summaryrefslogtreecommitdiffstats
path: root/applypatch
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--applypatch/Android.bp206
-rw-r--r--applypatch/Makefile33
-rw-r--r--applypatch/applypatch.cpp52
-rw-r--r--applypatch/bspatch.cpp23
-rw-r--r--applypatch/freecache.cpp14
-rw-r--r--applypatch/imgdiff.cpp1782
-rw-r--r--applypatch/imgpatch.cpp94
-rw-r--r--applypatch/include/applypatch/applypatch.h27
-rw-r--r--applypatch/include/applypatch/imgdiff_image.h306
-rw-r--r--applypatch/libimgpatch.pc6
10 files changed, 1769 insertions, 774 deletions
diff --git a/applypatch/Android.bp b/applypatch/Android.bp
new file mode 100644
index 000000000..cb0b36746
--- /dev/null
+++ b/applypatch/Android.bp
@@ -0,0 +1,206 @@
+// Copyright (C) 2017 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+cc_defaults {
+ name: "applypatch_defaults",
+
+ cflags: [
+ "-D_FILE_OFFSET_BITS=64",
+ "-DZLIB_CONST",
+ "-Wall",
+ "-Werror",
+ ],
+
+ local_include_dirs: [
+ "include",
+ ],
+}
+
+cc_library_static {
+ name: "libapplypatch",
+
+ host_supported: true,
+
+ defaults: [
+ "applypatch_defaults",
+ ],
+
+ srcs: [
+ "applypatch.cpp",
+ "bspatch.cpp",
+ "freecache.cpp",
+ "imgpatch.cpp",
+ ],
+
+ export_include_dirs: [
+ "include",
+ ],
+
+ static_libs: [
+ "libbase",
+ "libbspatch",
+ "libbz",
+ "libcrypto",
+ "libedify",
+ "libotafault",
+ "libotautil",
+ "libz",
+ ],
+
+ target: {
+ darwin: {
+ enabled: false,
+ },
+ },
+}
+
+cc_library_static {
+ name: "libapplypatch_modes",
+
+ defaults: [
+ "applypatch_defaults",
+ ],
+
+ srcs: [
+ "applypatch_modes.cpp",
+ ],
+
+ static_libs: [
+ "libapplypatch",
+ "libbase",
+ "libcrypto",
+ "libedify",
+ "libotautil",
+ ],
+}
+
+cc_binary {
+ name: "applypatch",
+
+ defaults: [
+ "applypatch_defaults",
+ ],
+
+ srcs: [
+ "applypatch_main.cpp",
+ ],
+
+ static_libs: [
+ "libapplypatch_modes",
+ "libapplypatch",
+ "libedify",
+ "libotafault",
+ "libotautil",
+ "libbspatch",
+ ],
+
+ shared_libs: [
+ "libbase",
+ "libbrotli",
+ "libbz",
+ "libcrypto",
+ "liblog",
+ "libz",
+ "libziparchive",
+ ],
+}
+
+cc_library_static {
+ name: "libimgdiff",
+
+ host_supported: true,
+
+ defaults: [
+ "applypatch_defaults",
+ ],
+
+ srcs: [
+ "imgdiff.cpp",
+ ],
+
+ export_include_dirs: [
+ "include",
+ ],
+
+ static_libs: [
+ "libbase",
+ "libbsdiff",
+ "libdivsufsort",
+ "libdivsufsort64",
+ "liblog",
+ "libotautil",
+ "libutils",
+ "libz",
+ "libziparchive",
+ ],
+}
+
+cc_binary_host {
+ name: "imgdiff",
+
+ srcs: [
+ "imgdiff_main.cpp",
+ ],
+
+ defaults: [
+ "applypatch_defaults",
+ ],
+
+ static_libs: [
+ "libimgdiff",
+ "libotautil",
+ "libbsdiff",
+ "libdivsufsort",
+ "libdivsufsort64",
+ "libziparchive",
+ "libbase",
+ "libutils",
+ "liblog",
+ "libbrotli",
+ "libbz",
+ "libz",
+ ],
+}
+
+cc_library_static {
+ name: "libimgpatch",
+
+ // The host module is for recovery_host_test (Linux only).
+ host_supported: true,
+
+ defaults: [
+ "applypatch_defaults",
+ ],
+
+ srcs: [
+ "bspatch.cpp",
+ "imgpatch.cpp",
+ ],
+
+ static_libs: [
+ "libbase",
+ "libbspatch",
+ "libbz",
+ "libcrypto",
+ "libedify",
+ "libotautil",
+ "libz",
+ ],
+
+ target: {
+ darwin: {
+ enabled: false,
+ },
+ },
+}
diff --git a/applypatch/Makefile b/applypatch/Makefile
deleted file mode 100644
index fb4984303..000000000
--- a/applypatch/Makefile
+++ /dev/null
@@ -1,33 +0,0 @@
-# Copyright (C) 2016 The Android Open Source Project
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# This file is for building imgdiff in Chrome OS.
-
-CPPFLAGS += -iquote.. -Iinclude
-CXXFLAGS += -std=c++11 -O3 -Wall -Werror
-LDLIBS += -lbz2 -lz
-
-.PHONY: all clean
-
-all: imgdiff libimgpatch.a
-
-clean:
- rm -f *.o imgdiff libimgpatch.a
-
-imgdiff: imgdiff.o bsdiff.o utils.o
- $(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDLIBS) -o $@ $^
-
-libimgpatch.a utils.o: CXXFLAGS += -fPIC
-libimgpatch.a: imgpatch.o bspatch.o utils.o
- ${AR} rcs $@ $^
diff --git a/applypatch/applypatch.cpp b/applypatch/applypatch.cpp
index 43e9b80dc..5c6c83f4f 100644
--- a/applypatch/applypatch.cpp
+++ b/applypatch/applypatch.cpp
@@ -42,8 +42,9 @@
#include "mtdutils/mtdutils.h"
#include "edify/expr.h"
-#include "ota_io.h"
-#include "print_sha1.h"
+#include "otafault/ota_io.h"
+#include "otautil/cache_location.h"
+#include "otautil/print_sha1.h"
static int LoadPartitionContents(const std::string& filename, FileContents* file);
static size_t FileSink(const unsigned char* data, size_t len, int fd);
@@ -64,12 +65,13 @@ int LoadFileContents(const char* filename, FileContents* file) {
return LoadPartitionContents(filename, file);
}
- if (stat(filename, &file->st) == -1) {
+ struct stat sb;
+ if (stat(filename, &sb) == -1) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return -1;
}
- std::vector<unsigned char> data(file->st.st_size);
+ std::vector<unsigned char> data(sb.st_size);
unique_file f(ota_fopen(filename, "rb"));
if (!f) {
printf("failed to open \"%s\": %s\n", filename, strerror(errno));
@@ -208,10 +210,6 @@ static int LoadPartitionContents(const std::string& filename, FileContents* file
buffer.resize(buffer_size);
file->data = std::move(buffer);
- // Fake some stat() info.
- file->st.st_mode = 0644;
- file->st.st_uid = 0;
- file->st.st_gid = 0;
return 0;
}
@@ -240,15 +238,6 @@ int SaveFileContents(const char* filename, const FileContents* file) {
return -1;
}
- if (chmod(filename, file->st.st_mode) != 0) {
- printf("chmod of \"%s\" failed: %s\n", filename, strerror(errno));
- return -1;
- }
- if (chown(filename, file->st.st_uid, file->st.st_gid) != 0) {
- printf("chown of \"%s\" failed: %s\n", filename, strerror(errno));
- return -1;
- }
-
return 0;
}
@@ -509,12 +498,10 @@ int applypatch_check(const char* filename, const std::vector<std::string>& patch
(!patch_sha1_str.empty() && FindMatchingPatch(file.sha1, patch_sha1_str) < 0)) {
printf("file \"%s\" doesn't have any of expected sha1 sums; checking cache\n", filename);
- // If the source file is missing or corrupted, it might be because
- // we were killed in the middle of patching it. A copy of it
- // should have been made in CACHE_TEMP_SOURCE. If that file
- // exists and matches the sha1 we're looking for, the check still
- // passes.
- if (LoadFileContents(CACHE_TEMP_SOURCE, &file) != 0) {
+ // If the source file is missing or corrupted, it might be because we were killed in the middle
+ // of patching it. A copy of it should have been made in cache_temp_source. If that file
+ // exists and matches the sha1 we're looking for, the check still passes.
+ if (LoadFileContents(CacheLocation::location().cache_temp_source().c_str(), &file) != 0) {
printf("failed to load cache file\n");
return 1;
}
@@ -560,9 +547,8 @@ int CacheSizeCheck(size_t bytes) {
if (MakeFreeSpaceOnCache(bytes) < 0) {
printf("unable to make %zu bytes available on /cache\n", bytes);
return 1;
- } else {
- return 0;
}
+ return 0;
}
// This function applies binary patches to EMMC target files in a way that is safe (the original
@@ -587,7 +573,7 @@ int CacheSizeCheck(size_t bytes) {
// become obsolete since we have dropped the support for patching non-EMMC targets (EMMC targets
// have the size embedded in the filename).
int applypatch(const char* source_filename, const char* target_filename,
- const char* target_sha1_str, size_t target_size __unused,
+ const char* target_sha1_str, size_t /* target_size */,
const std::vector<std::string>& patch_sha1_str,
const std::vector<std::unique_ptr<Value>>& patch_data, const Value* bonus_data) {
printf("patch %s: ", source_filename);
@@ -637,7 +623,7 @@ int applypatch(const char* source_filename, const char* target_filename,
printf("source file is bad; trying copy\n");
FileContents copy_file;
- if (LoadFileContents(CACHE_TEMP_SOURCE, &copy_file) < 0) {
+ if (LoadFileContents(CacheLocation::location().cache_temp_source().c_str(), &copy_file) < 0) {
printf("failed to read copy file\n");
return 1;
}
@@ -732,7 +718,7 @@ static int GenerateTarget(const FileContents& source_file, const std::unique_ptr
printf("not enough free space on /cache\n");
return 1;
}
- if (SaveFileContents(CACHE_TEMP_SOURCE, &source_file) < 0) {
+ if (SaveFileContents(CacheLocation::location().cache_temp_source().c_str(), &source_file) < 0) {
printf("failed to back up source file\n");
return 1;
}
@@ -749,11 +735,11 @@ static int GenerateTarget(const FileContents& source_file, const std::unique_ptr
int result;
if (use_bsdiff) {
- result = ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), patch.get(), 0,
- sink, &ctx);
+ result =
+ ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), *patch, 0, sink, &ctx);
} else {
- result = ApplyImagePatch(source_file.data.data(), source_file.data.size(), patch.get(), sink,
- &ctx, bonus_data);
+ result = ApplyImagePatch(source_file.data.data(), source_file.data.size(), *patch, sink, &ctx,
+ bonus_data);
}
if (result != 0) {
@@ -778,7 +764,7 @@ static int GenerateTarget(const FileContents& source_file, const std::unique_ptr
}
// Delete the backup copy of the source.
- unlink(CACHE_TEMP_SOURCE);
+ unlink(CacheLocation::location().cache_temp_source().c_str());
// Success!
return 0;
diff --git a/applypatch/bspatch.cpp b/applypatch/bspatch.cpp
index 65ee614ef..912dbbdd8 100644
--- a/applypatch/bspatch.cpp
+++ b/applypatch/bspatch.cpp
@@ -26,11 +26,12 @@
#include <string>
#include <android-base/logging.h>
-#include <bspatch.h>
+#include <bsdiff/bspatch.h>
#include <openssl/sha.h>
#include "applypatch/applypatch.h"
-#include "print_sha1.h"
+#include "edify/expr.h"
+#include "otautil/print_sha1.h"
void ShowBSDiffLicense() {
puts("The bsdiff library used herein is:\n"
@@ -64,7 +65,7 @@ void ShowBSDiffLicense() {
);
}
-int ApplyBSDiffPatch(const unsigned char* old_data, size_t old_size, const Value* patch,
+int ApplyBSDiffPatch(const unsigned char* old_data, size_t old_size, const Value& patch,
size_t patch_offset, SinkFn sink, SHA_CTX* ctx) {
auto sha_sink = [&sink, &ctx](const uint8_t* data, size_t len) {
len = sink(data, len);
@@ -72,23 +73,21 @@ int ApplyBSDiffPatch(const unsigned char* old_data, size_t old_size, const Value
return len;
};
- CHECK(patch != nullptr);
- CHECK_LE(patch_offset, patch->data.size());
+ CHECK_LE(patch_offset, patch.data.size());
int result = bsdiff::bspatch(old_data, old_size,
- reinterpret_cast<const uint8_t*>(&patch->data[patch_offset]),
- patch->data.size() - patch_offset, sha_sink);
+ reinterpret_cast<const uint8_t*>(&patch.data[patch_offset]),
+ patch.data.size() - patch_offset, sha_sink);
if (result != 0) {
LOG(ERROR) << "bspatch failed, result: " << result;
// print SHA1 of the patch in the case of a data error.
if (result == 2) {
uint8_t digest[SHA_DIGEST_LENGTH];
- SHA1(reinterpret_cast<const uint8_t*>(patch->data.data() + patch_offset),
- patch->data.size() - patch_offset, digest);
+ SHA1(reinterpret_cast<const uint8_t*>(patch.data.data() + patch_offset),
+ patch.data.size() - patch_offset, digest);
std::string patch_sha1 = print_sha1(digest);
- LOG(ERROR) << "Patch may be corrupted, offset: " << patch_offset << ", SHA1: "
- << patch_sha1;
+ LOG(ERROR) << "Patch may be corrupted, offset: " << patch_offset << ", SHA1: " << patch_sha1;
}
}
return result;
-} \ No newline at end of file
+}
diff --git a/applypatch/freecache.cpp b/applypatch/freecache.cpp
index 331cae265..ea364d8e6 100644
--- a/applypatch/freecache.cpp
+++ b/applypatch/freecache.cpp
@@ -33,6 +33,7 @@
#include <android-base/stringprintf.h>
#include "applypatch/applypatch.h"
+#include "otautil/cache_location.h"
static int EliminateOpenFiles(std::set<std::string>* files) {
std::unique_ptr<DIR, decltype(&closedir)> d(opendir("/proc"), closedir);
@@ -90,10 +91,9 @@ static std::set<std::string> FindExpendableFiles() {
while ((de = readdir(d.get())) != 0) {
std::string path = std::string(dirs[i]) + "/" + de->d_name;
- // We can't delete CACHE_TEMP_SOURCE; if it's there we might have
- // restarted during installation and could be depending on it to
- // be there.
