
+ if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+bool ImageModeImage::Initialize(const std::string& filename) {
+ if (!ReadFile(filename, &file_content_)) {
+ return false;
+ }
+
+ size_t sz = file_content_.size();
+ size_t pos = 0;
while (pos < sz) {
// 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
- if (sz - pos >= 4 && get_unaligned<uint32_t>(img->data() + pos) == 0x00088b1f) {
+ if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
// 'pos' is the offset of the start of a gzip chunk.
size_t chunk_offset = pos;
// The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
- chunks->emplace_back(CHUNK_NORMAL, pos, img, sz - pos);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
break;
}
// We need three chunks for the deflated image in total, one normal chunk for the header,
// one deflated chunk for the body, and another normal chunk for the footer.
- chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_HEADER_LEN);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
pos += GZIP_HEADER_LEN;
// We must decompress this chunk in order to discover where it ends, and so we can update
@@ -657,7 +1196,7 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = sz - pos;
- strm.next_in = img->data() + pos;
+ strm.next_in = file_content_.data() + pos;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
@@ -700,22 +1239,22 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
printf("Warning: invalid footer position; treating as a nomal chunk\n");
continue;
}
- size_t footer_size = get_unaligned<uint32_t>(img->data() + footer_index);
+ size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
if (footer_size != uncompressed_len) {
printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n",
footer_size, uncompressed_len);
continue;
}
- ImageChunk body(CHUNK_DEFLATE, pos, img, raw_data_len);
+ ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
uncompressed_data.resize(uncompressed_len);
body.SetUncompressedData(std::move(uncompressed_data));
- chunks->push_back(body);
+ chunks_.push_back(std::move(body));
pos += raw_data_len;
// create a normal chunk for the footer
- chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_FOOTER_LEN);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
pos += GZIP_FOOTER_LEN;
} else {
@@ -726,12 +1265,12 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
size_t data_len = 0;
while (data_len + pos < sz) {
if (data_len + pos + 4 <= sz &&
- get_unaligned<uint32_t>(img->data() + pos + data_len) == 0x00088b1f) {
+ get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
break;
}
data_len++;
}
- chunks->emplace_back(CHUNK_NORMAL, pos, img, data_len);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
pos += data_len;
}
@@ -740,346 +1279,238 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
return true;
}
-/*
- * Given source and target chunks, compute a bsdiff patch between them.
- * Store the result in the patch_data.
- * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk
- * is used repeatedly, pass nullptr if not needed.
- */
-static bool MakePatch(const ImageChunk* src, ImageChunk* tgt, std::vector<uint8_t>* patch_data,
- saidx_t** bsdiff_cache) {
- if (tgt->ChangeChunkToRaw(0)) {
- size_t patch_size = tgt->DataLengthForPatch();
- patch_data->resize(patch_size);
- std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
- return true;
- }
-
-#if defined(__ANDROID__)
- char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
-#else
- char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
-#endif
-
- int fd = mkstemp(ptemp);
- if (fd == -1) {
- printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
+bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
+ CHECK(is_source_);
+ if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
+ printf("Failed to set bonus data\n");
+ DumpChunks();
return false;
}
- close(fd);
- int r = bsdiff::bsdiff(src->DataForPatch(), src->DataLengthForPatch(), tgt->DataForPatch(),
- tgt->DataLengthForPatch(), ptemp, bsdiff_cache);
- if (r != 0) {
- printf("bsdiff() failed: %d\n", r);
- return false;
- }
+ printf(" using %zu bytes of bonus data\n", bonus_data.size());
+ return true;
+}
- android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
- if (patch_fd == -1) {
- printf("failed to open %s: %s\n", ptemp, strerror(errno));
+// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
+// same sequence of deflate and normal chunks).
+bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
+ // In image mode, merge the gzip header and footer in with any adjacent normal chunks.
