/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agree to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <fcntl.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <time.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/test_utils.h>
#include <android-base/unique_fd.h>
#include <bsdiff/bsdiff.h>
#include <gtest/gtest.h>
#include <openssl/sha.h>
#include <zlib.h>
#include "applypatch/applypatch.h"
#include "applypatch/applypatch_modes.h"
#include "common/test_constants.h"
#include "otautil/paths.h"
#include "otautil/print_sha1.h"
using namespace std::string_literals;
// TODO(b/67849209) Remove after debug the flakiness.
static void DecompressAndDumpRecoveryImage(const std::string& image_path) {
// Expected recovery_image structure
// chunk normal: 45066 bytes
// chunk deflate: 479442 bytes
// chunk normal: 5199 bytes
std::string recovery_content;
ASSERT_TRUE(android::base::ReadFileToString(image_path, &recovery_content));
ASSERT_GT(recovery_content.size(), 45066 + 5199);
z_stream strm = {};
strm.avail_in = recovery_content.size() - 45066 - 5199;
strm.next_in =
const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(recovery_content.data())) + 45066;
ASSERT_EQ(Z_OK, inflateInit2(&strm, -15));
constexpr unsigned int BUFFER_SIZE = 32768;
std::vector<uint8_t> uncompressed_data(BUFFER_SIZE);
size_t uncompressed_length = 0;
SHA_CTX ctx;
SHA1_Init(&ctx);
int ret;
do {
strm.avail_out = BUFFER_SIZE;
strm.next_out = uncompressed_data.data();
ret = inflate(&strm, Z_NO_FLUSH);
ASSERT_GE(ret, 0);
SHA1_Update(&ctx, uncompressed_data.data(), BUFFER_SIZE - strm.avail_out);
uncompressed_length += BUFFER_SIZE - strm.avail_out;
} while (ret != Z_STREAM_END);
inflateEnd(&strm);
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1_Final(digest, &ctx);
GTEST_LOG_(INFO) << "uncompressed length " << uncompressed_length
<< " sha1: " << short_sha1(digest);
}
static void sha1sum(const std::string& fname, std::string* sha1, size_t* fsize = nullptr) {
ASSERT_TRUE(sha1 != nullptr);
std::string data;
ASSERT_TRUE(android::base::ReadFileToString(fname, &data));
if (fsize != nullptr) {
*fsize = data.size();
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(data.c_str()), data.size(), digest);
*sha1 = print_sha1(digest);
}
static void mangle_file(const std::string& fname) {
std::string content(1024, '\0');
for (size_t i = 0; i < 1024; i++) {
content[i] = rand() % 256;
}
ASSERT_TRUE(android::base::WriteStringToFile(content, fname));
}
static void test_logger(android::base::LogId /* id */, android::base::LogSeverity severity,
const char* /* tag */, const char* /* file */, unsigned int /* line */,
const char* message) {
if (severity >= android::base::GetMinimumLogSeverity()) {
fprintf(stdout, "%s\n", message);
}
}
class ApplyPatchTest : public ::testing::Test {
public:
virtual void SetUp() override {
// set up files
old_file = from_testdata_base("old.file");
new_file = from_testdata_base("new.file");
nonexistent_file = from_testdata_base("nonexistent.file");
// set up SHA constants
sha1sum(old_file, &old_sha1, &old_size);
sha1sum(new_file, &new_sha1, &new_size);
srand(time(nullptr));
bad_sha1_a = android::base::StringPrintf("%040x", rand());
bad_sha1_b = android::base::StringPrintf("%040x", rand());
}
std::string old_file;
std::string new_file;
std::string nonexistent_file;
std::string old_sha1;
std::string new_sha1;
std::string bad_sha1_a;
std::string bad_sha1_b;
size_t old_size;
size_t new_size;
};
class ApplyPatchCacheTest : public ApplyPatchTest {
protected:
void SetUp() override {
ApplyPatchTest::SetUp();
Paths::Get().set_cache_temp_source(old_file);
}
};
class ApplyPatchModesTest : public ::testing::Test {
protected:
void SetUp() override {
Paths::Get().set_cache_temp_source(cache_source.path);
android::base::InitLogging(nullptr, &test_logger);
android::base::SetMinimumLogSeverity(android::base::LogSeverity::DEBUG);
}
TemporaryFile cache_source;
};
class FreeCacheTest : public ::testing::Test {
protected:
static constexpr size_t PARTITION_SIZE = 4096 * 10;
// Returns a sorted list of files in |dirname|.