- if (path == CACHE_TEMP_SOURCE) {
+ // We can't delete cache_temp_source; if it's there we might have restarted during
+ // installation and could be depending on it to be there.
+ if (path == CacheLocation::location().cache_temp_source()) {
continue;
}
@@ -112,6 +112,12 @@ static std::set<std::string> FindExpendableFiles() {
}
int MakeFreeSpaceOnCache(size_t bytes_needed) {
+#ifndef __ANDROID__
+ // TODO (xunchang) implement a heuristic cache size check during host simulation.
+ printf("Skip making (%zu) bytes free space on cache; program is running on host\n", bytes_needed);
+ return 0;
+#endif
+
size_t free_now = FreeSpaceForFile("/cache");
printf("%zu bytes free on /cache (%zu needed)\n", free_now, bytes_needed);
diff --git a/applypatch/imgdiff.cpp b/applypatch/imgdiff.cpp
index fc240644f..674cc2b16 100644
--- a/applypatch/imgdiff.cpp
+++ b/applypatch/imgdiff.cpp
@@ -15,53 +15,44 @@
*/
/*
- * This program constructs binary patches for images -- such as boot.img
- * and recovery.img -- that consist primarily of large chunks of gzipped
- * data interspersed with uncompressed data. Doing a naive bsdiff of
- * these files is not useful because small changes in the data lead to
- * large changes in the compressed bitstream; bsdiff patches of gzipped
- * data are typically as large as the data itself.
+ * This program constructs binary patches for images -- such as boot.img and recovery.img -- that
+ * consist primarily of large chunks of gzipped data interspersed with uncompressed data. Doing a
+ * naive bsdiff of these files is not useful because small changes in the data lead to large
+ * changes in the compressed bitstream; bsdiff patches of gzipped data are typically as large as
+ * the data itself.
*
- * To patch these usefully, we break the source and target images up into
- * chunks of two types: "normal" and "gzip". Normal chunks are simply
- * patched using a plain bsdiff. Gzip chunks are first expanded, then a
- * bsdiff is applied to the uncompressed data, then the patched data is
- * gzipped using the same encoder parameters. Patched chunks are
- * concatenated together to create the output file; the output image
- * should be *exactly* the same series of bytes as the target image used
- * originally to generate the patch.
+ * To patch these usefully, we break the source and target images up into chunks of two types:
+ * "normal" and "gzip". Normal chunks are simply patched using a plain bsdiff. Gzip chunks are
+ * first expanded, then a bsdiff is applied to the uncompressed data, then the patched data is
+ * gzipped using the same encoder parameters. Patched chunks are concatenated together to create
+ * the output file; the output image should be *exactly* the same series of bytes as the target
+ * image used originally to generate the patch.
*
- * To work well with this tool, the gzipped sections of the target
- * image must have been generated using the same deflate encoder that
- * is available in applypatch, namely, the one in the zlib library.
- * In practice this means that images should be compressed using the
- * "minigzip" tool included in the zlib distribution, not the GNU gzip
- * program.
+ * To work well with this tool, the gzipped sections of the target image must have been generated
+ * using the same deflate encoder that is available in applypatch, namely, the one in the zlib
+ * library. In practice this means that images should be compressed using the "minigzip" tool
+ * included in the zlib distribution, not the GNU gzip program.
*
- * An "imgdiff" patch consists of a header describing the chunk structure
- * of the file and any encoding parameters needed for the gzipped
- * chunks, followed by N bsdiff patches, one per chunk.
+ * An "imgdiff" patch consists of a header describing the chunk structure of the file and any
+ * encoding parameters needed for the gzipped chunks, followed by N bsdiff patches, one per chunk.
*
- * For a diff to be generated, the source and target images must have the
- * same "chunk" structure: that is, the same number of gzipped and normal
- * chunks in the same order. Android boot and recovery images currently
- * consist of five chunks: a small normal header, a gzipped kernel, a
- * small normal section, a gzipped ramdisk, and finally a small normal
- * footer.
+ * For a diff to be generated, the source and target must be in well-formed zip archive format;
+ * or they are image files with the same "chunk" structure: that is, the same number of gzipped and
+ * normal chunks in the same order. Android boot and recovery images currently consist of five
+ * chunks: a small normal header, a gzipped kernel, a small normal section, a gzipped ramdisk, and
+ * finally a small normal footer.
*
- * Caveats: we locate gzipped sections within the source and target
- * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip
- * magic number; 08 specifies the "deflate" encoding [the only encoding
- * supported by the gzip standard]; and 00 is the flags byte. We do not
- * currently support any extra header fields (which would be indicated by
- * a nonzero flags byte). We also don't handle the case when that byte
- * sequence appears spuriously in the file. (Note that it would have to
- * occur spuriously within a normal chunk to be a problem.)
+ * Caveats: we locate gzipped sections within the source and target images by searching for the
+ * byte sequence 1f8b0800: 1f8b is the gzip magic number; 08 specifies the "deflate" encoding
+ * [the only encoding supported by the gzip standard]; and 00 is the flags byte. We do not
+ * currently support any extra header fields (which would be indicated by a nonzero flags byte).
+ * We also don't handle the case when that byte sequence appears spuriously in the file. (Note
+ * that it would have to occur spuriously within a normal chunk to be a problem.)
*
*
* The imgdiff patch header looks like this:
*
- * "IMGDIFF1" (8) [magic number and version]
+ * "IMGDIFF2" (8) [magic number and version]
* chunk count (4)
* for each chunk:
* chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
@@ -98,33 +89,62 @@
* target len (4)
* data (target len)
*
- * All integers are little-endian. "source start" and "source len"
- * specify the section of the input image that comprises this chunk,
- * including the gzip header and footer for gzip chunks. "source
- * expanded len" is the size of the uncompressed source data. "target
- * expected len" is the size of the uncompressed data after applying
- * the bsdiff patch. The next five parameters specify the zlib
- * parameters to be used when compressing the patched data, and the
- * next three specify the header and footer to be wrapped around the
- * compressed data to create the output chunk (so that header contents
- * like the timestamp are recreated exactly).
+ * All integers are little-endian. "source start" and "source len" specify the section of the
+ * input image that comprises this chunk, including the gzip header and footer for gzip chunks.
+ * "source expanded len" is the size of the uncompressed source data. "target expected len" is the
+ * size of the uncompressed data after applying the bsdiff patch. The next five parameters
+ * specify the zlib parameters to be used when compressing the patched data, and the next three
+ * specify the header and footer to be wrapped around the compressed data to create the output
+ * chunk (so that header contents like the timestamp are recreated exactly).
*
- * After the header there are 'chunk count' bsdiff patches; the offset
- * of each from the beginning of the file is specified in the header.
+ * After the header there are 'chunk count' bsdiff patches; the offset of each from the beginning
+ * of the file is specified in the header.
*
- * This tool can take an optional file of "bonus data". This is an
- * extra file of data that is appended to chunk #1 after it is
- * compressed (it must be a CHUNK_DEFLATE chunk). The same file must
- * be available (and passed to applypatch with -b) when applying the
- * patch. This is used to reduce the size of recovery-from-boot
- * patches by combining the boot image with recovery ramdisk
+ * This tool can take an optional file of "bonus data". This is an extra file of data that is
+ * appended to chunk #1 after it is compressed (it must be a CHUNK_DEFLATE chunk). The same file
+ * must be available (and passed to applypatch with -b) when applying the patch. This is used to
+ * reduce the size of recovery-from-boot patches by combining the boot image with recovery ramdisk
* information that is stored on the system partition.
+ *
+ * When generating the patch between two zip files, this tool has an option "--block-limit" to
+ * split the large source/target files into several pair of pieces, with each piece has at most
+ * *limit* blocks. When this option is used, we also need to output the split info into the file
+ * path specified by "--split-info".
+ *
+ * Format of split info file:
+ * 2 [version of imgdiff]
+ * n [count of split pieces]
+ * <patch_size>, <tgt_size>, <src_range> [size and ranges for split piece#1]
+ * ...
+ * <patch_size>, <tgt_size>, <src_range> [size and ranges for split piece#n]
+ *
+ * To split a pair of large zip files, we walk through the chunks in target zip and search by its
+ * entry_name in the source zip. If the entry_name is non-empty and a matching entry in source
+ * is found, we'll add the source entry to the current split source image; otherwise we'll skip
+ * this chunk and later do bsdiff between all the skipped trunks and the whole split source image.
+ * We move on to the next pair of pieces if the size of the split source image reaches the block
+ * limit.
+ *
+ * After the split, the target pieces are continuous and block aligned, while the source pieces
+ * are mutually exclusive. Some of the source blocks may not be used if there's no matching
+ * entry_name in the target; as a result, they won't be included in any of these split source
+ * images. Then we will generate patches accordingly between each split image pairs; in particular,
+ * the unmatched trunks in the split target will diff against the entire split source image.
+ *
+ * For example:
+ * Input: [src_image, tgt_image]
+ * Split: [src-0, tgt-0; src-1, tgt-1, src-2, tgt-2]
+ * Diff: [ patch-0; patch-1; patch-2]
+ *
+ * Patch: [(src-0, patch-0) = tgt-0; (src-1, patch-1) = tgt-1; (src-2, patch-2) = tgt-2]
+ * Concatenate: [tgt-0 + tgt-1 + tgt-2 = tgt_image]
*/
#include "applypatch/imgdiff.h"
#include <errno.h>
#include <fcntl.h>
+#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@@ -139,15 +159,26 @@
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/memory.h>
+#include <android-base/parseint.h>
+#include <android-base/stringprintf.h>
+#include <android-base/strings.h>
#include <android-base/unique_fd.h>
+#include <bsdiff/bsdiff.h>
#include <ziparchive/zip_archive.h>
-
-#include <bsdiff.h>
#include <zlib.h>
+#include "applypatch/imgdiff_image.h"
+#include "otautil/rangeset.h"
+
using android::base::get_unaligned;
-static constexpr auto BUFFER_SIZE = 0x8000;
+static constexpr size_t VERSION = 2;
+
+// We assume the header "IMGDIFF#" is 8 bytes.
+static_assert(VERSION <= 9, "VERSION occupies more than one byte");
+
+static constexpr size_t BLOCK_SIZE = 4096;
+static constexpr size_t BUFFER_SIZE = 0x8000;
// If we use this function to write the offset and length (type size_t), their values should not
// exceed 2^63; because the signed bit will be casted away.
@@ -161,99 +192,80 @@ static inline bool Write4(int fd, int32_t value) {
return android::base::WriteFully(fd, &value, sizeof(int32_t));
}
-class ImageChunk {
- public:
- static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
- static constexpr auto MEMLEVEL = 8; // the default value.
- static constexpr auto METHOD = Z_DEFLATED;
- static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
-
- ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len)
- : type_(type),
- start_(start),
- input_file_ptr_(file_content),
- raw_data_len_(raw_data_len),
- compress_level_(6),
- source_start_(0),
- source_len_(0),
- source_uncompressed_len_(0) {
- CHECK(file_content != nullptr) << "input file container can't be nullptr";
- }
-
- int GetType() const {
- return type_;
- }
- size_t GetRawDataLength() const {
- return raw_data_len_;
- }
- const std::string& GetEntryName() const {
- return entry_name_;
- }
-
- // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
- // the raw data.
- const uint8_t * DataForPatch() const;
- size_t DataLengthForPatch() const;
-
- void Dump() const {
- printf("type %d start %zu len %zu\n", type_, start_, DataLengthForPatch());
- }
-
- void SetSourceInfo(const ImageChunk& other);
- void SetEntryName(std::string entryname);
- void SetUncompressedData(std::vector<uint8_t> data);
- bool SetBonusData(const std::vector<uint8_t>& bonus_data);
-
- bool operator==(const ImageChunk& other) const;
- bool operator!=(const ImageChunk& other) const {
- return !(*this == other);
- }
-
- size_t GetHeaderSize(size_t patch_size) const;
- // Return the offset of the next patch into the patch data.
- size_t WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset);
-
- /*
- * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
- * of uninterpreted data). The resulting patch will likely be about
- * as big as the target file, but it lets us handle the case of images
- * where some gzip chunks are reconstructible but others aren't (by
- * treating the ones that aren't as normal chunks).
- */
- void ChangeDeflateChunkToNormal();
- bool ChangeChunkToRaw(size_t patch_size);
-
- /*
- * Verify that we can reproduce exactly the same compressed data that
- * we started with. Sets the level, method, windowBits, memLevel, and
- * strategy fields in the chunk to the encoding parameters needed to
- * produce the right output.