+ tgt_image->MergeAdjacentNormalChunks();
+ src_image->MergeAdjacentNormalChunks();
+
+ if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
+ printf("source and target don't have same number of chunks!\n");
+ tgt_image->DumpChunks();
+ src_image->DumpChunks();
return false;
}
- struct stat st;
- if (fstat(patch_fd, &st) != 0) {
- printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
- return false;
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
+ if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
+ printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
+ tgt_image->DumpChunks();
+ src_image->DumpChunks();
+ return false;
+ }
}
- size_t sz = static_cast<size_t>(st.st_size);
- // Change the chunk type to raw if the patch takes less space that way.
- if (tgt->ChangeChunkToRaw(sz)) {
- unlink(ptemp);
- size_t patch_size = tgt->DataLengthForPatch();
- patch_data->resize(patch_size);
- std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
- return true;
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
+ auto& tgt_chunk = (*tgt_image)[i];
+ auto& src_chunk = (*src_image)[i];
+ if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
+ continue;
+ }
+
+ // If two deflate chunks are identical treat them as normal chunks.
+ if (tgt_chunk == src_chunk) {
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk.ChangeDeflateChunkToNormal();
+ } else if (!tgt_chunk.ReconstructDeflateChunk()) {
+ // We cannot recompress the data and get exactly the same bits as are in the input target
+ // image, fall back to normal
+ printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
+ tgt_chunk.GetEntryName().c_str());
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk.ChangeDeflateChunkToNormal();
+ }
}
- patch_data->resize(sz);
- if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
- printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
+
+ // For images, we need to maintain the parallel structure of the chunk lists, so do the merging
+ // in both the source and target lists.
+ tgt_image->MergeAdjacentNormalChunks();
+ src_image->MergeAdjacentNormalChunks();
+ if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
+ // This shouldn't happen.
+ printf("merging normal chunks went awry\n");
return false;
}
- unlink(ptemp);
- tgt->SetSourceInfo(*src);
-
return true;
}
-/*
- * Look for runs of adjacent normal chunks and compress them down into
- * a single chunk. (Such runs can be produced when deflate chunks are
- * changed to normal chunks.)
- */
-static void MergeAdjacentNormalChunks(std::vector<ImageChunk>* chunks) {
- size_t merged_last = 0, cur = 0;
- while (cur < chunks->size()) {
- // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
- // length of the current normal chunk.
- size_t to_check = cur + 1;
- while (to_check < chunks->size() && chunks->at(cur).IsAdjacentNormal(chunks->at(to_check))) {
- chunks->at(cur).MergeAdjacentNormal(chunks->at(to_check));
- to_check++;
+// In image mode, generate patches against the given source chunks and bonus_data; write the
+// result to |patch_name|.
+bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
+ const ImageModeImage& src_image,
+ const std::string& patch_name) {
+ printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
+ std::vector<PatchChunk> patch_chunks;
+ patch_chunks.reserve(tgt_image.NumOfChunks());
+
+ for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
+ const auto& tgt_chunk = tgt_image[i];
+ const auto& src_chunk = src_image[i];
+
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
+ patch_chunks.emplace_back(tgt_chunk);
+ continue;
}
- if (merged_last != cur) {
- chunks->at(merged_last) = std::move(chunks->at(cur));
+ std::vector<uint8_t> patch_data;
+ if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
+ printf("Failed to generate patch for target chunk %zu: ", i);
+ return false;
}
- merged_last++;
- cur = to_check;
- }
- if (merged_last < chunks->size()) {
- chunks->erase(chunks->begin() + merged_last, chunks->end());
- }
-}
+ printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(),
+ tgt_chunk.GetRawDataLength());
-static ImageChunk* FindChunkByName(const std::string& name, std::vector<ImageChunk>& chunks) {
- for (size_t i = 0; i < chunks.size(); ++i) {
- if (chunks[i].GetType() == CHUNK_DEFLATE && chunks[i].GetEntryName() == name) {
- return &chunks[i];
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
+ patch_chunks.emplace_back(tgt_chunk);
+ } else {
+ patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
}
}
- return nullptr;
-}
-static void DumpChunks(const std::vector<ImageChunk>& chunks) {
- for (size_t i = 0; i < chunks.size(); ++i) {
- printf("chunk %zu: ", i);
- chunks[i].Dump();
+ CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
+ return false;
}
+
+ return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
int imgdiff(int argc, const char** argv) {
bool zip_mode = false;
+ std::vector<uint8_t> bonus_data;
+ size_t blocks_limit = 0;
+ std::string debug_dir;
- if (argc >= 2 && strcmp(argv[1], "-z") == 0) {
- zip_mode = true;
- --argc;
- ++argv;
- }
+ int opt;
+ int option_index;
+ optind = 1; // Reset the getopt state so that we can call it multiple times for test.
