diff options
Diffstat (limited to 'external/include/glm/gtx/matrix_decompose.inl')
-rw-r--r-- | external/include/glm/gtx/matrix_decompose.inl | 115 |
1 files changed, 54 insertions, 61 deletions
diff --git a/external/include/glm/gtx/matrix_decompose.inl b/external/include/glm/gtx/matrix_decompose.inl index 7194e9d..02a5acc 100644 --- a/external/include/glm/gtx/matrix_decompose.inl +++ b/external/include/glm/gtx/matrix_decompose.inl @@ -1,22 +1,25 @@ /// @ref gtx_matrix_decompose /// @file glm/gtx/matrix_decompose.inl +#include "../gtc/constants.hpp" +#include "../gtc/epsilon.hpp" + namespace glm{ namespace detail { /// Make a linear combination of two vectors and return the result. // result = (a * ascl) + (b * bscl) - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> combine( - tvec3<T, P> const & a, - tvec3<T, P> const & b, + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> combine( + vec<3, T, Q> const& a, + vec<3, T, Q> const& b, T ascl, T bscl) { return (a * ascl) + (b * bscl); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> scale(tvec3<T, P> const& v, T desiredLength) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength) { return v * desiredLength / length(v); } @@ -26,13 +29,13 @@ namespace detail // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp // Decomposes the mode matrix to translations,rotation scale components - template <typename T, precision P> - GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, tquat<T, Q> & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective) { - tmat4x4<T, P> LocalMatrix(ModelMatrix); + mat<4, 4, T, Q> LocalMatrix(ModelMatrix); // Normalize the matrix. - if(LocalMatrix[3][3] == static_cast<T>(0)) + if(epsilonEqual(LocalMatrix[3][3], static_cast<T>(0), epsilon<T>())) return false; for(length_t i = 0; i < 4; ++i) @@ -41,21 +44,24 @@ namespace detail // perspectiveMatrix is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. - tmat4x4<T, P> PerspectiveMatrix(LocalMatrix); + mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix); for(length_t i = 0; i < 3; i++) PerspectiveMatrix[i][3] = static_cast<T>(0); PerspectiveMatrix[3][3] = static_cast<T>(1); /// TODO: Fixme! - if(determinant(PerspectiveMatrix) == static_cast<T>(0)) + if(epsilonEqual(determinant(PerspectiveMatrix), static_cast<T>(0), epsilon<T>())) return false; // First, isolate perspective. This is the messiest. - if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0)) + if( + epsilonNotEqual(LocalMatrix[0][3], static_cast<T>(0), epsilon<T>()) || + epsilonNotEqual(LocalMatrix[1][3], static_cast<T>(0), epsilon<T>()) || + epsilonNotEqual(LocalMatrix[2][3], static_cast<T>(0), epsilon<T>())) { // rightHandSide is the right hand side of the equation. - tvec4<T, P> RightHandSide; + vec<4, T, Q> RightHandSide; RightHandSide[0] = LocalMatrix[0][3]; RightHandSide[1] = LocalMatrix[1][3]; RightHandSide[2] = LocalMatrix[2][3]; @@ -64,8 +70,8 @@ namespace detail // Solve the equation by inverting PerspectiveMatrix and multiplying // rightHandSide by the inverse. (This is the easiest way, not // necessarily the best.) - tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); - tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); + mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); + mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); Perspective = TransposedInversePerspectiveMatrix * RightHandSide; // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); @@ -77,19 +83,19 @@ namespace detail else { // No perspective. - Perspective = tvec4<T, P>(0, 0, 0, 1); + Perspective = vec<4, T, Q>(0, 0, 0, 1); } // Next take care of translation (easy). - Translation = tvec3<T, P>(LocalMatrix[3]); - LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w); + Translation = vec<3, T, Q>(LocalMatrix[3]); + LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w); - tvec3<T, P> Row[3], Pdum3; + vec<3, T, Q> Row[3], Pdum3; // Now get scale and shear. for(length_t i = 0; i < 3; ++i) - for(int j = 0; j < 3; ++j) - Row[i][j] = LocalMatrix[i][j]; + for(length_t j = 0; j < 3; ++j) + Row[i][j] = LocalMatrix[i][j]; // Compute X scale factor and normalize first row. Scale.x = length(Row[0]);// v3Length(Row[0]); @@ -147,47 +153,34 @@ namespace detail // ret.rotateZ = 0; // } - T s, t, x, y, z, w; - - t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1); - - if(t > static_cast<T>(1e-4)) + int i, j, k = 0; + float root, trace = Row[0].x + Row[1].y + Row[2].z; + if(trace > static_cast<T>(0)) { - s = static_cast<T>(0.5) / sqrt(t); - w = static_cast<T>(0.25) / s; - x = (Row[2][1] - Row[1][2]) * s; - y = (Row[0][2] - Row[2][0]) * s; - z = (Row[1][0] - Row[0][1]) * s; - } - else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) - { - s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx - x = static_cast<T>(0.25) * s; - y = (Row[0][1] + Row[1][0]) / s; - z = (Row[0][2] + Row[2][0]) / s; - w = (Row[2][1] - Row[1][2]) / s; - } - else if(Row[1][1] > Row[2][2]) - { - s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy - x = (Row[0][1] + Row[1][0]) / s; - y = static_cast<T>(0.25) * s; - z = (Row[1][2] + Row[2][1]) / s; - w = (Row[0][2] - Row[2][0]) / s; - } + root = sqrt(trace + static_cast<T>(1.0)); + Orientation.w = static_cast<T>(0.5) * root; + root = static_cast<T>(0.5) / root; + Orientation.x = root * (Row[1].z - Row[2].y); + Orientation.y = root * (Row[2].x - Row[0].z); + Orientation.z = root * (Row[0].y - Row[1].x); + } // End if > 0 else - { - s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz - x = (Row[0][2] + Row[2][0]) / s; - y = (Row[1][2] + Row[2][1]) / s; - z = static_cast<T>(0.25) * s; - w = (Row[1][0] - Row[0][1]) / s; - } - - Orientation.x = x; - Orientation.y = y; - Orientation.z = z; - Orientation.w = w; + { + static int Next[3] = {1, 2, 0}; + i = 0; + if(Row[1].y > Row[0].x) i = 1; + if(Row[2].z > Row[i][i]) i = 2; + j = Next[i]; + k = Next[j]; + + root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast<T>(1.0)); + + Orientation[i] = static_cast<T>(0.5) * root; + root = static_cast<T>(0.5) / root; + Orientation[j] = root * (Row[i][j] + Row[j][i]); + Orientation[k] = root * (Row[i][k] + Row[k][i]); + Orientation.w = root * (Row[j][k] - Row[k][j]); + } // End if <= 0 return true; } |