- */
- bool ReconstructDeflateChunk();
- bool IsAdjacentNormal(const ImageChunk& other) const;
- void MergeAdjacentNormal(const ImageChunk& other);
-
- private:
- int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
- size_t start_; // offset of chunk in the original input file
- const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
- size_t raw_data_len_;
-
- // --- for CHUNK_DEFLATE chunks only: ---
- std::vector<uint8_t> uncompressed_data_;
- std::string entry_name_; // used for zip entries
-
- // deflate encoder parameters
- int compress_level_;
-
- size_t source_start_;
- size_t source_len_;
- size_t source_uncompressed_len_;
-
- const uint8_t* GetRawData() const;
- bool TryReconstruction(int level);
+// Trim the head or tail to align with the block size. Return false if the chunk has nothing left
+// after alignment.
+static bool AlignHead(size_t* start, size_t* length) {
+ size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
+
+ if (*length <= residual) {
+ *length = 0;
+ return false;
+ }
+
+ // Trim the data in the beginning.
+ *start += residual;
+ *length -= residual;
+ return true;
+}
+
+static bool AlignTail(size_t* start, size_t* length) {
+ size_t residual = (*start + *length) % BLOCK_SIZE;
+ if (*length <= residual) {
+ *length = 0;
+ return false;
+ }
+
+ // Trim the data in the end.
+ *length -= residual;
+ return true;
+}
+
+// Remove the used blocks from the source chunk to make sure the source ranges are mutually
+// exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
+// a case, we'll skip the entire source chunk.
+static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
+ if (!used_ranges.Overlaps(*start, *length)) {
+ return true;
+ }
+
+ // TODO find the largest non-overlap chunk.
+ LOG(INFO) << "Removing block " << used_ranges.ToString() << " from " << *start << " - "
+ << *start + *length - 1;
+
+ // If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
+ // trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
+ if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
+ return true;
+ }
+ if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
+ return true;
+ }
+
+ LOG(WARNING) << "Failed to remove the overlapped block ranges; skip the source";
+ return false;
+}
+
+static const struct option OPTIONS[] = {
+ { "zip-mode", no_argument, nullptr, 'z' },
+ { "bonus-file", required_argument, nullptr, 'b' },
+ { "block-limit", required_argument, nullptr, 0 },
+ { "debug-dir", required_argument, nullptr, 0 },
+ { "split-info", required_argument, nullptr, 0 },
+ { "verbose", no_argument, nullptr, 'v' },
+ { nullptr, 0, nullptr, 0 },
};
+ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
+ size_t raw_data_len, std::string entry_name)
+ : type_(type),
+ start_(start),
+ input_file_ptr_(file_content),
+ raw_data_len_(raw_data_len),
+ compress_level_(6),
+ entry_name_(std::move(entry_name)) {
+ CHECK(file_content != nullptr) << "input file container can't be nullptr";
+}
+
const uint8_t* ImageChunk::GetRawData() const {
CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
return input_file_ptr_->data() + start_;
@@ -273,6 +285,11 @@ size_t ImageChunk::DataLengthForPatch() const {
return raw_data_len_;
}
+void ImageChunk::Dump(size_t index) const {
+ LOG(INFO) << "chunk: " << index << ", type: " << type_ << ", start: " << start_
+ << ", len: " << DataLengthForPatch() << ", name: " << entry_name_;
+}
+
bool ImageChunk::operator==(const ImageChunk& other) const {
if (type_ != other.type_) {
return false;
@@ -281,20 +298,6 @@ bool ImageChunk::operator==(const ImageChunk& other) const {
memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
}
-void ImageChunk::SetSourceInfo(const ImageChunk& src) {
- source_start_ = src.start_;
- if (type_ == CHUNK_NORMAL) {
- source_len_ = src.raw_data_len_;
- } else if (type_ == CHUNK_DEFLATE) {
- source_len_ = src.raw_data_len_;
- source_uncompressed_len_ = src.uncompressed_data_.size();
- }
-}
-
-void ImageChunk::SetEntryName(std::string entryname) {
- entry_name_ = std::move(entryname);
-}
-
void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
uncompressed_data_ = std::move(data);
}
@@ -307,80 +310,13 @@ bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
return true;
}
-// Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the target size is
-// smaller. Also take the header size into account during size comparison.
-bool ImageChunk::ChangeChunkToRaw(size_t patch_size) {
- if (type_ == CHUNK_RAW) {
- return true;
- } else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) {
- type_ = CHUNK_RAW;
- return true;
- }
- return false;
-}
-
void ImageChunk::ChangeDeflateChunkToNormal() {
if (type_ != CHUNK_DEFLATE) return;
type_ = CHUNK_NORMAL;
- entry_name_.clear();
+ // No need to clear the entry name.
uncompressed_data_.clear();
}
-// Header size:
-// header_type 4 bytes
-// CHUNK_NORMAL 8*3 = 24 bytes
-// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
-// CHUNK_RAW 4 bytes + patch_size
-size_t ImageChunk::GetHeaderSize(size_t patch_size) const {
- switch (type_) {
- case CHUNK_NORMAL:
- return 4 + 8 * 3;
- case CHUNK_DEFLATE:
- return 4 + 8 * 5 + 4 * 5;
- case CHUNK_RAW:
- return 4 + 4 + patch_size;
- default:
- CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
- return 0;
- }
-}
-
-size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector<uint8_t>& patch, size_t offset) {
- Write4(fd, type_);
- switch (type_) {
- case CHUNK_NORMAL:
- printf("normal (%10zu, %10zu) %10zu\n", start_, raw_data_len_, patch.size());
- Write8(fd, static_cast<int64_t>(source_start_));
- Write8(fd, static_cast<int64_t>(source_len_));
- Write8(fd, static_cast<int64_t>(offset));
- return offset + patch.size();
- case CHUNK_DEFLATE:
- printf("deflate (%10zu, %10zu) %10zu %s\n", start_, raw_data_len_, patch.size(),
- entry_name_.c_str());
- Write8(fd, static_cast<int64_t>(source_start_));
- Write8(fd, static_cast<int64_t>(source_len_));
- Write8(fd, static_cast<int64_t>(offset));
- Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
- Write8(fd, static_cast<int64_t>(uncompressed_data_.size()));
- Write4(fd, compress_level_);
- Write4(fd, METHOD);
- Write4(fd, WINDOWBITS);
- Write4(fd, MEMLEVEL);
- Write4(fd, STRATEGY);
- return offset + patch.size();
- case CHUNK_RAW:
- printf("raw (%10zu, %10zu)\n", start_, raw_data_len_);
- Write4(fd, static_cast<int32_t>(patch.size()));
- if (!android::base::WriteFully(fd, patch.data(), patch.size())) {
- CHECK(false) << "failed to write " << patch.size() <<" bytes patch";
- }
- return offset;
- default:
- CHECK(false) << "unexpected chunk type: " << type_;
- return offset;
- }
-}
-
bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
return false;
@@ -393,14 +329,62 @@ void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
raw_data_len_ = raw_data_len_ + other.raw_data_len_;
}
+bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
+ std::vector<uint8_t>* patch_data,
+ bsdiff::SuffixArrayIndexInterface** bsdiff_cache) {
+#if defined(__ANDROID__)
+ char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
+#else
+ char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
+#endif
+
+ int fd = mkstemp(ptemp);
+ if (fd == -1) {
+ PLOG(ERROR) << "MakePatch failed to create a temporary file";
+ return false;
+ }
+ close(fd);
+
+ int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
+ tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
+ if (r != 0) {
+ LOG(ERROR) << "bsdiff() failed: " << r;
+ return false;
+ }
+
+ android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
+ if (patch_fd == -1) {
+ PLOG(ERROR) << "Failed to open " << ptemp;
+ return false;
+ }
+ struct stat st;
+ if (fstat(patch_fd, &st) != 0) {
+ PLOG(ERROR) << "Failed to stat patch file " << ptemp;
+ return false;
+ }
+
+ size_t sz = static_cast<size_t>(st.st_size);
+
+ patch_data->resize(sz);
+ if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
+ PLOG(ERROR) << "Failed to read " << ptemp;
+ unlink(ptemp);
+ return false;
+ }
+
+ unlink(ptemp);
+
+ return true;
+}
+
bool ImageChunk::ReconstructDeflateChunk() {
if (type_ != CHUNK_DEFLATE) {
- printf("attempt to reconstruct non-deflate chunk\n");
+ LOG(ERROR) << "Attempted to reconstruct non-deflate chunk";
return false;
}
- // We only check two combinations of encoder parameters: level 6
- // (the default) and level 9 (the maximum).
+ // We only check two combinations of encoder parameters: level 6 (the default) and level 9
+ // (the maximum).
for (int level = 6; level <= 9; level += 3) {
if (TryReconstruction(level)) {
compress_level_ = level;
@@ -412,10 +396,9 @@ bool ImageChunk::ReconstructDeflateChunk() {
}
/*
- * Takes the uncompressed data stored in the chunk, compresses it
- * using the zlib parameters stored in the chunk, and checks that it
- * matches exactly the compressed data we started with (also stored in
- * the chunk).
+ * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
+ * in the chunk, and checks that it matches exactly the compressed data we started with (also
+ * stored in the chunk).
*/
bool ImageChunk::TryReconstruction(int level) {
z_stream strm;
@@ -426,7 +409,7 @@ bool ImageChunk::TryReconstruction(int level) {
strm.next_in = uncompressed_data_.data();
int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
if (ret < 0) {
- printf("failed to initialize deflate: %d\n", ret);
+ LOG(ERROR) << "Failed to initialize deflate: " << ret;
return false;
}
@@ -437,7 +420,7 @@ bool ImageChunk::TryReconstruction(int level) {
strm.next_out = buffer.data();
ret = deflate(&strm, Z_FINISH);
if (ret < 0) {
- printf("failed to deflate: %d\n", ret);
+ LOG(ERROR) << "Failed to deflate: " << ret;
return false;
}
@@ -458,195 +441,830 @@ bool ImageChunk::TryReconstruction(int level) {
return true;
}
-// EOCD record
-// offset 0: signature 0x06054b50, 4 bytes
-// offset 4: number of this disk, 2 bytes
-// ...
-// offset 20: comment length, 2 bytes
-// offset 22: comment, n bytes
-static bool GetZipFileSize(const std::vector<uint8_t>& zip_file, size_t* input_file_size) {
- if (zip_file.size() < 22) {
- printf("file is too small to be a zip file\n");
- return false;
+PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
+ : type_(tgt.GetType()),
+ source_start_(src.GetStartOffset()),
+ source_len_(src.GetRawDataLength()),
+ source_uncompressed_len_(src.DataLengthForPatch()),
+ target_start_(tgt.GetStartOffset()),
+ target_len_(tgt.GetRawDataLength()),
+ target_uncompressed_len_(tgt.DataLengthForPatch()),
+ target_compress_level_(tgt.GetCompressLevel()),
+ data_(std::move(data)) {}
+
+// Construct a CHUNK_RAW patch from the target data directly.
+PatchChunk::PatchChunk(const ImageChunk& tgt)
+ : type_(CHUNK_RAW),
+ source_start_(0),
+ source_len_(0),
+ source_uncompressed_len_(0),
+ target_start_(tgt.GetStartOffset()),
+ target_len_(tgt.GetRawDataLength()),
+ target_uncompressed_len_(tgt.DataLengthForPatch()),
+ target_compress_level_(tgt.GetCompressLevel()),
+ data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
+
+// Return true if raw data is smaller than the patch size.
+bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
+ size_t target_len = tgt.GetRawDataLength();
+ return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
+}
+
+void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
+ if (type_ == CHUNK_DEFLATE) {
+ source_start_ = src_range.GetOffsetInRangeSet(source_start_);
}
+}
- // Look for End of central directory record of the zip file, and calculate the actual
- // zip_file size.
- for (int i = zip_file.size() - 22; i >= 0; i--) {
- if (zip_file[i] == 0x50) {
- if (get_unaligned<uint32_t>(&zip_file[i]) == 0x06054b50) {
- // double-check: this archive consists of a single "disk".
- CHECK_EQ(get_unaligned<uint16_t>(&zip_file[i + 4]), 0);
+// Header size:
+// header_type 4 bytes
+// CHUNK_NORMAL 8*3 = 24 bytes
+// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
+// CHUNK_RAW 4 bytes + patch_size
+size_t PatchChunk::GetHeaderSize() const {
+ switch (type_) {
+ case CHUNK_NORMAL:
+ return 4 + 8 * 3;
+ case CHUNK_DEFLATE:
+ return 4 + 8 * 5 + 4 * 5;
+ case CHUNK_RAW:
+ return 4 + 4 + data_.size();
+ default:
+ CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
+ return 0;
+ }
+}
- uint16_t comment_length = get_unaligned<uint16_t>(&zip_file[i + 20]);
- size_t file_size = i + 22 + comment_length;
- CHECK_LE(file_size, zip_file.size());
- *input_file_size = file_size;
- return true;
+// Return the offset of the next patch into the patch data.