- std::vector<uint8_t> bonus_data;
- if (argc >= 3 && strcmp(argv[1], "-b") == 0) {
- android::base::unique_fd fd(open(argv[2], O_RDONLY));
- if (fd == -1) {
- printf("failed to open bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
+ while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:", OPTIONS, &option_index)) != -1) {
+ switch (opt) {
+ case 'z':
+ zip_mode = true;
+ break;
+ case 'b': {
+ android::base::unique_fd fd(open(optarg, O_RDONLY));
+ if (fd == -1) {
+ printf("failed to open bonus file %s: %s\n", optarg, strerror(errno));
+ return 1;
+ }
+ struct stat st;
+ if (fstat(fd, &st) != 0) {
+ printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno));
+ return 1;
+ }
- size_t bonus_size = st.st_size;
- bonus_data.resize(bonus_size);
- if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
- printf("failed to read bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
+ size_t bonus_size = st.st_size;
+ bonus_data.resize(bonus_size);
+ if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
+ printf("failed to read bonus file %s: %s\n", optarg, strerror(errno));
+ return 1;
+ }
+ break;
+ }
+ case 0: {
+ std::string name = OPTIONS[option_index].name;
+ if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
+ printf("failed to parse size blocks_limit: %s\n", optarg);
+ return 1;
+ } else if (name == "debug-dir") {
+ debug_dir = optarg;
+ }
+ break;
+ }
+ default:
+ printf("unexpected opt: %s\n", optarg);
+ return 2;
}
-
- argc -= 2;
- argv += 2;
}
- if (argc != 4) {
- printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n",
- argv[0]);
+ if (argc - optind != 3) {
+ printf("usage: %s [options] <src-img> <tgt-img> <patch-file>\n", argv[0]);
+ printf(
+ " -z <zip-mode>, Generate patches in zip mode, src and tgt should be zip files.\n"
+ " -b <bonus-file>, Bonus file in addition to src, image mode only.\n"
+ " --block-limit, For large zips, split the src and tgt based on the block limit;\n"
+ " and generate patches between each pair of pieces. Concatenate these\n"
+ " patches together and output them into <patch-file>.\n"
+ " --debug_dir, Debug directory to put the split srcs and patches, zip mode only.\n");
return 2;
}
- std::vector<ImageChunk> src_chunks;
- std::vector<ImageChunk> tgt_chunks;
- std::vector<uint8_t> src_file;
- std::vector<uint8_t> tgt_file;
-
if (zip_mode) {
- if (!ReadZip(argv[1], &src_chunks, &src_file, true)) {
- printf("failed to break apart source zip file\n");
- return 1;
- }
- if (!ReadZip(argv[2], &tgt_chunks, &tgt_file, false)) {
- printf("failed to break apart target zip file\n");
+ ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
+ ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
+
+ if (!src_image.Initialize(argv[optind])) {
return 1;
}
- } else {
- if (!ReadImage(argv[1], &src_chunks, &src_file)) {
- printf("failed to break apart source image\n");
+ if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
- if (!ReadImage(argv[2], &tgt_chunks, &tgt_file)) {
- printf("failed to break apart target image\n");
+
+ if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
- // Verify that the source and target images have the same chunk
- // structure (ie, the same sequence of deflate and normal chunks).
