diff options
Diffstat (limited to 'external/include/glm/gtc')
42 files changed, 10837 insertions, 0 deletions
diff --git a/external/include/glm/gtc/bitfield.hpp b/external/include/glm/gtc/bitfield.hpp new file mode 100644 index 0000000..38a38b6 --- /dev/null +++ b/external/include/glm/gtc/bitfield.hpp @@ -0,0 +1,207 @@ +/// @ref gtc_bitfield +/// @file glm/gtc/bitfield.hpp +/// +/// @see core (dependence) +/// @see gtc_bitfield (dependence) +/// +/// @defgroup gtc_bitfield GLM_GTC_bitfield +/// @ingroup gtc +/// +/// @brief Allow to perform bit operations on integer values +/// +/// <glm/gtc/bitfield.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../detail/type_int.hpp" +#include "../detail/_vectorize.hpp" +#include <limits> + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_bitfield extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_bitfield + /// @{ + + /// Build a mask of 'count' bits + /// + /// @see gtc_bitfield + template <typename genIUType> + GLM_FUNC_DECL genIUType mask(genIUType Bits); + + /// Build a mask of 'count' bits + /// + /// @see gtc_bitfield + template <typename T, precision P, template <typename, precision> class vecIUType> + GLM_FUNC_DECL vecIUType<T, P> mask(vecIUType<T, P> const & v); + + /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. + /// + /// @see gtc_bitfield + template <typename genIUType> + GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift); + + /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. + /// + /// @see gtc_bitfield + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift); + + /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. + /// + /// @see gtc_bitfield + template <typename genIUType> + GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift); + + /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. + /// + /// @see gtc_bitfield + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift); + + /// Set to 1 a range of bits. + /// + /// @see gtc_bitfield + template <typename genIUType> + GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount); + + /// Set to 1 a range of bits. + /// + /// @see gtc_bitfield + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount); + + /// Set to 0 a range of bits. + /// + /// @see gtc_bitfield + template <typename genIUType> + GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount); + + /// Set to 0 a range of bits. + /// + /// @see gtc_bitfield + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w); + + /// @} +} //namespace glm + +#include "bitfield.inl" diff --git a/external/include/glm/gtc/bitfield.inl b/external/include/glm/gtc/bitfield.inl new file mode 100644 index 0000000..490cfb3 --- /dev/null +++ b/external/include/glm/gtc/bitfield.inl @@ -0,0 +1,515 @@ +/// @ref gtc_bitfield +/// @file glm/gtc/bitfield.inl + +#include "../simd/integer.h" + +namespace glm{ +namespace detail +{ + template <typename PARAM, typename RET> + GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); + + template <typename PARAM, typename RET> + GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); + + template <typename PARAM, typename RET> + GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); + + template <> + GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) + { + glm::uint16 REG1(x); + glm::uint16 REG2(y); + + REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); + REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); + + REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); + REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); + + REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); + REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); + + return REG1 | (REG2 << 1); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) + { + glm::uint32 REG1(x); + glm::uint32 REG2(y); + + REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); + REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); + + REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); + REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); + + REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); + REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); + + REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); + REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); + + return REG1 | (REG2 << 1); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + + REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull); + REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull); + + REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull); + REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull); + + REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full); + REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full); + + REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull); + REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull); + + REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull); + REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull); + + return REG1 | (REG2 << 1); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) + { + glm::uint32 REG1(x); + glm::uint32 REG2(y); + glm::uint32 REG3(z); + + REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); + REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); + REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); + + REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); + REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); + REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); + + REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); + REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); + REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); + + REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); + REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); + REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); + + return REG1 | (REG2 << 1) | (REG3 << 2); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + glm::uint64 REG3(z); + + REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); + + REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); + + REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); + + REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); + + REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); + + return REG1 | (REG2 << 1) | (REG3 << 2); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + glm::uint64 REG3(z); + + REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); + + REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); + + REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); + + REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); + + REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); + + return