+size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset, size_t index) const {
+ Write4(fd, type_);
+ switch (type_) {
+ case CHUNK_NORMAL:
+ LOG(INFO) << android::base::StringPrintf("chunk %zu: normal (%10zu, %10zu) %10zu", index,
+ target_start_, target_len_, data_.size());
+ Write8(fd, static_cast<int64_t>(source_start_));
+ Write8(fd, static_cast<int64_t>(source_len_));
+ Write8(fd, static_cast<int64_t>(offset));
+ return offset + data_.size();
+ case CHUNK_DEFLATE:
+ LOG(INFO) << android::base::StringPrintf("chunk %zu: deflate (%10zu, %10zu) %10zu", index,
+ target_start_, target_len_, data_.size());
+ Write8(fd, static_cast<int64_t>(source_start_));
+ Write8(fd, static_cast<int64_t>(source_len_));
+ Write8(fd, static_cast<int64_t>(offset));
+ Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
+ Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
+ Write4(fd, target_compress_level_);
+ Write4(fd, ImageChunk::METHOD);
+ Write4(fd, ImageChunk::WINDOWBITS);
+ Write4(fd, ImageChunk::MEMLEVEL);
+ Write4(fd, ImageChunk::STRATEGY);
+ return offset + data_.size();
+ case CHUNK_RAW:
+ LOG(INFO) << android::base::StringPrintf("chunk %zu: raw (%10zu, %10zu)", index,
+ target_start_, target_len_);
+ Write4(fd, static_cast<int32_t>(data_.size()));
+ if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
+ CHECK(false) << "Failed to write " << data_.size() << " bytes patch";
}
+ return offset;
+ default:
+ CHECK(false) << "unexpected chunk type: " << type_;
+ return offset;
+ }
+}
+
+size_t PatchChunk::PatchSize() const {
+ if (type_ == CHUNK_RAW) {
+ return GetHeaderSize();
+ }
+ return GetHeaderSize() + data_.size();
+}
+
+// Write the contents of |patch_chunks| to |patch_fd|.
+bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
+ // Figure out how big the imgdiff file header is going to be, so that we can correctly compute
+ // the offset of each bsdiff patch within the file.
+ size_t total_header_size = 12;
+ for (const auto& patch : patch_chunks) {
+ total_header_size += patch.GetHeaderSize();
+ }
+
+ size_t offset = total_header_size;
+
+ // Write out the headers.
+ if (!android::base::WriteStringToFd("IMGDIFF" + std::to_string(VERSION), patch_fd)) {
+ PLOG(ERROR) << "Failed to write \"IMGDIFF" << VERSION << "\"";
+ return false;
+ }
+
+ Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
+ LOG(INFO) << "Writing " << patch_chunks.size() << " patch headers...";
+ for (size_t i = 0; i < patch_chunks.size(); ++i) {
+ offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset, i);
+ }
+
+ // Append each chunk's bsdiff patch, in order.
+ for (const auto& patch : patch_chunks) {
+ if (patch.type_ == CHUNK_RAW) {
+ continue;
+ }
+ if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
+ PLOG(ERROR) << "Failed to write " << patch.data_.size() << " bytes patch to patch_fd";
+ return false;
}
}
- // EOCD not found, this file is likely not a valid zip file.
- return false;
+ return true;
+}
+
+ImageChunk& Image::operator[](size_t i) {
+ CHECK_LT(i, chunks_.size());
+ return chunks_[i];
+}
+
+const ImageChunk& Image::operator[](size_t i) const {
+ CHECK_LT(i, chunks_.size());
+ return chunks_[i];
+}
+
+void Image::MergeAdjacentNormalChunks() {
+ size_t merged_last = 0, cur = 0;
+ while (cur < chunks_.size()) {
+ // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
+ // length of the current normal chunk.
+ size_t to_check = cur + 1;
+ while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
+ chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
+ to_check++;
+ }
+
+ if (merged_last != cur) {
+ chunks_[merged_last] = std::move(chunks_[cur]);
+ }
+ merged_last++;
+ cur = to_check;
+ }
+ if (merged_last < chunks_.size()) {
+ chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
+ }
+}
+
+void Image::DumpChunks() const {
+ std::string type = is_source_ ? "source" : "target";
+ LOG(INFO) << "Dumping chunks for " << type;
+ for (size_t i = 0; i < chunks_.size(); ++i) {
+ chunks_[i].Dump(i);
+ }
}
-static bool ReadZip(const char* filename, std::vector<ImageChunk>* chunks,
- std::vector<uint8_t>* zip_file, bool include_pseudo_chunk) {
- CHECK(chunks != nullptr && zip_file != nullptr);
+bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
+ CHECK(file_content != nullptr);
- android::base::unique_fd fd(open(filename, O_RDONLY));
+ android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
if (fd == -1) {
- printf("failed to open \"%s\" %s\n", filename, strerror(errno));
+ PLOG(ERROR) << "Failed to open " << filename;
return false;
}
struct stat st;
if (fstat(fd, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
+ PLOG(ERROR) << "Failed to stat " << filename;
return false;
}
size_t sz = static_cast<size_t>(st.st_size);
- zip_file->resize(sz);
- if (!android::base::ReadFully(fd, zip_file->data(), sz)) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
+ file_content->resize(sz);
+ if (!android::base::ReadFully(fd, file_content->data(), sz)) {
+ PLOG(ERROR) << "Failed to read " << filename;
return false;
}
fd.reset();
- // Trim the trailing zeros before we pass the file to ziparchive handler.
+ return true;
+}
+
+bool ZipModeImage::Initialize(const std::string& filename) {
+ if (!ReadFile(filename, &file_content_)) {
+ return false;
+ }
+
+ // Omit the trailing zeros before we pass the file to ziparchive handler.
size_t zipfile_size;
- if (!GetZipFileSize(*zip_file, &zipfile_size)) {
- printf("failed to parse the actual size of %s\n", filename);
+ if (!GetZipFileSize(&zipfile_size)) {
+ LOG(ERROR) << "Failed to parse the actual size of " << filename;
return false;
}
ZipArchiveHandle handle;
- int err = OpenArchiveFromMemory(zip_file->data(), zipfile_size, filename, &handle);
+ int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
+ filename.c_str(), &handle);
if (err != 0) {
- printf("failed to open zip file %s: %s\n", filename, ErrorCodeString(err));
+ LOG(ERROR) << "Failed to open zip file " << filename << ": " << ErrorCodeString(err);
CloseArchive(handle);
return false;
}
- // Create a list of deflated zip entries, sorted by offset.
- std::vector<std::pair<std::string, ZipEntry>> temp_entries;
+ if (!InitializeChunks(filename, handle)) {
+ CloseArchive(handle);
+ return false;
+ }
+
+ CloseArchive(handle);
+ return true;
+}
+
+// Iterate the zip entries and compose the image chunks accordingly.
+bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
void* cookie;
int ret = StartIteration(handle, &cookie, nullptr, nullptr);
if (ret != 0) {
- printf("failed to iterate over entries in %s: %s\n", filename, ErrorCodeString(ret));
- CloseArchive(handle);
+ LOG(ERROR) << "Failed to iterate over entries in " << filename << ": " << ErrorCodeString(ret);
return false;
}
+ // Create a list of deflated zip entries, sorted by offset.
+ std::vector<std::pair<std::string, ZipEntry>> temp_entries;
ZipString name;
ZipEntry entry;
while ((ret = Next(cookie, &entry, &name)) == 0) {
- if (entry.method == kCompressDeflated) {
- std::string entryname(name.name, name.name + name.name_length);
- temp_entries.push_back(std::make_pair(entryname, entry));
+ if (entry.method == kCompressDeflated || limit_ > 0) {
+ std::string entry_name(name.name, name.name + name.name_length);
+ temp_entries.emplace_back(entry_name, entry);
}
}
if (ret != -1) {
- printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
- CloseArchive(handle);
+ LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(ret);
return false;
}
std::sort(temp_entries.begin(), temp_entries.end(),
- [](auto& entry1, auto& entry2) {
- return entry1.second.offset < entry2.second.offset;
- });
+ [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
EndIteration(cookie);
- if (include_pseudo_chunk) {
- chunks->emplace_back(CHUNK_NORMAL, 0, zip_file, zip_file->size());
+ // For source chunks, we don't need to compose chunks for the metadata.
+ if (is_source_) {
+ for (auto& entry : temp_entries) {
+ if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
+ LOG(ERROR) << "Failed to add " << entry.first << " to source chunks";
+ return false;
+ }
+ }
+
+ // Add the end of zip file (mainly central directory) as a normal chunk.
+ size_t entries_end = 0;
+ if (!temp_entries.empty()) {
+ entries_end = static_cast<size_t>(temp_entries.back().second.offset +
+ temp_entries.back().second.compressed_length);
+ }
+ CHECK_LT(entries_end, file_content_.size());
+ chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
+ file_content_.size() - entries_end);
+
+ return true;
}
+ // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
+ // deflate entries as CHUNK_NORMAL.
size_t pos = 0;
size_t nextentry = 0;
- while (pos < zip_file->size()) {
+ while (pos < file_content_.size()) {
if (nextentry < temp_entries.size() &&
static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
- // compose the next deflate chunk.
- std::string entryname = temp_entries[nextentry].first;
- size_t uncompressed_len = temp_entries[nextentry].second.uncompressed_length;
- std::vector<uint8_t> uncompressed_data(uncompressed_len);
- if ((ret = ExtractToMemory(handle, &temp_entries[nextentry].second, uncompressed_data.data(),
- uncompressed_len)) != 0) {
- printf("failed to extract %s with size %zu: %s\n", entryname.c_str(), uncompressed_len,
- ErrorCodeString(ret));
- CloseArchive(handle);
+ // Add the next zip entry.
+ std::string entry_name = temp_entries[nextentry].first;
+ if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
+ LOG(ERROR) << "Failed to add " << entry_name << " to target chunks";
return false;
}
- size_t compressed_len = temp_entries[nextentry].second.compressed_length;
- ImageChunk curr(CHUNK_DEFLATE, pos, zip_file, compressed_len);
- curr.SetEntryName(std::move(entryname));
- curr.SetUncompressedData(std::move(uncompressed_data));
- chunks->push_back(curr);
-
- pos += compressed_len;
+ pos += temp_entries[nextentry].second.compressed_length;
++nextentry;
continue;
}
- // Use a normal chunk to take all the data up to the start of the next deflate section.
+ // Use a normal chunk to take all the data up to the start of the next entry.
size_t raw_data_len;
if (nextentry < temp_entries.size()) {
raw_data_len = temp_entries[nextentry].second.offset - pos;
} else {
- raw_data_len = zip_file->size() - pos;
+ raw_data_len = file_content_.size() - pos;
}
- chunks->emplace_back(CHUNK_NORMAL, pos, zip_file, raw_data_len);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
pos += raw_data_len;
}
- CloseArchive(handle);
return true;
}
-// Read the given file and break it up into chunks, and putting the data in to a vector.
-static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
- std::vector<uint8_t>* img) {
- CHECK(chunks != nullptr && img != nullptr);
+bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
+ ZipEntry* entry) {
+ size_t compressed_len = entry->compressed_length;
+ if (compressed_len == 0) return true;
+
+ // Split the entry into several normal chunks if it's too large.
+ if (limit_ > 0 && compressed_len > limit_) {
+ int count = 0;
+ while (compressed_len > 0) {
+ size_t length = std::min(limit_, compressed_len);
+ std::string name = entry_name + "-" + std::to_string(count);
+ chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
+ name);
+
+ count++;
+ compressed_len -= length;
+ }
+ } else if (entry->method == kCompressDeflated) {
+ size_t uncompressed_len = entry->uncompressed_length;
+ std::vector<uint8_t> uncompressed_data(uncompressed_len);
+ int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
+ if (ret != 0) {
+ LOG(ERROR) << "Failed to extract " << entry_name << " with size " << uncompressed_len << ": "
+ << ErrorCodeString(ret);
+ return false;
+ }
+ ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
+ curr.SetUncompressedData(std::move(uncompressed_data));
+ chunks_.push_back(std::move(curr));
+ } else {
+ chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
+ }
+
+ return true;
+}
- android::base::unique_fd fd(open(filename, O_RDONLY));
- if (fd == -1) {
- printf("failed to open \"%s\" %s\n", filename, strerror(errno));
+// EOCD record
+// offset 0: signature 0x06054b50, 4 bytes
+// offset 4: number of this disk, 2 bytes
+// ...
+// offset 20: comment length, 2 bytes
+// offset 22: comment, n bytes
+bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
+ if (file_content_.size() < 22) {
+ LOG(ERROR) << "File is too small to be a zip file";
return false;
}
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
+
+ // Look for End of central directory record of the zip file, and calculate the actual
+ // zip_file size.
+ for (int i = file_content_.size() - 22; i >= 0; i--) {
+ if (file_content_[i] == 0x50) {
+ if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
+ // double-check: this archive consists of a single "disk".
+ CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
+
+ uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
+ size_t file_size = i + 22 + comment_length;
+ CHECK_LE(file_size, file_content_.size());
+ *input_file_size = file_size;
+ return true;
+ }
+ }
+ }
+
+ // EOCD not found, this file is likely not a valid zip file.
+ return false;
+}
+
+ImageChunk ZipModeImage::PseudoSource() const {
+ CHECK(is_source_);
+ return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
+}
+
+const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
+ if (name.empty()) {
+ return nullptr;
+ }
+ for (auto& chunk : chunks_) {
+ if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
+ continue;
+ }
+
+ if (chunk.GetEntryName() == name) {
+ return &chunk;
+ }
+
+ // Edge case when target chunk is split due to size limit but source chunk isn't.
+ if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
+ return &chunk;
+ }
+
+ // TODO handle the .so files with incremental version number.
