summaryrefslogtreecommitdiffstats
path: root/external/include/glm/gtx/matrix_interpolation.inl
blob: 8645f967853fb264b715a775fd3bb1d4192ce616 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/// @ref gtx_matrix_interpolation
/// @file glm/gtx/matrix_interpolation.hpp

namespace glm
{
	template <typename T, precision P>
	GLM_FUNC_QUALIFIER void axisAngle
	(
		tmat4x4<T, P> const & mat,
		tvec3<T, P> & axis,
		T & angle
	)
	{
		T epsilon = (T)0.01;
		T epsilon2 = (T)0.1;

		if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon))
		{
			if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2))
			{
				angle = (T)0.0;
				axis.x = (T)1.0;
				axis.y = (T)0.0;
				axis.z = (T)0.0;
				return;
			}
			angle = static_cast<T>(3.1415926535897932384626433832795);
			T xx = (mat[0][0] + (T)1.0) / (T)2.0;
			T yy = (mat[1][1] + (T)1.0) / (T)2.0;
			T zz = (mat[2][2] + (T)1.0) / (T)2.0;
			T xy = (mat[1][0] + mat[0][1]) / (T)4.0;
			T xz = (mat[2][0] + mat[0][2]) / (T)4.0;
			T yz = (mat[2][1] + mat[1][2]) / (T)4.0;
			if((xx > yy) && (xx > zz))
			{
				if (xx < epsilon) {
					axis.x = (T)0.0;
					axis.y = (T)0.7071;
					axis.z = (T)0.7071;
				} else {
					axis.x = sqrt(xx);
					axis.y = xy / axis.x;
					axis.z = xz / axis.x;
				}
			}
			else if (yy > zz)
			{
				if (yy < epsilon) {
					axis.x = (T)0.7071;
					axis.y = (T)0.0;
					axis.z = (T)0.7071;
				} else {
					axis.y = sqrt(yy);
					axis.x = xy / axis.y;
					axis.z = yz / axis.y;
				}
			}
			else
			{
				if (zz < epsilon) {
					axis.x = (T)0.7071;
					axis.y = (T)0.7071;
					axis.z = (T)0.0;
				} else {
					axis.z = sqrt(zz);
					axis.x = xz / axis.z;
					axis.y = yz / axis.z;
				}
			}
			return;
		}
		T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1]));
		if (glm::abs(s) < T(0.001))
			s = (T)1.0;
		angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0);
		axis.x = (mat[1][2] - mat[2][1]) / s;
		axis.y = (mat[2][0] - mat[0][2]) / s;
		axis.z = (mat[0][1] - mat[1][0]) / s;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tmat4x4<T, P> axisAngleMatrix
	(
		tvec3<T, P> const & axis,
		T const angle
	)
	{
		T c = cos(angle);
		T s = sin(angle);
		T t = static_cast<T>(1) - c;
		tvec3<T, P> n = normalize(axis);

		return tmat4x4<T, P>(
			t * n.x * n.x + c,          t * n.x * n.y + n.z * s,    t * n.x * n.z - n.y * s,    T(0),
			t * n.x * n.y - n.z * s,    t * n.y * n.y + c,          t * n.y * n.z + n.x * s,    T(0),
			t * n.x * n.z + n.y * s,    t * n.y * n.z - n.x * s,    t * n.z * n.z + c,          T(0),
			T(0),                        T(0),                        T(0),                     T(1)
		);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tmat4x4<T, P> extractMatrixRotation
	(
		tmat4x4<T, P> const & mat
	)
	{
		return tmat4x4<T, P>(
			mat[0][0], mat[0][1], mat[0][2], 0.0,
			mat[1][0], mat[1][1], mat[1][2], 0.0,
			mat[2][0], mat[2][1], mat[2][2], 0.0,
			0.0,       0.0,       0.0,       1.0
		);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tmat4x4<T, P> interpolate
	(
		tmat4x4<T, P> const & m1,
		tmat4x4<T, P> const & m2,
		T const delta
	)
	{
		tmat4x4<T, P> m1rot = extractMatrixRotation(m1);
		tmat4x4<T, P> dltRotation = m2 * transpose(m1rot);
		tvec3<T, P> dltAxis;
		T dltAngle;
		axisAngle(dltRotation, dltAxis, dltAngle);
		tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot;
		out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]);
		out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]);
		out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]);
		return out;
	}
}//namespace glm