summaryrefslogtreecommitdiffstats
path: root/depedencies/include/glm/gtx/integer.inl
blob: 3a479e6c5bfab0485e3524a0b9c0a6a1677e1499 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/// @ref gtx_integer
/// @file glm/gtx/integer.inl

namespace glm
{
	// pow
	GLM_FUNC_QUALIFIER int pow(int x, int y)
	{
		if(y == 0)
			return 1;
		int result = x;
		for(int i = 1; i < y; ++i)
			result *= x;
		return result;
	}

	// sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
	GLM_FUNC_QUALIFIER int sqrt(int x)
	{
		if(x <= 1) return x;

		int NextTrial = x >> 1;
		int CurrentAnswer;

		do
		{
			CurrentAnswer = NextTrial;
			NextTrial = (NextTrial + x / NextTrial) >> 1;
		} while(NextTrial < CurrentAnswer);

		return CurrentAnswer;
	}

// Henry Gordon Dietz: http://aggregate.org/MAGIC/
namespace detail
{
	GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
	{
		/* 32-bit recursive reduction using SWAR...
		but first step is mapping 2-bit values
		into sum of 2 1-bit values in sneaky way
		*/
		x -= ((x >> 1) & 0x55555555);
		x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
		x = (((x >> 4) + x) & 0x0f0f0f0f);
		x += (x >> 8);
		x += (x >> 16);
		return(x & 0x0000003f);
	}
}//namespace detail

	// Henry Gordon Dietz: http://aggregate.org/MAGIC/
/*
	GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
	{
		x |= (x >> 1);
		x |= (x >> 2);
		x |= (x >> 4);
		x |= (x >> 8);
		x |= (x >> 16);

		return _detail::ones32(x) >> 1;
	}
*/
	// mod
	GLM_FUNC_QUALIFIER int mod(int x, int y)
	{
		return x - y * (x / y);
	}

	// factorial (!12 max, integer only)
	template <typename genType>
	GLM_FUNC_QUALIFIER genType factorial(genType const & x)
	{
		genType Temp = x;
		genType Result;
		for(Result = 1; Temp > 1; --Temp)
			Result *= Temp;
		return Result;
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec2<T, P> factorial(
		tvec2<T, P> const & x)
	{
		return tvec2<T, P>(
			factorial(x.x),
			factorial(x.y));
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec3<T, P> factorial(
		tvec3<T, P> const & x)
	{
		return tvec3<T, P>(
			factorial(x.x),
			factorial(x.y),
			factorial(x.z));
	}

	template <typename T, precision P>
	GLM_FUNC_QUALIFIER tvec4<T, P> factorial(
		tvec4<T, P> const & x)
	{
		return tvec4<T, P>(
			factorial(x.x),
			factorial(x.y),
			factorial(x.z),
			factorial(x.w));
	}

	GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
	{
		uint result = x;
		for(uint i = 1; i < y; ++i)
			result *= x;
		return result;
	}

	GLM_FUNC_QUALIFIER uint sqrt(uint x)
	{
		if(x <= 1) return x;

		uint NextTrial = x >> 1;
		uint CurrentAnswer;

		do
		{
			CurrentAnswer = NextTrial;
			NextTrial = (NextTrial + x / NextTrial) >> 1;
		} while(NextTrial < CurrentAnswer);

		return CurrentAnswer;
	}

	GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
	{
		return x - y * (x / y);
	}

#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))

	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
	{
		return 31u - findMSB(x);
	}

#else

	// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
	{
		int y, m, n;

		y = -int(x >> 16);      // If left half of x is 0,
		m = (y >> 16) & 16;  // set n = 16.  If left half
		n = 16 - m;          // is nonzero, set n = 0 and
		x = x >> m;          // shift x right 16.
							// Now x is of the form 0000xxxx.
		y = x - 0x100;       // If positions 8-15 are 0,
		m = (y >> 16) & 8;   // add 8 to n and shift x left 8.
		n = n + m;
		x = x << m;

		y = x - 0x1000;      // If positions 12-15 are 0,
		m = (y >> 16) & 4;   // add 4 to n and shift x left 4.
		n = n + m;
		x = x << m;

		y = x - 0x4000;      // If positions 14-15 are 0,
		m = (y >> 16) & 2;   // add 2 to n and shift x left 2.
		n = n + m;
		x = x << m;

		y = x >> 14;         // Set y = 0, 1, 2, or 3.
		m = y & ~(y >> 1);   // Set m = 0, 1, 2, or 2 resp.
		return unsigned(n + 2 - m);
	}

#endif//(GLM_COMPILER)

}//namespace glm