+ // TODO save and output the split information so that caller can create split transfer lists
+ // accordingly.
- // Merge the gzip header and footer in with any adjacent normal chunks.
- MergeAdjacentNormalChunks(&tgt_chunks);
- MergeAdjacentNormalChunks(&src_chunks);
+ // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
+ // deflate chunks).
+ if (blocks_limit > 0) {
+ std::vector<ZipModeImage> split_tgt_images;
+ std::vector<ZipModeImage> split_src_images;
+ std::vector<SortedRangeSet> split_src_ranges;
+ ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
+ &split_src_images, &split_src_ranges);
- if (src_chunks.size() != tgt_chunks.size()) {
- printf("source and target don't have same number of chunks!\n");
- printf("source chunks:\n");
- DumpChunks(src_chunks);
- printf("target chunks:\n");
- DumpChunks(tgt_chunks);
- return 1;
- }
- for (size_t i = 0; i < src_chunks.size(); ++i) {
- if (src_chunks[i].GetType() != tgt_chunks[i].GetType()) {
- printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
- printf("source chunks:\n");
- DumpChunks(src_chunks);
- printf("target chunks:\n");
- DumpChunks(tgt_chunks);
+ if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
+ argv[optind + 2], debug_dir)) {
return 1;
}
- }
- }
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (tgt_chunks[i].GetType() == CHUNK_DEFLATE) {
- // Confirm that given the uncompressed chunk data in the target, we
- // can recompress it and get exactly the same bits as are in the
- // input target image. If this fails, treat the chunk as a normal
- // non-deflated chunk.
- if (!tgt_chunks[i].ReconstructDeflateChunk()) {
- printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
- tgt_chunks[i].GetEntryName().c_str());
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- if (zip_mode) {
- ImageChunk* src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
- if (src != nullptr) {
- src->ChangeDeflateChunkToNormal();
- }
- } else {
- src_chunks[i].ChangeDeflateChunkToNormal();
- }
- continue;
- }
-
- // If two deflate chunks are identical (eg, the kernel has not
- // changed between two builds), treat them as normal chunks.
- // This makes applypatch much faster -- it can apply a trivial
- // patch to the compressed data, rather than uncompressing and
- // recompressing to apply the trivial patch to the uncompressed
- // data.
- ImageChunk* src;
- if (zip_mode) {
- src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
- } else {
- src = &src_chunks[i];
- }
-
- if (src == nullptr) {
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- } else if (tgt_chunks[i] == *src) {
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- src->ChangeDeflateChunkToNormal();
- }
+ } else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
+ return 1;
}
- }
-
- // Merging neighboring normal chunks.
- if (zip_mode) {
- // For zips, we only need to do this to the target: deflated
- // chunks are matched via filename, and normal chunks are patched
- // using the entire source file as the source.
- MergeAdjacentNormalChunks(&tgt_chunks);
-
} else {
- // For images, we need to maintain the parallel structure of the
- // chunk lists, so do the merging in both the source and target
- // lists.
- MergeAdjacentNormalChunks(&tgt_chunks);
- MergeAdjacentNormalChunks(&src_chunks);
- if (src_chunks.size() != tgt_chunks.size()) {
- // This shouldn't happen.
- printf("merging normal chunks went awry\n");
+ ImageModeImage src_image(true);
+ ImageModeImage tgt_image(false);
+
+ if (!src_image.Initialize(argv[optind])) {
return 1;
}
- }
-
- // Compute bsdiff patches for each chunk's data (the uncompressed
- // data, in the case of deflate chunks).