+ // (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
+ }
+
+ return nullptr;
+}
+
+ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
+ return const_cast<ImageChunk*>(
+ static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
+}
+
+bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
+ for (auto& tgt_chunk : *tgt_image) {
+ if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
+ continue;
+ }
+
+ ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
+ if (src_chunk == nullptr) {
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ } else if (tgt_chunk == *src_chunk) {
+ // If two deflate chunks are identical (eg, the kernel has not changed between two builds),
+ // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
+ // patch to the compressed data, rather than uncompressing and recompressing to apply the
+ // trivial patch to the uncompressed data.
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk->ChangeDeflateChunkToNormal();
+ } else if (!tgt_chunk.ReconstructDeflateChunk()) {
+ // We cannot recompress the data and get exactly the same bits as are in the input target
+ // image. Treat the chunk as a normal non-deflated chunk.
+ LOG(WARNING) << "Failed to reconstruct target deflate chunk [" << tgt_chunk.GetEntryName()
+ << "]; treating as normal";
+
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk->ChangeDeflateChunkToNormal();
+ }
+ }
+
+ // For zips, we only need merge normal chunks for the target: deflated chunks are matched via
+ // filename, and normal chunks are patched using the entire source file as the source.
+ if (tgt_image->limit_ == 0) {
+ tgt_image->MergeAdjacentNormalChunks();
+ tgt_image->DumpChunks();
+ }
+
+ return true;
+}
+
+// For each target chunk, look for the corresponding source chunk by the zip_entry name. If
+// found, add the range of this chunk in the original source file to the block aligned source
+// ranges. Construct the split src & tgt image once the size of source range reaches limit.
+bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images,
+ std::vector<SortedRangeSet>* split_src_ranges) {
+ CHECK_EQ(tgt_image.limit_, src_image.limit_);
+ size_t limit = tgt_image.limit_;
+
+ src_image.DumpChunks();
+ LOG(INFO) << "Splitting " << tgt_image.NumOfChunks() << " tgt chunks...";
+
+ SortedRangeSet used_src_ranges; // ranges used for previous split source images.
+
+ // Reserve the central directory in advance for the last split image.
+ const auto& central_directory = src_image.cend() - 1;
+ CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
+ used_src_ranges.Insert(central_directory->GetStartOffset(),
+ central_directory->DataLengthForPatch());
+
+ SortedRangeSet src_ranges;
+ std::vector<ImageChunk> split_src_chunks;
+ std::vector<ImageChunk> split_tgt_chunks;
+ for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
+ const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
+ if (src == nullptr) {
+ split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
+ tgt->GetRawDataLength());
+ continue;
+ }
+
+ size_t src_offset = src->GetStartOffset();
+ size_t src_length = src->GetRawDataLength();
+
+ CHECK(src_length > 0);
+ CHECK_LE(src_length, limit);
+
+ // Make sure this source range hasn't been used before so that the src_range pieces don't
+ // overlap with each other.
+ if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
+ split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
+ tgt->GetRawDataLength());
+ } else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
+ src_ranges.Insert(src_offset, src_length);
+
+ // Add the deflate source chunk if it hasn't been aligned.
+ if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
+ split_src_chunks.push_back(*src);
+ split_tgt_chunks.push_back(*tgt);
+ } else {
+ // TODO split smarter to avoid alignment of large deflate chunks
+ split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
+ tgt->GetRawDataLength());
+ }
+ } else {
+ bool added_image = ZipModeImage::AddSplitImageFromChunkList(
+ tgt_image, src_image, src_ranges, split_tgt_chunks, split_src_chunks, split_tgt_images,
+ split_src_images);
+
+ split_tgt_chunks.clear();
+ split_src_chunks.clear();
+ // No need to update the split_src_ranges if we don't update the split source images.
+ if (added_image) {
+ used_src_ranges.Insert(src_ranges);
+ split_src_ranges->push_back(std::move(src_ranges));
+ }
+ src_ranges.Clear();
+
+ // We don't have enough space for the current chunk; start a new split image and handle
+ // this chunk there.
+ tgt--;
+ }
+ }
+
+ // TODO Trim it in case the CD exceeds limit too much.
+ src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
+ bool added_image = ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges,
+ split_tgt_chunks, split_src_chunks,
+ split_tgt_images, split_src_images);
+ if (added_image) {
+ split_src_ranges->push_back(std::move(src_ranges));
+ }
+
+ ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
+ tgt_image.file_content_.size());
+
+ return true;
+}
+
+bool ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ const SortedRangeSet& split_src_ranges,
+ const std::vector<ImageChunk>& split_tgt_chunks,
+ const std::vector<ImageChunk>& split_src_chunks,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images) {
+ CHECK(!split_tgt_chunks.empty());
+
+ std::vector<ImageChunk> aligned_tgt_chunks;
+
+ // Align the target chunks in the beginning with BLOCK_SIZE.
+ size_t i = 0;
+ while (i < split_tgt_chunks.size()) {
+ size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
+ size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
+
+ // Current ImageChunk is long enough to align.
+ if (AlignHead(&tgt_start, &tgt_length)) {
+ aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
+ tgt_length);
+ break;
+ }
+
+ i++;
+ }
+
+ // Nothing left after alignment in the current split tgt chunks; skip adding the split_tgt_image.
+ if (i == split_tgt_chunks.size()) {
return false;
}
- size_t sz = static_cast<size_t>(st.st_size);
- img->resize(sz);
- if (!android::base::ReadFully(fd, img->data(), sz)) {
- printf("failed to read \"%s\" %s\n", filename, strerror(errno));
+ aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
+ split_tgt_chunks.end());
+ CHECK(!aligned_tgt_chunks.empty());
+
+ // Add a normal chunk to align the contents in the end.
+ size_t end_offset =
+ aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
+ if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
+ size_t tail_block_length = std::min<size_t>(tgt_image.file_content_.size() - end_offset,
+ BLOCK_SIZE - (end_offset % BLOCK_SIZE));
+ aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
+ tail_block_length);
+ }
+
+ ZipModeImage split_tgt_image(false);
+ split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {});
+ split_tgt_image.MergeAdjacentNormalChunks();
+
+ // Construct the dummy source file based on the src_ranges.
+ std::vector<uint8_t> src_content;
+ for (const auto& r : split_src_ranges) {
+ size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
+ src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE,
+ src_image.file_content_.begin() + end);
+ }
+
+ // We should not have an empty src in our design; otherwise we will encounter an error in
+ // bsdiff since src_content.data() == nullptr.
+ CHECK(!src_content.empty());
+
+ ZipModeImage split_src_image(true);
+ split_src_image.Initialize(split_src_chunks, std::move(src_content));
+
+ split_tgt_images->push_back(std::move(split_tgt_image));
+ split_src_images->push_back(std::move(split_src_image));
+
+ return true;
+}
+
+void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ std::vector<SortedRangeSet>& split_src_ranges,
+ size_t total_tgt_size) {
+ CHECK_EQ(split_tgt_images.size(), split_src_images.size());
+
+ LOG(INFO) << "Validating " << split_tgt_images.size() << " images";
+
+ // Verify that the target image pieces is continuous and can add up to the total size.
+ size_t last_offset = 0;
+ for (const auto& tgt_image : split_tgt_images) {
+ CHECK(!tgt_image.chunks_.empty());
+
+ CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
+ CHECK(last_offset % BLOCK_SIZE == 0);
+
+ // Check the target chunks within the split image are continuous.
+ for (const auto& chunk : tgt_image.chunks_) {
+ CHECK_EQ(last_offset, chunk.GetStartOffset());
+ last_offset += chunk.GetRawDataLength();
+ }
+ }
+ CHECK_EQ(total_tgt_size, last_offset);
+
+ // Verify that the source ranges are mutually exclusive.
+ CHECK_EQ(split_src_images.size(), split_src_ranges.size());
+ SortedRangeSet used_src_ranges;
+ for (size_t i = 0; i < split_src_ranges.size(); i++) {
+ CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
+ << "src range " << split_src_ranges[i].ToString() << " overlaps "
+ << used_src_ranges.ToString();
+ used_src_ranges.Insert(split_src_ranges[i]);
+ }
+}
+
+bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ std::vector<PatchChunk>* patch_chunks) {
+ LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
+ patch_chunks->clear();
+
+ bsdiff::SuffixArrayIndexInterface* bsdiff_cache = nullptr;
+ for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
+ const auto& tgt_chunk = tgt_image[i];
+
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
+ patch_chunks->emplace_back(tgt_chunk);
+ continue;
+ }
+
+ const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
+ ? nullptr
+ : src_image.FindChunkByName(tgt_chunk.GetEntryName());
+
+ const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
+ bsdiff::SuffixArrayIndexInterface** bsdiff_cache_ptr =
+ (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
+
+ std::vector<uint8_t> patch_data;
+ if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
+ LOG(ERROR) << "Failed to generate patch, name: " << tgt_chunk.GetEntryName();
+ return false;
+ }
+
+ LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
+ << tgt_chunk.GetRawDataLength() << ")";
+
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
+ patch_chunks->emplace_back(tgt_chunk);
+ } else {
+ patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
+ }
+ }
+ delete bsdiff_cache;
+
+ CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
+ return true;
+}
+
+bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
+ const std::string& patch_name) {
+ std::vector<PatchChunk> patch_chunks;
+
+ ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
+
+ CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ PLOG(ERROR) << "Failed to open " << patch_name;
return false;
}
- size_t pos = 0;
+ return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
+}
+
+bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ const std::vector<SortedRangeSet>& split_src_ranges,
+ const std::string& patch_name,
+ const std::string& split_info_file,
+ const std::string& debug_dir) {
+ LOG(INFO) << "Constructing patches for " << split_tgt_images.size() << " split images...";
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ PLOG(ERROR) << "Failed to open " << patch_name;
+ return false;
+ }
+ std::vector<std::string> split_info_list;
+ for (size_t i = 0; i < split_tgt_images.size(); i++) {
+ std::vector<PatchChunk> patch_chunks;
+ if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
+ &patch_chunks)) {
+ LOG(ERROR) << "Failed to generate split patch";
+ return false;
+ }
+
+ size_t total_patch_size = 12;
+ for (auto& p : patch_chunks) {
+ p.UpdateSourceOffset(split_src_ranges[i]);
+ total_patch_size += p.PatchSize();
+ }
+
+ if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
+ return false;
+ }
+
+ size_t split_tgt_size = split_tgt_images[i].chunks_.back().GetStartOffset() +
+ split_tgt_images[i].chunks_.back().GetRawDataLength() -
+ split_tgt_images[i].chunks_.front().GetStartOffset();
+ std::string split_info = android::base::StringPrintf(
+ "%zu %zu %s", total_patch_size, split_tgt_size, split_src_ranges[i].ToString().c_str());
+ split_info_list.push_back(split_info);
+
+ // Write the split source & patch into the debug directory.
+ if (!debug_dir.empty()) {
+ std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
+ android::base::unique_fd fd(
+ open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+
+ if (fd == -1) {
+ PLOG(ERROR) << "Failed to open " << src_name;
+ return false;
+ }
+ if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
+ split_src_images[i].PseudoSource().DataLengthForPatch())) {
+ PLOG(ERROR) << "Failed to write split source data into " << src_name;
+ return false;
+ }
+
+ std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
+ fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+
+ if (fd == -1) {
+ PLOG(ERROR) << "Failed to open " << patch_name;
+ return false;
+ }
+ if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
+ return false;
+ }
+ }
+ }
+
+ // Store the split in the following format:
+ // Line 0: imgdiff version#
+ // Line 1: number of pieces
+ // Line 2: patch_size_1 tgt_size_1 src_range_1
+ // ...
+ // Line n+1: patch_size_n tgt_size_n src_range_n
+ std::string split_info_string = android::base::StringPrintf(
+ "%zu\n%zu\n", VERSION, split_info_list.size()) + android::base::Join(split_info_list, '\n');
+ if (!android::base::WriteStringToFile(split_info_string, split_info_file)) {
+ PLOG(ERROR) << "Failed to write split info to " << split_info_file;
+ return false;
+ }
+
+ return true;
+}
+
+bool ImageModeImage::Initialize(const std::string& filename) {
+ if (!ReadFile(filename, &file_content_)) {
+ return false;
+ }
+
+ size_t sz = file_content_.size();
+ size_t pos = 0;
while (pos < sz) {
// 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
- if (sz - pos >= 4 && get_unaligned<uint32_t>(img->data() + pos) == 0x00088b1f) {
+ if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
// 'pos' is the offset of the start of a gzip chunk.
size_t chunk_offset = pos;
// The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
- chunks->emplace_back(CHUNK_NORMAL, pos, img, sz - pos);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
break;
}
// We need three chunks for the deflated image in total, one normal chunk for the header,
// one deflated chunk for the body, and another normal chunk for the footer.
- chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_HEADER_LEN);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
pos += GZIP_HEADER_LEN;
// We must decompress this chunk in order to discover where it ends, and so we can update
@@ -657,13 +1275,13 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = sz - pos;
- strm.next_in = img->data() + pos;
+ strm.next_in = file_content_.data() + pos;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
if (ret < 0) {
- printf("failed to initialize inflate: %d\n", ret);
+ LOG(ERROR) << "Failed to initialize inflate: " << ret;
return false;
}
@@ -675,8 +1293,8 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
strm.next_out = uncompressed_data.data() + uncompressed_len;
ret = inflate(&strm, Z_NO_FLUSH);
if (ret < 0) {
- printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n",
- strm.msg, chunk_offset);
+ LOG(WARNING) << "Inflate failed [" << strm.msg << "] at offset [" << chunk_offset
+ << "]; treating as a normal chunk";
break;
}
uncompressed_len = allocated - strm.avail_out;
@@ -697,25 +1315,25 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
// matches the size of the data we got when we actually did the decompression.
size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4;
if (sz - footer_index < 4) {
- printf("Warning: invalid footer position; treating as a nomal chunk\n");
+ LOG(WARNING) << "invalid footer position; treating as a normal chunk";
continue;
}
- size_t footer_size = get_unaligned<uint32_t>(img->data() + footer_index);
+ size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
if (footer_size != uncompressed_len) {
- printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n",
- footer_size, uncompressed_len);
+ LOG(WARNING) << "footer size " << footer_size << " != " << uncompressed_len
+ << "; treating as a normal chunk";
continue;
}
- ImageChunk body(CHUNK_DEFLATE, pos, img, raw_data_len);
+ ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
uncompressed_data.resize(uncompressed_len);
body.SetUncompressedData(std::move(uncompressed_data));
- chunks->push_back(body);
+ chunks_.push_back(std::move(body));
pos += raw_data_len;
// create a normal chunk for the footer
- chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_FOOTER_LEN);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
pos += GZIP_FOOTER_LEN;
} else {
@@ -726,12 +1344,12 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
size_t data_len = 0;
while (data_len + pos < sz) {
if (data_len + pos + 4 <= sz &&
- get_unaligned<uint32_t>(img->data() + pos + data_len) == 0x00088b1f) {
+ get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
break;
}
data_len++;
}
- chunks->emplace_back(CHUNK_NORMAL, pos, img, data_len);
+ chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
pos += data_len;
}
@@ -740,346 +1358,256 @@ static bool ReadImage(const char* filename, std::vector<ImageChunk>* chunks,
return true;
}
-/*
- * Given source and target chunks, compute a bsdiff patch between them.
- * Store the result in the patch_data.
- * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk
- * is used repeatedly, pass nullptr if not needed.
- */
-static bool MakePatch(const ImageChunk* src, ImageChunk* tgt, std::vector<uint8_t>* patch_data,
- saidx_t** bsdiff_cache) {
- if (tgt->ChangeChunkToRaw(0)) {
- size_t patch_size = tgt->DataLengthForPatch();
- patch_data->resize(patch_size);
- std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
- return true;
- }
-
-#if defined(__ANDROID__)
- char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
-#else
- char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
-#endif
-
- int fd = mkstemp(ptemp);
- if (fd == -1) {
- printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
+bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
+ CHECK(is_source_);
+ if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
+ LOG(ERROR) << "Failed to set bonus data";
+ DumpChunks();
return false;
}
- close(fd);
- int r = bsdiff::bsdiff(src->DataForPatch(), src->DataLengthForPatch(), tgt->DataForPatch(),
- tgt->DataLengthForPatch(), ptemp, bsdiff_cache);
- if (r != 0) {
- printf("bsdiff() failed: %d\n", r);
- return false;
- }
+ LOG(INFO) << " using " << bonus_data.size() << " bytes of bonus data";
+ return true;
+}
- android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
- if (patch_fd == -1) {
- printf("failed to open %s: %s\n", ptemp, strerror(errno));
+// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
+// same sequence of deflate and normal chunks).
+bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
+ // In image mode, merge the gzip header and footer in with any adjacent normal chunks.
+ tgt_image->MergeAdjacentNormalChunks();
+ src_image->MergeAdjacentNormalChunks();
+
+ if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
+ LOG(ERROR) << "Source and target don't have same number of chunks!";
+ tgt_image->DumpChunks();
+ src_image->DumpChunks();
return false;
}
- struct stat st;
- if (fstat(patch_fd, &st) != 0) {
- printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
- return false;
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
+ if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
+ LOG(ERROR) << "Source and target don't have same chunk structure! (chunk " << i << ")";
+ tgt_image->DumpChunks();
+ src_image->DumpChunks();
+ return false;
+ }
}
- size_t sz = static_cast<size_t>(st.st_size);
- // Change the chunk type to raw if the patch takes less space that way.
- if (tgt->ChangeChunkToRaw(sz)) {
- unlink(ptemp);
- size_t patch_size = tgt->DataLengthForPatch();
- patch_data->resize(patch_size);
- std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin());
- return true;
+ for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
+ auto& tgt_chunk = (*tgt_image)[i];
+ auto& src_chunk = (*src_image)[i];
+ if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
+ continue;
+ }
+
+ // If two deflate chunks are identical treat them as normal chunks.
+ if (tgt_chunk == src_chunk) {
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk.ChangeDeflateChunkToNormal();
+ } else if (!tgt_chunk.ReconstructDeflateChunk()) {
+ // We cannot recompress the data and get exactly the same bits as are in the input target
+ // image, fall back to normal
+ LOG(WARNING) << "Failed to reconstruct target deflate chunk " << i << " ["
+ << tgt_chunk.GetEntryName() << "]; treating as normal";
+ tgt_chunk.ChangeDeflateChunkToNormal();
+ src_chunk.ChangeDeflateChunkToNormal();
+ }
}
- patch_data->resize(sz);
- if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
- printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
+
+ // For images, we need to maintain the parallel structure of the chunk lists, so do the merging
+ // in both the source and target lists.
+ tgt_image->MergeAdjacentNormalChunks();
+ src_image->MergeAdjacentNormalChunks();
+ if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
+ // This shouldn't happen.
+ LOG(ERROR) << "Merging normal chunks went awry";
return false;
}
- unlink(ptemp);
- tgt->SetSourceInfo(*src);
-
return true;
}
-/*
- * Look for runs of adjacent normal chunks and compress them down into
- * a single chunk. (Such runs can be produced when deflate chunks are
- * changed to normal chunks.)
- */
-static void MergeAdjacentNormalChunks(std::vector<ImageChunk>* chunks) {
- size_t merged_last = 0, cur = 0;
- while (cur < chunks->size()) {
- // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
- // length of the current normal chunk.
- size_t to_check = cur + 1;
- while (to_check < chunks->size() && chunks->at(cur).IsAdjacentNormal(chunks->at(to_check))) {
- chunks->at(cur).MergeAdjacentNormal(chunks->at(to_check));
- to_check++;
+// In image mode, generate patches against the given source chunks and bonus_data; write the
+// result to |patch_name|.
+bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
+ const ImageModeImage& src_image,
+ const std::string& patch_name) {
+ LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
+ std::vector<PatchChunk> patch_chunks;
+ patch_chunks.reserve(tgt_image.NumOfChunks());
+
+ for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
+ const auto& tgt_chunk = tgt_image[i];
+ const auto& src_chunk = src_image[i];
+
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
+ patch_chunks.emplace_back(tgt_chunk);
+ continue;
}
- if (merged_last != cur) {
- chunks->at(merged_last) = std::move(chunks->at(cur));
+ std::vector<uint8_t> patch_data;
+ if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
+ LOG(ERROR) << "Failed to generate patch for target chunk " << i;
+ return false;
}
- merged_last++;
- cur = to_check;
- }
- if (merged_last < chunks->size()) {
- chunks->erase(chunks->begin() + merged_last, chunks->end());
- }
-}
+ LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
+ << tgt_chunk.GetRawDataLength() << ")";
-static ImageChunk* FindChunkByName(const std::string& name, std::vector<ImageChunk>& chunks) {
- for (size_t i = 0; i < chunks.size(); ++i) {
- if (chunks[i].GetType() == CHUNK_DEFLATE && chunks[i].GetEntryName() == name) {
- return &chunks[i];
+ if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
+ patch_chunks.emplace_back(tgt_chunk);
+ } else {
+ patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
}
}
- return nullptr;
-}
-static void DumpChunks(const std::vector<ImageChunk>& chunks) {
- for (size_t i = 0; i < chunks.size(); ++i) {
- printf("chunk %zu: ", i);
- chunks[i].Dump();
+ CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
+
+ android::base::unique_fd patch_fd(
+ open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
+ if (patch_fd == -1) {
+ PLOG(ERROR) << "Failed to open " << patch_name;
+ return false;
}
+
+ return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
int imgdiff(int argc, const char** argv) {
+ bool verbose = false;
bool zip_mode = false;
-
- if (argc >= 2 && strcmp(argv[1], "-z") == 0) {
- zip_mode = true;
- --argc;
- ++argv;
- }
-
std::vector<uint8_t> bonus_data;
- if (argc >= 3 && strcmp(argv[1], "-b") == 0) {
- android::base::unique_fd fd(open(argv[2], O_RDONLY));
- if (fd == -1) {
- printf("failed to open bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
- struct stat st;
- if (fstat(fd, &st) != 0) {
- printf("failed to stat bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
- }
+ size_t blocks_limit = 0;
+ std::string split_info_file;
+ std::string debug_dir;
+
+ int opt;
+ int option_index;
+ optind = 0; // Reset the getopt state so that we can call it multiple times for test.
+
+ while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:v", OPTIONS, &option_index)) !=
+ -1) {
+ switch (opt) {
+ case 'z':
+ zip_mode = true;
+ break;
+ case 'b': {
+ android::base::unique_fd fd(open(optarg, O_RDONLY));
+ if (fd == -1) {
+ PLOG(ERROR) << "Failed to open bonus file " << optarg;
+ return 1;
+ }
+ struct stat st;
+ if (fstat(fd, &st) != 0) {
+ PLOG(ERROR) << "Failed to stat bonus file " << optarg;
+ return 1;
+ }
- size_t bonus_size = st.st_size;
- bonus_data.resize(bonus_size);
- if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
- printf("failed to read bonus file %s: %s\n", argv[2], strerror(errno));
- return 1;
+ size_t bonus_size = st.st_size;
+ bonus_data.resize(bonus_size);
+ if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
+ PLOG(ERROR) << "Failed to read bonus file " << optarg;
+ return 1;
+ }
+ break;
+ }
+ case 'v':
+ verbose = true;
+ break;
+ case 0: {
+ std::string name = OPTIONS[option_index].name;
+ if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
+ LOG(ERROR) << "Failed to parse size blocks_limit: " << optarg;
+ return 1;
+ } else if (name == "split-info") {
+ split_info_file = optarg;
+ } else if (name == "debug-dir") {
+ debug_dir = optarg;
+ }
+ break;
+ }
+ default:
+ LOG(ERROR) << "unexpected opt: " << static_cast<char>(opt);
+ return 2;
}
+ }
- argc -= 2;
- argv += 2;
+ if (!verbose) {
+ android::base::SetMinimumLogSeverity(android::base::WARNING);
}
- if (argc != 4) {
- printf("usage: %s [-z] [-b <bonus-file>] <src-img> <tgt-img> <patch-file>\n",
- argv[0]);
+ if (argc - optind != 3) {
+ LOG(ERROR) << "usage: " << argv[0] << " [options] <src-img> <tgt-img> <patch-file>";
+ LOG(ERROR)
+ << " -z <zip-mode>, Generate patches in zip mode, src and tgt should be zip files.\n"
+ " -b <bonus-file>, Bonus file in addition to src, image mode only.\n"
+ " --block-limit, For large zips, split the src and tgt based on the block limit;\n"
+ " and generate patches between each pair of pieces. Concatenate "
+ "these\n"
+ " patches together and output them into <patch-file>.\n"
+ " --split-info, Output the split information (patch_size, tgt_size, src_ranges);\n"
+ " zip mode with block-limit only.\n"
+ " --debug-dir, Debug directory to put the split srcs and patches, zip mode only.\n"
+ " -v, --verbose, Enable verbose logging.";
return 2;
}
- std::vector<ImageChunk> src_chunks;
- std::vector<ImageChunk> tgt_chunks;
- std::vector<uint8_t> src_file;
- std::vector<uint8_t> tgt_file;
-
if (zip_mode) {
- if (!ReadZip(argv[1], &src_chunks, &src_file, true)) {
- printf("failed to break apart source zip file\n");
- return 1;
- }
- if (!ReadZip(argv[2], &tgt_chunks, &tgt_file, false)) {
- printf("failed to break apart target zip file\n");
- return 1;
- }
- } else {
- if (!ReadImage(argv[1], &src_chunks, &src_file)) {
- printf("failed to break apart source image\n");
+ ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
+ ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
+
+ if (!src_image.Initialize(argv[optind])) {
return 1;
}
- if (!ReadImage(argv[2], &tgt_chunks, &tgt_file)) {
- printf("failed to break apart target image\n");
+ if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
- // Verify that the source and target images have the same chunk
- // structure (ie, the same sequence of deflate and normal chunks).
-
- // Merge the gzip header and footer in with any adjacent normal chunks.
- MergeAdjacentNormalChunks(&tgt_chunks);
- MergeAdjacentNormalChunks(&src_chunks);
-
- if (src_chunks.size() != tgt_chunks.size()) {
- printf("source and target don't have same number of chunks!\n");
- printf("source chunks:\n");
- DumpChunks(src_chunks);
- printf("target chunks:\n");
- DumpChunks(tgt_chunks);
+ if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
- for (size_t i = 0; i < src_chunks.size(); ++i) {
- if (src_chunks[i].GetType() != tgt_chunks[i].GetType()) {
- printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
- printf("source chunks:\n");
- DumpChunks(src_chunks);
- printf("target chunks:\n");
- DumpChunks(tgt_chunks);
+
+ // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
+ // deflate chunks).
