summaryrefslogtreecommitdiffstats
path: root/libmincrypt/p256.c
diff options
context:
space:
mode:
authorEthan Yonker <dees_troy@teamw.in>2014-11-06 16:05:01 +0100
committerEthan Yonker <dees_troy@teamw.in>2014-11-06 16:05:01 +0100
commit1e4a1994ce329b64d0a469b46d9c711a2ba9dae3 (patch)
tree54c18cf33e30e1076cbbbce8eb4724bf0d6a82af /libmincrypt/p256.c
parentFix some make file duplicates (diff)
downloadandroid_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.tar
android_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.tar.gz
android_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.tar.bz2
android_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.tar.lz
android_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.tar.xz
android_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.tar.zst
android_bootable_recovery-1e4a1994ce329b64d0a469b46d9c711a2ba9dae3.zip
Diffstat (limited to 'libmincrypt/p256.c')
-rw-r--r--libmincrypt/p256.c373
1 files changed, 373 insertions, 0 deletions
diff --git a/libmincrypt/p256.c b/libmincrypt/p256.c
new file mode 100644
index 000000000..555a07a80
--- /dev/null
+++ b/libmincrypt/p256.c
@@ -0,0 +1,373 @@
+/*
+ * Copyright 2013 The Android Open Source Project
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Google Inc. nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+// This is an implementation of the P256 elliptic curve group. It's written to
+// be portable 32-bit, although it's still constant-time.
+//
+// WARNING: Implementing these functions in a constant-time manner is far from
+// obvious. Be careful when touching this code.
+//
+// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdio.h>
+
+#include "mincrypt/p256.h"
+
+const p256_int SECP256r1_n = // curve order
+ {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}};
+
+const p256_int SECP256r1_p = // curve field size
+ {{-1, -1, -1, 0, 0, 0, 1, -1 }};
+
+const p256_int SECP256r1_b = // curve b
+ {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0,
+ 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}};
+
+void p256_init(p256_int* a) {
+ memset(a, 0, sizeof(*a));
+}
+
+void p256_clear(p256_int* a) { p256_init(a); }
+
+int p256_get_bit(const p256_int* scalar, int bit) {
+ return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT)
+ >> (bit & (P256_BITSPERDIGIT - 1))) & 1;
+}
+
+int p256_is_zero(const p256_int* a) {
+ int i, result = 0;
+ for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i);
+ return !result;
+}
+
+// top, c[] += a[] * b
+// Returns new top
+static p256_digit mulAdd(const p256_int* a,
+ p256_digit b,
+ p256_digit top,
+ p256_digit* c) {
+ int i;
+ p256_ddigit carry = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += *c;
+ carry += (p256_ddigit)P256_DIGIT(a, i) * b;
+ *c++ = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return top + (p256_digit)carry;
+}
+
+// top, c[] -= top_a, a[]
+static p256_digit subTop(p256_digit top_a,
+ const p256_digit* a,
+ p256_digit top_c,
+ p256_digit* c) {
+ int i;
+ p256_sddigit borrow = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += *c;
+ borrow -= *a++;
+ *c++ = (p256_digit)borrow;
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ borrow += top_c;
+ borrow -= top_a;
+ top_c = (p256_digit)borrow;
+ assert((borrow >> P256_BITSPERDIGIT) == 0);
+ return top_c;
+}
+
+// top, c[] -= MOD[] & mask (0 or -1)
+// returns new top.
+static p256_digit subM(const p256_int* MOD,
+ p256_digit top,
+ p256_digit* c,
+ p256_digit mask) {
+ int i;
+ p256_sddigit borrow = 0;
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += *c;
+ borrow -= P256_DIGIT(MOD, i) & mask;
+ *c++ = (p256_digit)borrow;
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ return top + (p256_digit)borrow;
+}
+
+// top, c[] += MOD[] & mask (0 or -1)
+// returns new top.
+static p256_digit addM(const p256_int* MOD,
+ p256_digit top,
+ p256_digit* c,
+ p256_digit mask) {
+ int i;
+ p256_ddigit carry = 0;
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += *c;
+ carry += P256_DIGIT(MOD, i) & mask;
+ *c++ = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return top + (p256_digit)carry;
+}
+
+// c = a * b mod MOD. c can be a and/or b.
+void p256_modmul(const p256_int* MOD,
+ const p256_int* a,
+ const p256_digit top_b,
+ const p256_int* b,
+ p256_int* c) {
+ p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 };
+ p256_digit top = 0;
+ int i;
+
+ // Multiply/add into tmp.
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ if (i) tmp[i + P256_NDIGITS - 1] = top;
+ top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i);
+ }
+
+ // Multiply/add top digit
+ tmp[i + P256_NDIGITS - 1] = top;
+ top = mulAdd(a, top_b, 0, tmp + i);
+
+ // Reduce tmp, digit by digit.
+ for (; i >= 0; --i) {
+ p256_digit reducer[P256_NDIGITS] = { 0 };
+ p256_digit top_reducer;
+
+ // top can be any value at this point.
+ // Guestimate reducer as top * MOD, since msw of MOD is -1.
+ top_reducer = mulAdd(MOD, top, 0, reducer);
+
+ // Subtract reducer from top | tmp.
+ top = subTop(top_reducer, reducer, top, tmp + i);
+
+ // top is now either 0 or 1. Make it 0, fixed-timing.
+ assert(top <= 1);
+
+ top = subM(MOD, top, tmp + i, ~(top - 1));
+
+ assert(top == 0);
+
+ // We have now reduced the top digit off tmp. Fetch new top digit.