-
- DumpChunks(src_chunks);
-
- printf("Construct patches for %zu chunks...\n", tgt_chunks.size());
- std::vector<std::vector<uint8_t>> patch_data(tgt_chunks.size());
- saidx_t* bsdiff_cache = nullptr;
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (zip_mode) {
- ImageChunk* src;
- if (tgt_chunks[i].GetType() == CHUNK_DEFLATE &&
- (src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks))) {
- if (!MakePatch(src, &tgt_chunks[i], &patch_data[i], nullptr)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- } else {
- if (!MakePatch(&src_chunks[0], &tgt_chunks[i], &patch_data[i], &bsdiff_cache)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- }
- } else {
- if (i == 1 && !bonus_data.empty()) {
- printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
- src_chunks[i].SetBonusData(bonus_data);
- }
-
- if (!MakePatch(&src_chunks[i], &tgt_chunks[i], &patch_data[i], nullptr)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
+ if (!tgt_image.Initialize(argv[optind + 1])) {
+ return 1;
}
- printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
- src_chunks[i].GetRawDataLength());
- }
-
- if (bsdiff_cache != nullptr) {
- free(bsdiff_cache);
- }
-
- // Figure out how big the imgdiff file header is going to be, so
- // that we can correctly compute the offset of each bsdiff patch
- // within the file.
-
- size_t total_header_size = 12;
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- total_header_size += tgt_chunks[i].GetHeaderSize(patch_data[i].size());
- }
-
- size_t offset = total_header_size;
- android::base::unique_fd patch_fd(open(argv[3], O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
- if (patch_fd == -1) {
- printf("failed to open \"%s\": %s\n", argv[3], strerror(errno));
- return 1;
- }
+ if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
+ return 1;
+ }
- // Write out the headers.
- if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
- printf("failed to write \"IMGDIFF2\" to \"%s\": %s\n", argv[3], strerror(errno));
- return 1;
- }
- Write4(patch_fd, static_cast<int32_t>(tgt_chunks.size()));
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- printf("chunk %zu: ", i);
- offset = tgt_chunks[i].WriteHeaderToFd(patch_fd, patch_data[i], offset);
- }
+ if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
+ return 1;
+ }
- // Append each chunk's bsdiff patch, in order.
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (tgt_chunks[i].GetType() != CHUNK_RAW) {
- if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) {
- CHECK(false) << "failed to write " << patch_data[i].size() << " bytes patch for chunk "
- << i;
- }
+ if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
+ return 1;
}
}
diff --git a/applypatch/include/applypatch/imgdiff_image.h b/applypatch/include/applypatch/imgdiff_image.h
new file mode 100644
index 000000000..9fb844b24
--- /dev/null
+++ b/applypatch/include/applypatch/imgdiff_image.h
@@ -0,0 +1,303 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _APPLYPATCH_IMGDIFF_IMAGE_H
+#define _APPLYPATCH_IMGDIFF_IMAGE_H
+
+#include <stddef.h>
+#include <stdio.h>
+#include <sys/types.h>
+
+#include <string>
+#include <vector>
+
+#include <bsdiff.h>
+#include <ziparchive/zip_archive.h>
+#include <zlib.h>
+
+#include "imgdiff.h"
+#include "rangeset.h"
+
+class ImageChunk {
+ public:
+ static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
+ static constexpr auto MEMLEVEL = 8; // the default value.
+ static constexpr auto METHOD = Z_DEFLATED;
+ static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
+
+ ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len,
+ std::string entry_name = {});
+
+ int GetType() const {
+ return type_;
+ }
+ size_t GetRawDataLength() const {
+ return raw_data_len_;
+ }
+ const std::string& GetEntryName() const {
+ return entry_name_;
+ }
+ size_t GetStartOffset() const {
+ return start_;
+ }
+ int GetCompressLevel() const {
+ return compress_level_;
+ }
+
+ // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
+ // the raw data.
+ const uint8_t* DataForPatch() const;
+ size_t DataLengthForPatch() const;
+
+ void Dump() const {
+ printf("type: %d, start: %zu, len: %zu, name: %s\n", type_, start_, DataLengthForPatch(),
+ entry_name_.c_str());
+ }
+
+ void SetUncompressedData(std::vector<uint8_t> data);
+ bool SetBonusData(const std::vector<uint8_t>& bonus_data);
+
+ bool operator==(const ImageChunk& other) const;
+ bool operator!=(const ImageChunk& other) const {
+ return !(*this == other);
+ }
+
+ /*
+ * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob of uninterpreted data).