+ if (blocks_limit > 0) {
+ if (split_info_file.empty()) {
+ LOG(ERROR) << "split-info path cannot be empty when generating patches with a block-limit";
return 1;
}
- }
- }
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (tgt_chunks[i].GetType() == CHUNK_DEFLATE) {
- // Confirm that given the uncompressed chunk data in the target, we
- // can recompress it and get exactly the same bits as are in the
- // input target image. If this fails, treat the chunk as a normal
- // non-deflated chunk.
- if (!tgt_chunks[i].ReconstructDeflateChunk()) {
- printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
- tgt_chunks[i].GetEntryName().c_str());
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- if (zip_mode) {
- ImageChunk* src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
- if (src != nullptr) {
- src->ChangeDeflateChunkToNormal();
- }
- } else {
- src_chunks[i].ChangeDeflateChunkToNormal();
- }
- continue;
- }
+ std::vector<ZipModeImage> split_tgt_images;
+ std::vector<ZipModeImage> split_src_images;
+ std::vector<SortedRangeSet> split_src_ranges;
+ ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
+ &split_src_images, &split_src_ranges);
- // If two deflate chunks are identical (eg, the kernel has not
- // changed between two builds), treat them as normal chunks.
- // This makes applypatch much faster -- it can apply a trivial
- // patch to the compressed data, rather than uncompressing and
- // recompressing to apply the trivial patch to the uncompressed
- // data.
- ImageChunk* src;
- if (zip_mode) {
- src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks);
- } else {
- src = &src_chunks[i];
+ if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
+ argv[optind + 2], split_info_file, debug_dir)) {
+ return 1;
}
- if (src == nullptr) {
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- } else if (tgt_chunks[i] == *src) {
- tgt_chunks[i].ChangeDeflateChunkToNormal();
- src->ChangeDeflateChunkToNormal();
- }
+ } else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
+ return 1;
}
- }
-
- // Merging neighboring normal chunks.
- if (zip_mode) {
- // For zips, we only need to do this to the target: deflated
- // chunks are matched via filename, and normal chunks are patched
- // using the entire source file as the source.
- MergeAdjacentNormalChunks(&tgt_chunks);
-
} else {
- // For images, we need to maintain the parallel structure of the
- // chunk lists, so do the merging in both the source and target
- // lists.
- MergeAdjacentNormalChunks(&tgt_chunks);
- MergeAdjacentNormalChunks(&src_chunks);
- if (src_chunks.size() != tgt_chunks.size()) {
- // This shouldn't happen.
- printf("merging normal chunks went awry\n");
+ ImageModeImage src_image(true);
+ ImageModeImage tgt_image(false);
+
+ if (!src_image.Initialize(argv[optind])) {
return 1;
}
- }
-
- // Compute bsdiff patches for each chunk's data (the uncompressed
- // data, in the case of deflate chunks).
-
- DumpChunks(src_chunks);
-
- printf("Construct patches for %zu chunks...\n", tgt_chunks.size());
- std::vector<std::vector<uint8_t>> patch_data(tgt_chunks.size());
- saidx_t* bsdiff_cache = nullptr;
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (zip_mode) {
- ImageChunk* src;
- if (tgt_chunks[i].GetType() == CHUNK_DEFLATE &&
- (src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks))) {
- if (!MakePatch(src, &tgt_chunks[i], &patch_data[i], nullptr)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- } else {
- if (!MakePatch(&src_chunks[0], &tgt_chunks[i], &patch_data[i], &bsdiff_cache)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
- }
- } else {
- if (i == 1 && !bonus_data.empty()) {
- printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i);
- src_chunks[i].SetBonusData(bonus_data);
- }
-
- if (!MakePatch(&src_chunks[i], &tgt_chunks[i], &patch_data[i], nullptr)) {
- printf("Failed to generate patch for target chunk %zu: ", i);
- return 1;
- }
+ if (!tgt_image.Initialize(argv[optind + 1])) {
+ return 1;
}
- printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(),
- src_chunks[i].GetRawDataLength());
- }
-
- if (bsdiff_cache != nullptr) {
- free(bsdiff_cache);
- }
-
- // Figure out how big the imgdiff file header is going to be, so
- // that we can correctly compute the offset of each bsdiff patch
- // within the file.
- size_t total_header_size = 12;
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- total_header_size += tgt_chunks[i].GetHeaderSize(patch_data[i].size());
- }
-
- size_t offset = total_header_size;
-
- android::base::unique_fd patch_fd(open(argv[3], O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
- if (patch_fd == -1) {
- printf("failed to open \"%s\": %s\n", argv[3], strerror(errno));
- return 1;
- }
+ if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
+ return 1;
+ }
- // Write out the headers.
- if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
- printf("failed to write \"IMGDIFF2\" to \"%s\": %s\n", argv[3], strerror(errno));
- return 1;
- }
- Write4(patch_fd, static_cast<int32_t>(tgt_chunks.size()));
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- printf("chunk %zu: ", i);
- offset = tgt_chunks[i].WriteHeaderToFd(patch_fd, patch_data[i], offset);
- }
+ if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
+ return 1;
+ }
- // Append each chunk's bsdiff patch, in order.
- for (size_t i = 0; i < tgt_chunks.size(); ++i) {
- if (tgt_chunks[i].GetType() != CHUNK_RAW) {
- if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) {
- CHECK(false) << "failed to write " << patch_data[i].size() << " bytes patch for chunk "
- << i;
- }
+ if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
+ return 1;
}
}
diff --git a/applypatch/imgpatch.cpp b/applypatch/imgpatch.cpp
index df75f98d4..3682d6115 100644
--- a/applypatch/imgpatch.cpp
+++ b/applypatch/imgpatch.cpp
@@ -37,6 +37,8 @@
#include <openssl/sha.h>
#include <zlib.h>
+#include "edify/expr.h"
+
static inline int64_t Read8(const void *address) {
return android::base::get_unaligned<int64_t>(address);
}
@@ -48,7 +50,7 @@ static inline int32_t Read4(const void *address) {
// This function is a wrapper of ApplyBSDiffPatch(). It has a custom sink function to deflate the
// patched data and stream the deflated data to output.
static bool ApplyBSDiffPatchAndStreamOutput(const uint8_t* src_data, size_t src_len,
- const Value* patch, size_t patch_offset,
+ const Value& patch, size_t patch_offset,
const char* deflate_header, SinkFn sink, SHA_CTX* ctx) {
size_t expected_target_length = static_cast<size_t>(Read8(deflate_header + 32));
int level = Read4(deflate_header + 40);
@@ -57,13 +59,13 @@ static bool ApplyBSDiffPatchAndStreamOutput(const uint8_t* src_data, size_t src_
int mem_level = Read4(deflate_header + 52);
int strategy = Read4(deflate_header + 56);
- std::unique_ptr<z_stream, decltype(&deflateEnd)> strm(new z_stream(), deflateEnd);
- strm->zalloc = Z_NULL;
- strm->zfree = Z_NULL;
- strm->opaque = Z_NULL;
- strm->avail_in = 0;
- strm->next_in = nullptr;
- int ret = deflateInit2(strm.get(), level, method, window_bits, mem_level, strategy);
+ z_stream strm;
+ strm.zalloc = Z_NULL;
+ strm.zfree = Z_NULL;
+ strm.opaque = Z_NULL;
+ strm.avail_in = 0;
+ strm.next_in = nullptr;
+ int ret = deflateInit2(&strm, level, method, window_bits, mem_level, strategy);
if (ret != Z_OK) {
LOG(ERROR) << "Failed to init uncompressed data deflation: " << ret;
return false;
@@ -74,18 +76,19 @@ static bool ApplyBSDiffPatchAndStreamOutput(const uint8_t* src_data, size_t src_
size_t actual_target_length = 0;
size_t total_written = 0;
static constexpr size_t buffer_size = 32768;
- auto compression_sink = [&](const uint8_t* data, size_t len) -> size_t {
+ auto compression_sink = [&strm, &actual_target_length, &expected_target_length, &total_written,
+ &ret, &ctx, &sink](const uint8_t* data, size_t len) -> size_t {
// The input patch length for an update never exceeds INT_MAX.
- strm->avail_in = len;
- strm->next_in = data;
+ strm.avail_in = len;
+ strm.next_in = data;
do {
std::vector<uint8_t> buffer(buffer_size);
- strm->avail_out = buffer_size;
- strm->next_out = buffer.data();
+ strm.avail_out = buffer_size;
+ strm.next_out = buffer.data();
if (actual_target_length + len < expected_target_length) {
- ret = deflate(strm.get(), Z_NO_FLUSH);
+ ret = deflate(&strm, Z_NO_FLUSH);
} else {
- ret = deflate(strm.get(), Z_FINISH);
+ ret = deflate(&strm, Z_FINISH);
}
if (ret != Z_OK && ret != Z_STREAM_END) {
LOG(ERROR) << "Failed to deflate stream: " << ret;
@@ -93,20 +96,24 @@ static bool ApplyBSDiffPatchAndStreamOutput(const uint8_t* src_data, size_t src_
return 0;
}
- size_t have = buffer_size - strm->avail_out;
+ size_t have = buffer_size - strm.avail_out;
total_written += have;
if (sink(buffer.data(), have) != have) {
LOG(ERROR) << "Failed to write " << have << " compressed bytes to output.";
return 0;
}
if (ctx) SHA1_Update(ctx, buffer.data(), have);
- } while ((strm->avail_in != 0 || strm->avail_out == 0) && ret != Z_STREAM_END);
+ } while ((strm.avail_in != 0 || strm.avail_out == 0) && ret != Z_STREAM_END);
actual_target_length += len;
return len;
};
- if (ApplyBSDiffPatch(src_data, src_len, patch, patch_offset, compression_sink, nullptr) != 0) {
+ int bspatch_result =
+ ApplyBSDiffPatch(src_data, src_len, patch, patch_offset, compression_sink, nullptr);
+ deflateEnd(&strm);
+
+ if (bspatch_result != 0) {
return false;
}
@@ -128,48 +135,39 @@ static bool ApplyBSDiffPatchAndStreamOutput(const uint8_t* src_data, size_t src_
int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const unsigned char* patch_data,
size_t patch_size, SinkFn sink) {
Value patch(VAL_BLOB, std::string(reinterpret_cast<const char*>(patch_data), patch_size));
-
- return ApplyImagePatch(old_data, old_size, &patch, sink, nullptr, nullptr);
+ return ApplyImagePatch(old_data, old_size, patch, sink, nullptr, nullptr);
}
-/*
- * Apply the patch given in 'patch_filename' to the source data given
- * by (old_data, old_size). Write the patched output to the 'output'
- * file, and update the SHA context with the output data as well.
- * Return 0 on success.
- */
-int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const Value* patch, SinkFn sink,
+int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const Value& patch, SinkFn sink,
SHA_CTX* ctx, const Value* bonus_data) {
- if (patch->data.size() < 12) {
+ if (patch.data.size() < 12) {
printf("patch too short to contain header\n");
return -1;
}
- // IMGDIFF2 uses CHUNK_NORMAL, CHUNK_DEFLATE, and CHUNK_RAW.
- // (IMGDIFF1, which is no longer supported, used CHUNK_NORMAL and
- // CHUNK_GZIP.)
- size_t pos = 12;
- const char* header = &patch->data[0];
- if (memcmp(header, "IMGDIFF2", 8) != 0) {
+ // IMGDIFF2 uses CHUNK_NORMAL, CHUNK_DEFLATE, and CHUNK_RAW. (IMGDIFF1, which is no longer
+ // supported, used CHUNK_NORMAL and CHUNK_GZIP.)
+ const char* const patch_header = patch.data.data();
+ if (memcmp(patch_header, "IMGDIFF2", 8) != 0) {
printf("corrupt patch file header (magic number)\n");
return -1;
}
- int num_chunks = Read4(header + 8);
-
+ int num_chunks = Read4(patch_header + 8);
+ size_t pos = 12;
for (int i = 0; i < num_chunks; ++i) {
// each chunk's header record starts with 4 bytes.
- if (pos + 4 > patch->data.size()) {
+ if (pos + 4 > patch.data.size()) {
printf("failed to read chunk %d record\n", i);
return -1;
}
- int type = Read4(&patch->data[pos]);
+ int type = Read4(patch_header + pos);
pos += 4;
if (type == CHUNK_NORMAL) {
- const char* normal_header = &patch->data[pos];
+ const char* normal_header = patch_header + pos;
pos += 24;
- if (pos > patch->data.size()) {
+ if (pos > patch.data.size()) {
printf("failed to read chunk %d normal header data\n", i);
return -1;
}
@@ -187,30 +185,32 @@ int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const Value*
return -1;
}
} else if (type == CHUNK_RAW) {
- const char* raw_header = &patch->data[pos];
+ const char* raw_header = patch_header + pos;
pos += 4;
- if (pos > patch->data.size()) {
+ if (pos > patch.data.size()) {
printf("failed to read chunk %d raw header data\n", i);
return -1;
}
size_t data_len = static_cast<size_t>(Read4(raw_header));
- if (pos + data_len > patch->data.size()) {
+ if (pos + data_len > patch.data.size()) {
printf("failed to read chunk %d raw data\n", i);
return -1;
}
- if (ctx) SHA1_Update(ctx, &patch->data[pos], data_len);
- if (sink(reinterpret_cast<const unsigned char*>(&patch->data[pos]), data_len) != data_len) {
+ if (ctx) {
+ SHA1_Update(ctx, patch_header + pos, data_len);
+ }
+ if (sink(reinterpret_cast<const unsigned char*>(patch_header + pos), data_len) != data_len) {
printf("failed to write chunk %d raw data\n", i);
return -1;
}
pos += data_len;
} else if (type == CHUNK_DEFLATE) {
// deflate chunks have an additional 60 bytes in their chunk header.