+ top = tmp[i + P256_NDIGITS - 1];
+ }
+
+ // tmp might still be larger than MOD, yet same bit length.
+ // Make sure it is less, fixed-timing.
+ addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1));
+
+ memcpy(c, tmp, P256_NBYTES);
+}
+int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; }
+int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); }
+
+p256_digit p256_shl(const p256_int* a, int n, p256_int* b) {
+ int i;
+ p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1);
+
+ n %= P256_BITSPERDIGIT;
+ for (i = P256_NDIGITS - 1; i > 0; --i) {
+ p256_digit accu = (P256_DIGIT(a, i) << n);
+ accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n));
+ P256_DIGIT(b, i) = accu;
+ }
+ P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n);
+
+ top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT);
+
+ return top;
+}
+
+void p256_shr(const p256_int* a, int n, p256_int* b) {
+ int i;
+
+ n %= P256_BITSPERDIGIT;
+ for (i = 0; i < P256_NDIGITS - 1; ++i) {
+ p256_digit accu = (P256_DIGIT(a, i) >> n);
+ accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n));
+ P256_DIGIT(b, i) = accu;
+ }
+ P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n);
+}
+
+static void p256_shr1(const p256_int* a, int highbit, p256_int* b) {
+ int i;
+
+ for (i = 0; i < P256_NDIGITS - 1; ++i) {
+ p256_digit accu = (P256_DIGIT(a, i) >> 1);
+ accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1));
+ P256_DIGIT(b, i) = accu;
+ }
+ P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) |
+ (highbit << (P256_BITSPERDIGIT - 1));
+}
+
+// Return -1, 0, 1 for a < b, a == b or a > b respectively.
+int p256_cmp(const p256_int* a, const p256_int* b) {
+ int i;
+ p256_sddigit borrow = 0;
+ p256_digit notzero = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
+ // Track whether any result digit is ever not zero.
+ // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1.
+ notzero |= !!((p256_digit)borrow);
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ return (int)borrow | notzero;
+}
+
+// c = a - b. Returns borrow: 0 or -1.
+int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) {
+ int i;
+ p256_sddigit borrow = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
+ if (c) P256_DIGIT(c, i) = (p256_digit)borrow;
+ borrow >>= P256_BITSPERDIGIT;
+ }
+ return (int)borrow;
+}
+
+// c = a + b. Returns carry: 0 or 1.
+int p256_add(const p256_int* a, const p256_int* b, p256_int* c) {
+ int i;
+ p256_ddigit carry = 0;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i);
+ if (c) P256_DIGIT(c, i) = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return (int)carry;
+}
+
+// b = a + d. Returns carry, 0 or 1.
+int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) {
+ int i;
+ p256_ddigit carry = d;
+
+ for (i = 0; i < P256_NDIGITS; ++i) {
+ carry += (p256_ddigit)P256_DIGIT(a, i);
+ if (b) P256_DIGIT(b, i) = (p256_digit)carry;
+ carry >>= P256_BITSPERDIGIT;
+ }
+ return (int)carry;
+}
+
+// b = 1/a mod MOD, binary euclid.
+void p256_modinv_vartime(const p256_int* MOD,
+ const p256_int* a,
+ p256_int* b) {
+ p256_int R = P256_ZERO;
+ p256_int S = P256_ONE;
+ p256_int U = *MOD;
+ p256_int V = *a;
+
+ for (;;) {
+ if (p256_is_even(&U)) {
+ p256_shr1(&U, 0, &U);
+ if (p256_is_even(&R)) {
+ p256_shr1(&R, 0, &R);
+ } else {
+ // R = (R+MOD)/2
+ p256_shr1(&R, p256_add(&R, MOD, &R), &R);
+ }
+ } else if (p256_is_even(&V)) {
+ p256_shr1(&V, 0, &V);
+ if (p256_is_even(&S)) {
+ p256_shr1(&S, 0, &S);
+ } else {
+ // S = (S+MOD)/2
+ p256_shr1(&S, p256_add(&S, MOD, &S) , &S);
+ }
+ } else { // U,V both odd.
+ if (!p256_sub(&V, &U, NULL)) {
+ p256_sub(&V, &U, &V);
+ if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S);
+ if (p256_is_zero(&V)) break; // done.
+ } else {
+ p256_sub(&U, &V, &U);
+ if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R);
+ }
+ }
+ }
+
+ p256_mod(MOD, &R, b);
+}
+
+void p256_mod(const p256_int* MOD,
+ const p256_int* in,
+ p256_int* out) {
+ if (out != in) *out = *in;
+ addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1));
+}
+
+// Verify y^2 == x^3 - 3x + b mod p
+// and 0 < x < p and 0 < y < p
+int p256_is_valid_point(const p256_int* x, const p256_int* y) {
+ p256_int y2, x3;
+
+ if (p256_cmp(&SECP256r1_p, x) <= 0 ||
+ p256_cmp(&SECP256r1_p, y) <= 0 ||
+ p256_is_zero(x) ||
+ p256_is_zero(y)) return 0;
+
+ p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2
+
+ p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2
+ p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3
+ if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x
+ if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x
+ if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x
+ if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b
+ p256_sub(&x3, &SECP256r1_p, &x3);
+
+ return p256_cmp(&y2, &x3) == 0;
+}
+
+void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) {
+ int i;
+ const uint8_t* p = &src[0];
+
+ for (i = P256_NDIGITS - 1; i >= 0; --i) {
+ P256_DIGIT(dst, i) =
+ (p[0] << 24) |
+ (p[1] << 16) |
+ (p[2] << 8) |
+ p[3];
+ p += 4;
+ }
+}