+ * The resulting patch will likely be about as big as the target file, but it lets us handle
+ * the case of images where some gzip chunks are reconstructible but others aren't (by treating
+ * the ones that aren't as normal chunks).
+ */
+ void ChangeDeflateChunkToNormal();
+
+ /*
+ * Verify that we can reproduce exactly the same compressed data that we started with. Sets the
+ * level, method, windowBits, memLevel, and strategy fields in the chunk to the encoding
+ * parameters needed to produce the right output.
+ */
+ bool ReconstructDeflateChunk();
+ bool IsAdjacentNormal(const ImageChunk& other) const;
+ void MergeAdjacentNormal(const ImageChunk& other);
+
+ /*
+ * Compute a bsdiff patch between |src| and |tgt|; Store the result in the patch_data.
+ * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used
+ * repeatedly, pass nullptr if not needed.
+ */
+ static bool MakePatch(const ImageChunk& tgt, const ImageChunk& src,
+ std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache);
+
+ private:
+ const uint8_t* GetRawData() const;
+ bool TryReconstruction(int level);
+
+ int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
+ size_t start_; // offset of chunk in the original input file
+ const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
+ size_t raw_data_len_;
+
+ // deflate encoder parameters
+ int compress_level_;
+
+ // --- for CHUNK_DEFLATE chunks only: ---
+ std::vector<uint8_t> uncompressed_data_;
+ std::string entry_name_; // used for zip entries
+};
+
+// PatchChunk stores the patch data between a source chunk and a target chunk. It also keeps track
+// of the metadata of src&tgt chunks (e.g. offset, raw data length, uncompressed data length).
+class PatchChunk {
+ public:
+ PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data);
+
+ // Construct a CHUNK_RAW patch from the target data directly.
+ explicit PatchChunk(const ImageChunk& tgt);
+
+ // Return true if raw data size is smaller than the patch size.
+ static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size);
+
+ // Update the source start with the new offset within the source range.
+ void UpdateSourceOffset(const SortedRangeSet& src_range);
+
+ static bool WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd);
+
+ private:
+ size_t GetHeaderSize() const;
+ size_t WriteHeaderToFd(int fd, size_t offset) const;
+
+ // The patch chunk type is the same as the target chunk type. The only exception is we change
+ // the |type_| to CHUNK_RAW if target length is smaller than the patch size.
+ int type_;
+
+ size_t source_start_;
+ size_t source_len_;
+ size_t source_uncompressed_len_;
+
+ size_t target_start_; // offset of the target chunk within the target file
+ size_t target_len_;
+ size_t target_uncompressed_len_;
+ size_t target_compress_level_; // the deflate compression level of the target chunk.
+
+ std::vector<uint8_t> data_; // storage for the patch data
+};
+
+// Interface for zip_mode and image_mode images. We initialize the image from an input file and
+// split the file content into a list of image chunks.
+class Image {
+ public:
+ explicit Image(bool is_source) : is_source_(is_source) {}
+
+ virtual ~Image() {}
+
+ // Create a list of image chunks from input file.
+ virtual bool Initialize(const std::string& filename) = 0;
+
+ // Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such
+ // runs can be produced when deflate chunks are changed to normal chunks.)
+ void MergeAdjacentNormalChunks();
+
+ void DumpChunks() const;
+
+ // Non const iterators to access the stored ImageChunks.
+ std::vector<ImageChunk>::iterator begin() {
+ return chunks_.begin();
+ }
+
+ std::vector<ImageChunk>::iterator end() {
+ return chunks_.end();
+ }
+
+ std::vector<ImageChunk>::const_iterator cbegin() const {
+ return chunks_.cbegin();
+ }
+
+ std::vector<ImageChunk>::const_iterator cend() const {
+ return chunks_.cend();
+ }
+
+ ImageChunk& operator[](size_t i);
+ const ImageChunk& operator[](size_t i) const;
+
+ size_t NumOfChunks() const {
+ return chunks_.size();
+ }
+
+ protected:
+ bool ReadFile(const std::string& filename, std::vector<uint8_t>* file_content);
+
+ bool is_source_; // True if it's for source chunks.
