summaryrefslogtreecommitdiffstats
path: root/depedencies/include/glm/gtx/matrix_decompose.inl
blob: 7194e9d8e0321ec6beebc7cbcdbf22e06770a937 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/// @ref gtx_matrix_decompose
/// @file glm/gtx/matrix_decompose.inl

namespace glm{
namespace detail
{
	/// Make a linear combination of two vectors and return the result.
	// result = (a * ascl) + (b * bscl)
	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> combine(
		tvec3<T, P> const & a, 
		tvec3<T, P> const & b,
		T ascl, T bscl)
	{
		return (a * ascl) + (b * bscl);
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> scale(tvec3<T, P> const& v, T desiredLength)
	{
		return v * desiredLength / length(v);
	}
}//namespace detail

	// Matrix decompose
	// http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
	// Decomposes the mode matrix to translations,rotation scale components

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective)
	{
		tmat4x4<T, P> LocalMatrix(ModelMatrix);

		// Normalize the matrix.
		if(LocalMatrix[3][3] == static_cast<T>(0))
			return false;

		for(length_t i = 0; i < 4; ++i)
		for(length_t j = 0; j < 4; ++j)
			LocalMatrix[i][j] /= LocalMatrix[3][3];

		// perspectiveMatrix is used to solve for perspective, but it also provides
		// an easy way to test for singularity of the upper 3x3 component.
		tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);

		for(length_t i = 0; i < 3; i++)
			PerspectiveMatrix[i][3] = static_cast<T>(0);
		PerspectiveMatrix[3][3] = static_cast<T>(1);

		/// TODO: Fixme!
		if(determinant(PerspectiveMatrix) == static_cast<T>(0))
			return false;

		// First, isolate perspective.  This is the messiest.
		if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0))
		{
			// rightHandSide is the right hand side of the equation.
			tvec4<T, P> RightHandSide;
			RightHandSide[0] = LocalMatrix[0][3];
			RightHandSide[1] = LocalMatrix[1][3];
			RightHandSide[2] = LocalMatrix[2][3];
			RightHandSide[3] = LocalMatrix[3][3];

			// Solve the equation by inverting PerspectiveMatrix and multiplying
			// rightHandSide by the inverse.  (This is the easiest way, not
			// necessarily the best.)
			tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);//   inverse(PerspectiveMatrix, inversePerspectiveMatrix);
			tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);//   transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);

			Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
			//  v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);

			// Clear the perspective partition
			LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0);
			LocalMatrix[3][3] = static_cast<T>(1);
		}
		else
		{
			// No perspective.
			Perspective = tvec4<T, P>(0, 0, 0, 1);
		}

		// Next take care of translation (easy).
		Translation = tvec3<T, P>(LocalMatrix[3]);
		LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);

		tvec3<T, P> Row[3], Pdum3;

		// Now get scale and shear.
		for(length_t i = 0; i < 3; ++i)
			for(int j = 0; j < 3; ++j)
				Row[i][j] = LocalMatrix[i][j];

		// Compute X scale factor and normalize first row.
		Scale.x = length(Row[0]);// v3Length(Row[0]);

		Row[0] = detail::scale(Row[0], static_cast<T>(1));

		// Compute XY shear factor and make 2nd row orthogonal to 1st.
		Skew.z = dot(Row[0], Row[1]);
		Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);

		// Now, compute Y scale and normalize 2nd row.
		Scale.y = length(Row[1]);
		Row[1] = detail::scale(Row[1], static_cast<T>(1));
		Skew.z /= Scale.y;

		// Compute XZ and YZ shears, orthogonalize 3rd row.
		Skew.y = glm::dot(Row[0], Row[2]);
		Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
		Skew.x = glm::dot(Row[1], Row[2]);
		Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);

		// Next, get Z scale and normalize 3rd row.
		Scale.z = length(Row[2]);
		Row[2] = detail::scale(Row[2], static_cast<T>(1));
		Skew.y /= Scale.z;
		Skew.x /= Scale.z;

		// At this point, the matrix (in rows[]) is orthonormal.
		// Check for a coordinate system flip.  If the determinant
		// is -1, then negate the matrix and the scaling factors.
		Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
		if(dot(Row[0], Pdum3) < 0)
		{
			for(length_t i = 0; i < 3; i++)
			{
				Scale[i] *= static_cast<T>(-1);
				Row[i] *= static_cast<T>(-1);
			}
		}

		// Now, get the rotations out, as described in the gem.

		// FIXME - Add the ability to return either quaternions (which are
		// easier to recompose with) or Euler angles (rx, ry, rz), which
		// are easier for authors to deal with. The latter will only be useful
		// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
		// will leave the Euler angle code here for now.

		// ret.rotateY = asin(-Row[0][2]);
		// if (cos(ret.rotateY) != 0) {
		//     ret.rotateX = atan2(Row[1][2], Row[2][2]);
		//     ret.rotateZ = atan2(Row[0][1], Row[0][0]);
		// } else {
		//     ret.rotateX = atan2(-Row[2][0], Row[1][1]);
		//     ret.rotateZ = 0;
		// }

		T s, t, x, y, z, w;

		t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1);

		if(t > static_cast<T>(1e-4))
		{
			s = static_cast<T>(0.5) / sqrt(t);
			w = static_cast<T>(0.25) / s;
			x = (Row[2][1] - Row[1][2]) * s;
			y = (Row[0][2] - Row[2][0]) * s;
			z = (Row[1][0] - Row[0][1]) * s;
		}
		else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
		{ 
			s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx 
			x = static_cast<T>(0.25) * s;
			y = (Row[0][1] + Row[1][0]) / s; 
			z = (Row[0][2] + Row[2][0]) / s; 
			w = (Row[2][1] - Row[1][2]) / s;
		}
		else if(Row[1][1] > Row[2][2])
		{ 
			s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy
			x = (Row[0][1] + Row[1][0]) / s; 
			y = static_cast<T>(0.25) * s;
			z = (Row[1][2] + Row[2][1]) / s; 
			w = (Row[0][2] - Row[2][0]) / s;
		}
		else
		{ 
			s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz
			x = (Row[0][2] + Row[2][0]) / s;
			y = (Row[1][2] + Row[2][1]) / s; 
			z = static_cast<T>(0.25) * s;
			w = (Row[1][0] - Row[0][1]) / s;
		}

		Orientation.x = x;
		Orientation.y = y;
		Orientation.z = z;
		Orientation.w = w;

		return true;
	}
}//namespace glm