static std::vector<std::string> FindFilesInDir(const std::string& dirname) {
std::vector<std::string> file_list;
std::unique_ptr<DIR, decltype(&closedir)> d(opendir(dirname.c_str()), closedir);
struct dirent* de;
while ((de = readdir(d.get())) != 0) {
std::string path = dirname + "/" + de->d_name;
struct stat st;
if (stat(path.c_str(), &st) == 0 && S_ISREG(st.st_mode)) {
file_list.emplace_back(de->d_name);
}
}
std::sort(file_list.begin(), file_list.end());
return file_list;
}
static void AddFilesToDir(const std::string& dir, const std::vector<std::string>& files) {
std::string zeros(4096, 0);
for (const auto& file : files) {
std::string path = dir + "/" + file;
ASSERT_TRUE(android::base::WriteStringToFile(zeros, path));
}
}
void SetUp() override {
Paths::Get().set_cache_log_directory(mock_log_dir.path);
}
// A mock method to calculate the free space. It assumes the partition has a total size of 40960
// bytes and all files are 4096 bytes in size.
size_t MockFreeSpaceChecker(const std::string& dirname) {
std::vector<std::string> files = FindFilesInDir(dirname);
return PARTITION_SIZE - 4096 * files.size();
}
TemporaryDir mock_cache;
TemporaryDir mock_log_dir;
};
TEST_F(ApplyPatchTest, CheckModeSkip) {
std::vector<std::string> sha1s;
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeSingle) {
std::vector<std::string> sha1s = { old_sha1 };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeMultiple) {
std::vector<std::string> sha1s = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeFailure) {
std::vector<std::string> sha1s = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(&old_file[0], sha1s));
}
TEST_F(ApplyPatchTest, CheckModeEmmcTarget) {
// EMMC:old_file:size:sha1 should pass the check.
std::string src_file =
"EMMC:" + old_file + ":" + std::to_string(old_size) + ":" + old_sha1;
std::vector<std::string> sha1s;
ASSERT_EQ(0, applypatch_check(src_file.c_str(), sha1s));
// EMMC:old_file:(size-1):sha1:(size+1):sha1 should fail the check.
src_file = "EMMC:" + old_file + ":" + std::to_string(old_size - 1) + ":" + old_sha1 + ":" +
std::to_string(old_size + 1) + ":" + old_sha1;
ASSERT_EQ(1, applypatch_check(src_file.c_str(), sha1s));
// EMMC:old_file:(size-1):sha1:size:sha1:(size+1):sha1 should pass the check.
src_file = "EMMC:" + old_file + ":" +
std::to_string(old_size - 1) + ":" + old_sha1 + ":" +
std::to_string(old_size) + ":" + old_sha1 + ":" +
std::to_string(old_size + 1) + ":" + old_sha1;
ASSERT_EQ(0, applypatch_check(src_file.c_str(), sha1s));
// EMMC:old_file:(size+1):sha1:(size-1):sha1:size:sha1 should pass the check.
src_file = "EMMC:" + old_file + ":" +
std::to_string(old_size + 1) + ":" + old_sha1 + ":" +
std::to_string(old_size - 1) + ":" + old_sha1 + ":" +
std::to_string(old_size) + ":" + old_sha1;
ASSERT_EQ(0, applypatch_check(src_file.c_str(), sha1s));
// EMMC:new_file:(size+1):old_sha1:(size-1):old_sha1:size:old_sha1:size:new_sha1
// should pass the check.
src_file = "EMMC:" + new_file + ":" +
std::to_string(old_size + 1) + ":" + old_sha1 + ":" +
std::to_string(old_size - 1) + ":" + old_sha1 + ":" +
std::to_string(old_size) + ":" + old_sha1 + ":" +
std::to_string(new_size) + ":" + new_sha1;
ASSERT_EQ(0, applypatch_check(src_file.c_str(), sha1s));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedSourceSingle) {
TemporaryFile temp_file;
mangle_file(temp_file.path);
std::vector<std::string> sha1s_single = { old_sha1 };
ASSERT_EQ(0, applypatch_check(temp_file.path, sha1s_single));
ASSERT_EQ(0, applypatch_check(nonexistent_file.c_str(), sha1s_single));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedSourceMultiple) {
TemporaryFile temp_file;
mangle_file(temp_file.path);
std::vector<std::string> sha1s_multiple = { bad_sha1_a, old_sha1, bad_sha1_b };
ASSERT_EQ(0, applypatch_check(temp_file.path, sha1s_multiple));
ASSERT_EQ(0, applypatch_check(nonexistent_file.c_str(), sha1s_multiple));
}
TEST_F(ApplyPatchCacheTest, CheckCacheCorruptedSourceFailure) {
TemporaryFile temp_file;
mangle_file(temp_file.path);
std::vector<std::string> sha1s_failure = { bad_sha1_a, bad_sha1_b };
ASSERT_NE(0, applypatch_check(temp_file.path, sha1s_failure));
ASSERT_NE(0, applypatch_check(nonexistent_file.c_str(), sha1s_failure));
}
TEST_F(ApplyPatchModesTest, InvalidArgs) {
// At least two args (including the filename).