- const char* deflate_header = &patch->data[pos];
+ const char* deflate_header = patch_header + pos;
pos += 60;
- if (pos > patch->data.size()) {
+ if (pos > patch.data.size()) {
printf("failed to read chunk %d deflate header data\n", i);
return -1;
}
diff --git a/applypatch/include/applypatch/applypatch.h b/applypatch/include/applypatch/applypatch.h
index 581360ef1..912ead1fa 100644
--- a/applypatch/include/applypatch/applypatch.h
+++ b/applypatch/include/applypatch/applypatch.h
@@ -18,7 +18,6 @@
#define _APPLYPATCH_H
#include <stdint.h>
-#include <sys/stat.h>
#include <functional>
#include <memory>
@@ -27,24 +26,18 @@
#include <openssl/sha.h>
-#include "edify/expr.h"
+// Forward declaration to avoid including "edify/expr.h" in the header.
+struct Value;
struct FileContents {
uint8_t sha1[SHA_DIGEST_LENGTH];
std::vector<unsigned char> data;
- struct stat st;
};
-// When there isn't enough room on the target filesystem to hold the
-// patched version of the file, we copy the original here and delete
-// it to free up space. If the expected source file doesn't exist, or
-// is corrupted, we look to see if this file contains the bits we want
-// and use it as the source instead.
-#define CACHE_TEMP_SOURCE "/cache/saved.file"
-
using SinkFn = std::function<size_t(const unsigned char*, size_t)>;
// applypatch.cpp
+
int ShowLicenses();
size_t FreeSpaceForFile(const char* filename);
int CacheSizeCheck(size_t bytes);
@@ -66,15 +59,25 @@ int LoadFileContents(const char* filename, FileContents* file);
int SaveFileContents(const char* filename, const FileContents* file);
// bspatch.cpp
+
void ShowBSDiffLicense();
-int ApplyBSDiffPatch(const unsigned char* old_data, size_t old_size, const Value* patch,
+
+// Applies the bsdiff-patch given in 'patch' (from offset 'patch_offset' to the end) to the source
+// data given by (old_data, old_size). Writes the patched output through the given 'sink', and
+// updates the SHA-1 context with the output data. Returns 0 on success.
+int ApplyBSDiffPatch(const unsigned char* old_data, size_t old_size, const Value& patch,
size_t patch_offset, SinkFn sink, SHA_CTX* ctx);
// imgpatch.cpp
-int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const Value* patch, SinkFn sink,
+
+// Applies the imgdiff-patch given in 'patch' to the source data given by (old_data, old_size), with
+// the optional bonus data. Writes the patched output through the given 'sink', and updates the
+// SHA-1 context with the output data. Returns 0 on success.
+int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const Value& patch, SinkFn sink,
SHA_CTX* ctx, const Value* bonus_data);
// freecache.cpp
+
int MakeFreeSpaceOnCache(size_t bytes_needed);
#endif
diff --git a/applypatch/include/applypatch/imgdiff_image.h b/applypatch/include/applypatch/imgdiff_image.h
new file mode 100644
index 000000000..084807237
--- /dev/null
+++ b/applypatch/include/applypatch/imgdiff_image.h
@@ -0,0 +1,306 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _APPLYPATCH_IMGDIFF_IMAGE_H
+#define _APPLYPATCH_IMGDIFF_IMAGE_H
+
+#include <stddef.h>
+#include <stdio.h>
+#include <sys/types.h>
+
+#include <string>
+#include <vector>
+
+#include <bsdiff/bsdiff.h>
+#include <ziparchive/zip_archive.h>
+#include <zlib.h>
+
+#include "imgdiff.h"
+#include "otautil/rangeset.h"
+
+class ImageChunk {
+ public:
+ static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream.
+ static constexpr auto MEMLEVEL = 8; // the default value.
+ static constexpr auto METHOD = Z_DEFLATED;
+ static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY;
+
+ ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content, size_t raw_data_len,
+ std::string entry_name = {});
+
+ int GetType() const {
+ return type_;
+ }
+ size_t GetRawDataLength() const {
+ return raw_data_len_;
+ }
+ const std::string& GetEntryName() const {
+ return entry_name_;
+ }
+ size_t GetStartOffset() const {
+ return start_;
+ }
+ int GetCompressLevel() const {
+ return compress_level_;
+ }
+
+ // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return
+ // the raw data.
+ const uint8_t* DataForPatch() const;
+ size_t DataLengthForPatch() const;
+
+ void Dump(size_t index) const;
+
+ void SetUncompressedData(std::vector<uint8_t> data);
+ bool SetBonusData(const std::vector<uint8_t>& bonus_data);
+
+ bool operator==(const ImageChunk& other) const;
+ bool operator!=(const ImageChunk& other) const {
+ return !(*this == other);
+ }
+
+ /*
+ * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob of uninterpreted data).
+ * The resulting patch will likely be about as big as the target file, but it lets us handle
+ * the case of images where some gzip chunks are reconstructible but others aren't (by treating
+ * the ones that aren't as normal chunks).
+ */
+ void ChangeDeflateChunkToNormal();
+
+ /*
+ * Verify that we can reproduce exactly the same compressed data that we started with. Sets the
+ * level, method, windowBits, memLevel, and strategy fields in the chunk to the encoding
+ * parameters needed to produce the right output.
+ */
+ bool ReconstructDeflateChunk();
+ bool IsAdjacentNormal(const ImageChunk& other) const;
+ void MergeAdjacentNormal(const ImageChunk& other);
+
+ /*
+ * Compute a bsdiff patch between |src| and |tgt|; Store the result in the patch_data.
+ * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used
+ * repeatedly, pass nullptr if not needed.
+ */
+ static bool MakePatch(const ImageChunk& tgt, const ImageChunk& src,
+ std::vector<uint8_t>* patch_data,
+ bsdiff::SuffixArrayIndexInterface** bsdiff_cache);
+
+ private:
+ const uint8_t* GetRawData() const;
+ bool TryReconstruction(int level);
+
+ int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW
+ size_t start_; // offset of chunk in the original input file
+ const std::vector<uint8_t>* input_file_ptr_; // ptr to the full content of original input file
+ size_t raw_data_len_;
+
+ // deflate encoder parameters
+ int compress_level_;
+
+ // --- for CHUNK_DEFLATE chunks only: ---
+ std::vector<uint8_t> uncompressed_data_;
+ std::string entry_name_; // used for zip entries
+};
+
+// PatchChunk stores the patch data between a source chunk and a target chunk. It also keeps track
+// of the metadata of src&tgt chunks (e.g. offset, raw data length, uncompressed data length).
+class PatchChunk {
+ public:
+ PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data);
+
+ // Construct a CHUNK_RAW patch from the target data directly.
+ explicit PatchChunk(const ImageChunk& tgt);
+
+ // Return true if raw data size is smaller than the patch size.
+ static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size);
+
+ // Update the source start with the new offset within the source range.
+ void UpdateSourceOffset(const SortedRangeSet& src_range);
+
+ // Return the total size (header + data) of the patch.
+ size_t PatchSize() const;
+
+ static bool WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd);
+
+ private:
+ size_t GetHeaderSize() const;
+ size_t WriteHeaderToFd(int fd, size_t offset, size_t index) const;
+
+ // The patch chunk type is the same as the target chunk type. The only exception is we change
+ // the |type_| to CHUNK_RAW if target length is smaller than the patch size.
+ int type_;
+
+ size_t source_start_;
+ size_t source_len_;
+ size_t source_uncompressed_len_;
+
+ size_t target_start_; // offset of the target chunk within the target file
+ size_t target_len_;
+ size_t target_uncompressed_len_;
+ size_t target_compress_level_; // the deflate compression level of the target chunk.
+
+ std::vector<uint8_t> data_; // storage for the patch data
+};
+
+// Interface for zip_mode and image_mode images. We initialize the image from an input file and
+// split the file content into a list of image chunks.
+class Image {
+ public:
+ explicit Image(bool is_source) : is_source_(is_source) {}
+
+ virtual ~Image() {}
+
+ // Create a list of image chunks from input file.
+ virtual bool Initialize(const std::string& filename) = 0;
+
+ // Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such
+ // runs can be produced when deflate chunks are changed to normal chunks.)
+ void MergeAdjacentNormalChunks();
+
+ void DumpChunks() const;
+
+ // Non const iterators to access the stored ImageChunks.
+ std::vector<ImageChunk>::iterator begin() {
+ return chunks_.begin();
+ }
+
+ std::vector<ImageChunk>::iterator end() {
+ return chunks_.end();
+ }
+
+ std::vector<ImageChunk>::const_iterator cbegin() const {
+ return chunks_.cbegin();
+ }
+
+ std::vector<ImageChunk>::const_iterator cend() const {
+ return chunks_.cend();
+ }
+
+ ImageChunk& operator[](size_t i);
+ const ImageChunk& operator[](size_t i) const;
+
+ size_t NumOfChunks() const {
+ return chunks_.size();
+ }
+
+ protected:
+ bool ReadFile(const std::string& filename, std::vector<uint8_t>* file_content);
+
+ bool is_source_; // True if it's for source chunks.
+ std::vector<ImageChunk> chunks_; // Internal storage of ImageChunk.
+ std::vector<uint8_t> file_content_; // Store the whole input file in memory.
+};
+
+class ZipModeImage : public Image {
+ public:
+ explicit ZipModeImage(bool is_source, size_t limit = 0) : Image(is_source), limit_(limit) {}
+
+ bool Initialize(const std::string& filename) override;
+
+ // Initialize a dummy ZipModeImage from an existing ImageChunk vector. For src img pieces, we
+ // reconstruct a new file_content based on the source ranges; but it's not needed for the tgt img
+ // pieces; because for each chunk both the data and their offset within the file are unchanged.
+ void Initialize(const std::vector<ImageChunk>& chunks, const std::vector<uint8_t>& file_content) {
+ chunks_ = chunks;
+ file_content_ = file_content;
+ }
+
+ // The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in
+ // fact the whole source file.
+ ImageChunk PseudoSource() const;
+
+ // Find the matching deflate source chunk by entry name. Search for normal chunks also if
+ // |find_normal| is true.
+ ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false);
+
+ const ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false) const;
+
+ // Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if
+ // src and tgt are identical.
+ static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image);
+
+ // Compute the patch between tgt & src images, and write the data into |patch_name|.
+ static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
+ const std::string& patch_name);
+
+ // Compute the patch based on the lists of split src and tgt images. Generate patches for each
+ // pair of split pieces and write the data to |patch_name|. If |debug_dir| is specified, write
+ // each split src data and patch data into that directory.
+ static bool GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ const std::vector<SortedRangeSet>& split_src_ranges,
+ const std::string& patch_name, const std::string& split_info_file,
+ const std::string& debug_dir);
+
+ // Split the tgt chunks and src chunks based on the size limit.
+ static bool SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images,
+ std::vector<SortedRangeSet>* split_src_ranges);
+
+ private:
+ // Initialize image chunks based on the zip entries.
+ bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle);
+ // Add the a zip entry to the list.
+ bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry);
+ // Return the real size of the zip file. (omit the trailing zeros that used for alignment)
+ bool GetZipFileSize(size_t* input_file_size);
+
+ static void ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
+ const std::vector<ZipModeImage>& split_src_images,
+ std::vector<SortedRangeSet>& split_src_ranges,
+ size_t total_tgt_size);
+ // Construct the dummy split images based on the chunks info and source ranges; and move them into
+ // the given vectors. Return true if we add a new split image into |split_tgt_images|, and
+ // false otherwise.
+ static bool AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
+ const ZipModeImage& src_image,
+ const SortedRangeSet& split_src_ranges,
+ const std::vector<ImageChunk>& split_tgt_chunks,
+ const std::vector<ImageChunk>& split_src_chunks,
+ std::vector<ZipModeImage>* split_tgt_images,
+ std::vector<ZipModeImage>* split_src_images);
+
+ // Function that actually iterates the tgt_chunks and makes patches.
+ static bool GeneratePatchesInternal(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
+ std::vector<PatchChunk>* patch_chunks);
+
+ // size limit in bytes of each chunk. Also, if the length of one zip_entry exceeds the limit,
+ // we'll split that entry into several smaller chunks in advance.
+ size_t limit_;
+};
+
+class ImageModeImage : public Image {
+ public:
+ explicit ImageModeImage(bool is_source) : Image(is_source) {}
+
+ // Initialize the image chunks list by searching the magic numbers in an image file.
+ bool Initialize(const std::string& filename) override;
+
+ bool SetBonusData(const std::vector<uint8_t>& bonus_data);
+
+ // In Image Mode, verify that the source and target images have the same chunk structure (ie, the
+ // same sequence of deflate and normal chunks).
+ static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image);
+
+ // In image mode, generate patches against the given source chunks and bonus_data; write the
+ // result to |patch_name|.
+ static bool GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image,
+ const std::string& patch_name);
+};
+
+#endif // _APPLYPATCH_IMGDIFF_IMAGE_H
diff --git a/applypatch/libimgpatch.pc b/applypatch/libimgpatch.pc
deleted file mode 100644
index e5002934f..000000000
--- a/applypatch/libimgpatch.pc
+++ /dev/null
@@ -1,6 +0,0 @@
-# This file is for libimgpatch in Chrome OS.
-
-Name: libimgpatch
-Description: Apply imgdiff patch
-Version: 0.0.1
-Libs: -limgpatch -lbz2 -lz