+ std::vector<ImageChunk> chunks_; // Internal storage of ImageChunk.
+ std::vector<uint8_t> file_content_; // Store the whole input file in memory.
+};
+
+class ZipModeImage : public Image {
+ public:
+ explicit ZipModeImage(bool is_source, size_t limit = 0) : Image(is_source), limit_(limit) {}
+
+ bool Initialize(const std::string& filename) override;
+
+ // Initialize a dummy ZipModeImage from an existing ImageChunk vector. For src img pieces, we
+ // reconstruct a new file_content based on the source ranges; but it's not needed for the tgt img
+ // pieces; because for each chunk both the data and their offset within the file are unchanged.
+ void Initialize(const std::vector<ImageChunk>& chunks, const std::vector<uint8_t>& file_content) {
+ chunks_ = chunks;
+ file_content_ = file_content;
+ }
+
+ // The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in
+ // fact the whole source file.
+ ImageChunk PseudoSource() const;
+
+ // Find the matching deflate source chunk by entry name. Search for normal chunks also if
+ // |find_normal| is true.
+ ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false);
+
+ const ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false) const;
+
+ // Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if
+ // src and tgt are identical.
+ static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image);
+
+ // Compute the patch between tgt & src images, and write the data into |patch_name|.
+ static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
+ const std::string& patch_name);
+
+ // Compute the patch based on the lists of split src and tgt images. Generate patches for each
+ // pair of split pieces and write the data to |patch_name|. If |debug_dir| is specified, write
+ // each split src data and patch data into that directory.
+ static bool GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ const std::vector<SortedRangeSet>& split_src_ranges,
+ const std::string& patch_name, const std::string& debug_dir);
+
+ // Split the tgt chunks and src chunks based on the size limit.
+ static bool SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images,
+ std::vector<SortedRangeSet>* split_src_ranges);
+
+ private:
+ // Initialize image chunks based on the zip entries.
+ bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle);
+ // Add the a zip entry to the list.
+ bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry);
+ // Return the real size of the zip file. (omit the trailing zeros that used for alignment)
+ bool GetZipFileSize(size_t* input_file_size);
+
+ static void ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ std::vector<SortedRangeSet>& split_src_ranges,
+ size_t total_tgt_size);
+ // Construct the dummy split images based on the chunks info and source ranges; and move them into
+ // the given vectors.
+ static void AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ const SortedRangeSet& split_src_ranges,
+ const std::vector<ImageChunk>& split_tgt_chunks,
+ const std::vector<ImageChunk>& split_src_chunks,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images);
+
+ // Function that actually iterates the tgt_chunks and makes patches.
+ static bool GeneratePatchesInternal(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
+ std::vector<PatchChunk>* patch_chunks);
+
+ // size limit in bytes of each chunk. Also, if the length of one zip_entry exceeds the limit,
+ // we'll split that entry into several smaller chunks in advance.
+ size_t limit_;
+};
+
+class ImageModeImage : public Image {
+ public:
+ explicit ImageModeImage(bool is_source) : Image(is_source) {}
+
+ // Initialize the image chunks list by searching the magic numbers in an image file.
+ bool Initialize(const std::string& filename) override;
+
+ bool SetBonusData(const std::vector<uint8_t>& bonus_data);
+
+ // In Image Mode, verify that the source and target images have the same chunk structure (ie, the
+ // same sequence of deflate and normal chunks).
+ static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image);
+
+ // In image mode, generate patches against the given source chunks and bonus_data; write the
+ // result to |patch_name|.
+ static bool GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image,
+ const std::string& patch_name);
+};
+
+#endif // _APPLYPATCH_IMGDIFF_IMAGE_H