ASSERT_EQ(2, applypatch_modes(1, (const char* []){ "applypatch" }));
// Unrecognized args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-x" }));
}
TEST_F(ApplyPatchModesTest, PatchModeEmmcTarget) {
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
std::string recovery_img_size_arg = std::to_string(recovery_img_size);
std::string bonus_file = from_testdata_base("bonus.file");
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
std::string src_file_arg =
"EMMC:" + boot_img + ":" + std::to_string(boot_img_size) + ":" + boot_img_sha1;
TemporaryFile tgt_file;
std::string tgt_file_arg = "EMMC:"s + tgt_file.path;
std::string patch_arg = boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot.p");
std::vector<const char*> args = { "applypatch",
"-b",
bonus_file.c_str(),
src_file_arg.c_str(),
tgt_file_arg.c_str(),
recovery_img_sha1.c_str(),
recovery_img_size_arg.c_str(),
patch_arg.c_str() };
ASSERT_EQ(0, applypatch_modes(args.size(), args.data()));
}
// Tests patching the EMMC target without a separate bonus file (i.e. recovery-from-boot patch has
// everything).
TEST_F(ApplyPatchModesTest, PatchModeEmmcTargetWithoutBonusFile) {
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
std::string recovery_img_size_arg = std::to_string(recovery_img_size);
// applypatch <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
std::string src_file_arg =
"EMMC:" + boot_img + ":" + std::to_string(boot_img_size) + ":" + boot_img_sha1;
TemporaryFile tgt_file;
std::string tgt_file_arg = "EMMC:"s + tgt_file.path;
std::string patch_arg =
boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot-with-bonus.p");
std::vector<const char*> args = { "applypatch",
src_file_arg.c_str(),
tgt_file_arg.c_str(),
recovery_img_sha1.c_str(),
recovery_img_size_arg.c_str(),
patch_arg.c_str() };
if (applypatch_modes(args.size(), args.data()) != 0) {
DecompressAndDumpRecoveryImage(tgt_file.path);
FAIL();
}
}
TEST_F(ApplyPatchModesTest, PatchModeEmmcTargetWithMultiplePatches) {
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t recovery_img_size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &recovery_img_size);
std::string recovery_img_size_arg = std::to_string(recovery_img_size);
std::string bonus_file = from_testdata_base("bonus.file");
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size> \
// <src-sha1-fake1>:<patch1> <src-sha1>:<patch2> <src-sha1-fake2>:<patch3>
std::string src_file_arg =
"EMMC:" + boot_img + ":" + std::to_string(boot_img_size) + ":" + boot_img_sha1;
TemporaryFile tgt_file;
std::string tgt_file_arg = "EMMC:"s + tgt_file.path;
std::string bad_sha1_a = android::base::StringPrintf("%040x", rand());
std::string bad_sha1_b = android::base::StringPrintf("%040x", rand());
std::string patch1 = bad_sha1_a + ":" + from_testdata_base("recovery-from-boot.p");
std::string patch2 = boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot.p");
std::string patch3 = bad_sha1_b + ":" + from_testdata_base("recovery-from-boot.p");
std::vector<const char*> args = { "applypatch",
"-b",
bonus_file.c_str(),
src_file_arg.c_str(),
tgt_file_arg.c_str(),
recovery_img_sha1.c_str(),
recovery_img_size_arg.c_str(),
patch1.c_str(),
patch2.c_str(),
patch3.c_str() };
// TODO(b/67849209): Remove after addressing the flakiness.
printf("Calling applypatch_modes with the following args:\n");
for (const auto& arg : args) {
printf(" %s\n", arg);
}
if (applypatch_modes(args.size(), args.data()) != 0) {
DecompressAndDumpRecoveryImage(tgt_file.path);
FAIL();
}
}
// Ensures that applypatch works with a bsdiff based recovery-from-boot.p.
TEST_F(ApplyPatchModesTest, PatchModeEmmcTargetWithBsdiffPatch) {
std::string boot_img_file = from_testdata_base("boot.img");
std::string boot_img_sha1;
size_t boot_img_size;
sha1sum(boot_img_file, &boot_img_sha1, &boot_img_size);
std::string recovery_img_file = from_testdata_base("recovery.img");
std::string recovery_img_sha1;
size_t recovery_img_size;
sha1sum(recovery_img_file, &recovery_img_sha1, &recovery_img_size);
// Generate the bsdiff patch of recovery-from-boot.p.
std::string src_content;
ASSERT_TRUE(android::base::ReadFileToString(boot_img_file, &src_content));
std::string tgt_content;
ASSERT_TRUE(android::base::ReadFileToString(recovery_img_file, &tgt_content));
TemporaryFile patch_file;
ASSERT_EQ(0,
bsdiff::bsdiff(reinterpret_cast<const uint8_t*>(src_content.data()), src_content.size(),
reinterpret_cast<const uint8_t*>(tgt_content.data()), tgt_content.size(),
patch_file.path, nullptr));
// applypatch <src-file> <tgt-file> <tgt-sha1> <tgt-size> <src-sha1>:<patch>
std::string src_file_arg =
"EMMC:" + boot_img_file + ":" + std::to_string(boot_img_size) + ":" + boot_img_sha1;
TemporaryFile tgt_file;
std::string tgt_file_arg = "EMMC:"s + tgt_file.path;
std::string recovery_img_size_arg = std::to_string(recovery_img_size);
std::string patch_arg = boot_img_sha1 + ":" + patch_file.path;
std::vector<const char*> args = { "applypatch",
src_file_arg.c_str(),
tgt_file_arg.c_str(),
recovery_img_sha1.c_str(),
recovery_img_size_arg.c_str(),
patch_arg.c_str() };
ASSERT_EQ(0, applypatch_modes(args.size(), args.data()));
// Double check the patched recovery image.
std::string tgt_file_sha1;
size_t tgt_file_size;
sha1sum(tgt_file.path, &tgt_file_sha1, &tgt_file_size);
ASSERT_EQ(recovery_img_size, tgt_file_size);
ASSERT_EQ(recovery_img_sha1, tgt_file_sha1);
}
TEST_F(ApplyPatchModesTest, PatchModeInvalidArgs) {
// Invalid bonus file.
ASSERT_NE(0, applypatch_modes(3, (const char* []){ "applypatch", "-b", "/doesntexist" }));
std::string bonus_file = from_testdata_base("bonus.file");
// With bonus file, but missing args.
ASSERT_EQ(2, applypatch_modes(3, (const char* []){ "applypatch", "-b", bonus_file.c_str() }));
std::string boot_img = from_testdata_base("boot.img");
size_t boot_img_size;
std::string boot_img_sha1;
sha1sum(boot_img, &boot_img_sha1, &boot_img_size);
std::string recovery_img = from_testdata_base("recovery.img");
size_t size;
std::string recovery_img_sha1;
sha1sum(recovery_img, &recovery_img_sha1, &size);
std::string recovery_img_size = std::to_string(size);
// Bonus file is not supported in flash mode.
// applypatch -b <bonus-file> <src-file> <tgt-file> <tgt-sha1> <tgt-size>
TemporaryFile tmp4;
std::vector<const char*> args4 = {
"applypatch",
"-b",
bonus_file.c_str(),
boot_img.c_str(),
tmp4.path,
recovery_img_sha1.c_str(),
recovery_img_size.c_str()
};
ASSERT_NE(0, applypatch_modes(args4.size(), args4.data()));
// Failed to parse patch args.
TemporaryFile tmp5;
std::string bad_arg1 =
"invalid-sha1:filename" + from_testdata_base("recovery-from-boot-with-bonus.p");
std::vector<const char*> args5 = {
"applypatch",
boot_img.c_str(),
tmp5.path,
recovery_img_sha1.c_str(),
recovery_img_size.c_str(),
bad_arg1.c_str()
};
ASSERT_NE(0, applypatch_modes(args5.size(), args5.data()));
// Target size cannot be zero.
TemporaryFile tmp6;
std::string patch = boot_img_sha1 + ":" + from_testdata_base("recovery-from-boot-with-bonus.p");
std::vector<const char*> args6 = {
"applypatch",
boot_img.c_str(),
tmp6.path,
recovery_img_sha1.c_str(),
"0", // target size
patch.c_str()
};
ASSERT_NE(0, applypatch_modes(args6.size(), args6.data()));
}
TEST_F(ApplyPatchModesTest, CheckModeInvalidArgs) {
// Insufficient args.
ASSERT_EQ(2, applypatch_modes(2, (const char* []){ "applypatch", "-c" }));
}
TEST_F(ApplyPatchModesTest, ShowLicenses) {
ASSERT_EQ(0, applypatch_modes(2, (const char* []){ "applypatch", "-l" }));
}
TEST_F(FreeCacheTest, FreeCacheSmoke) {
std::vector<std::string> files = { "file1", "file2", "file3" };
AddFilesToDir(mock_cache.path, files);
ASSERT_EQ(files, FindFilesInDir(mock_cache.path));
ASSERT_EQ(4096 * 7, MockFreeSpaceChecker(mock_cache.path));
ASSERT_TRUE(RemoveFilesInDirectory(4096 * 9, mock_cache.path, [&](const std::string& dir) {
return this->MockFreeSpaceChecker(dir);
}));
ASSERT_EQ(std::vector<std::string>{ "file3" }, FindFilesInDir(mock_cache.path));
ASSERT_EQ(4096 * 9, MockFreeSpaceChecker(mock_cache.path));
}
TEST_F(FreeCacheTest, FreeCacheOpenFile) {
std::vector<std::string> files = { "file1", "file2" };
AddFilesToDir(mock_cache.path, files);
ASSERT_EQ(files, FindFilesInDir(mock_cache.path));
ASSERT_EQ(4096 * 8, MockFreeSpaceChecker(mock_cache.path));
std::string file1_path = mock_cache.path + "/file1"s;
android::base::unique_fd fd(open(file1_path.c_str(), O_RDONLY));
// file1 can't be deleted as it's opened by us.
ASSERT_FALSE(RemoveFilesInDirectory(4096 * 10, mock_cache.path, [&](const std::string& dir) {
return this->MockFreeSpaceChecker(dir);
}));
ASSERT_EQ(std::vector<std::string>{ "file1" }, FindFilesInDir(mock_cache.path));
}
TEST_F(FreeCacheTest, FreeCacheLogsSmoke) {
std::vector<std::string> log_files = { "last_log", "last_log.1", "last_kmsg.2", "last_log.5",
"last_log.10" };
AddFilesToDir(mock_log_dir.path, log_files);
ASSERT_EQ(4096 * 5, MockFreeSpaceChecker(mock_log_dir.path));
ASSERT_TRUE(RemoveFilesInDirectory(4096 * 8, mock_log_dir.path, [&](const std::string& dir) {
return this->MockFreeSpaceChecker(dir);
}));
// Logs with a higher index will be deleted first
std::vector<std::string> expected = { "last_log", "last_log.1" };
ASSERT_EQ(expected, FindFilesInDir(mock_log_dir.path));
ASSERT_EQ(4096 * 8, MockFreeSpaceChecker(mock_log_dir.path));
}
TEST_F(FreeCacheTest, FreeCacheLogsStringComparison) {
std::vector<std::string> log_files = { "last_log.1", "last_kmsg.1", "last_log.not_number",
"last_kmsgrandom" };
AddFilesToDir(mock_log_dir.path, log_files);
ASSERT_EQ(4096 * 6, MockFreeSpaceChecker(mock_log_dir.path));
ASSERT_TRUE(RemoveFilesInDirectory(4096 * 9, mock_log_dir.path, [&](const std::string& dir) {
return this->MockFreeSpaceChecker(dir);
}));
// Logs with incorrect format will be deleted first; and the last_kmsg with the same index is
// deleted before last_log.
std::vector<std::string> expected = { "last_log.1" };
ASSERT_EQ(expected, FindFilesInDir(mock_log_dir.path));
ASSERT_EQ(4096 * 9, MockFreeSpaceChecker(mock_log_dir.path));
}
TEST_F(FreeCacheTest, FreeCacheLogsOtherFiles) {
std::vector<std::string> log_files = { "last_install", "command", "block.map", "last_log",
"last_kmsg.1" };
AddFilesToDir(mock_log_dir.path, log_files);
ASSERT_EQ(4096 * 5, MockFreeSpaceChecker(mock_log_dir.path));
ASSERT_FALSE(RemoveFilesInDirectory(4096 * 8, mock_log_dir.path, [&](const std::string& dir) {
return this->MockFreeSpaceChecker(dir);
}));
// Non log files in /cache/recovery won't be deleted.
std::vector<std::string> expected = { "block.map", "command", "last_install" };
ASSERT_EQ(expected, FindFilesInDir(mock_log_dir.path));
}