REG1 | (REG2 << 1) | (REG3 << 2); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) + { + glm::uint32 REG1(x); + glm::uint32 REG2(y); + glm::uint32 REG3(z); + glm::uint32 REG4(w); + + REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); + REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); + REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); + REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); + + REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); + REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); + REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); + REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); + + REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); + REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); + REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); + REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); + + return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); + } + + template <> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + glm::uint64 REG3(z); + glm::uint64 REG4(w); + + REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull); + REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull); + REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull); + REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull); + + REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full); + REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full); + REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full); + REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full); + + REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull); + REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull); + REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull); + REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull); + + REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull); + REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull); + REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull); + REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull); + + return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); + } +}//namespace detail + + template <typename genIUType> + GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values"); + + return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1); + } + + template <typename T, precision P, template <typename, precision> class vecIUType> + GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values"); + + return detail::functor1<T, T, P, vecIUType>::call(mask, v); + } + + template <typename genIType> + GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values"); + + int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); + return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values"); + + int const BitSize = static_cast<int>(sizeof(T) * 8); + return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift)); + } + + template <typename genIType> + GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); + + int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); + return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const& In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); + + int const BitSize = static_cast<int>(sizeof(T) * 8); + return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift)); + } + + template <typename genIUType> + GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) + { + return Value | static_cast<genIUType>(mask(BitCount) << FirstBit); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const& Value, int FirstBit, int BitCount) + { + return Value | static_cast<T>(mask(BitCount) << FirstBit); + } + + template <typename genIUType> + GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) + { + return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const& Value, int FirstBit, int BitCount) + { + return Value & static_cast<T>(~(mask(BitCount) << FirstBit)); + } + + GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) + { + union sign8 + { + int8 i; + uint8 u; + } sign_x, sign_y; + + union sign16 + { + int16 i; + uint16 u; + } result; + + sign_x.i = x; + sign_y.i = y; + result.u = bitfieldInterleave(sign_x.u, sign_y.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) + { + return detail::bitfieldInterleave<uint8, uint16>(x, y); + } + + GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) + { + union sign16 + { + int16 i; + uint16 u; + } sign_x, sign_y; + + union sign32 + { + int32 i; + uint32 u; + } result; + + sign_x.i = x; + sign_y.i = y; + result.u = bitfieldInterleave(sign_x.u, sign_y.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) + { + return detail::bitfieldInterleave<uint16, uint32>(x, y); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) + { + union sign32 + { + int32 i; + uint32 u; + } sign_x, sign_y; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + result.u = bitfieldInterleave(sign_x.u, sign_y.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) + { + return detail::bitfieldInterleave<uint32, uint64>(x, y); + } + + GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) + { + union sign8 + { + int8 i; + uint8 u; + } sign_x, sign_y, sign_z; + + union sign32 + { + int32 i; + uint32 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) + { + return detail::bitfieldInterleave<uint8, uint32>(x, y, z); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) + { + union sign16 + { + int16 i; + uint16 u; + } sign_x, sign_y, sign_z; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) + { + return detail::bitfieldInterleave<uint32, uint64>(x, y, z); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) + { + union sign16 + { + int32 i; + uint32 u; + } sign_x, sign_y, sign_z; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) + { + return detail::bitfieldInterleave<uint32, uint64>(x, y, z); + } + + GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) + { + union sign8 + { + int8 i; + uint8 u; + } sign_x, sign_y, sign_z, sign_w; + + union sign32 + { + int32 i; + uint32 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + sign_w.i = w; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) + { + return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) + { + union sign16 + { + int16 i; + uint16 u; + } sign_x, sign_y, sign_z, sign_w; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + sign_w.i = w; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) + { + return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w); + } +}//namespace glm diff --git a/external/include/glm/gtc/color_encoding.inl b/external/include/glm/gtc/color_encoding.inl new file mode 100644 index 0000000..68570cb --- /dev/null +++ b/external/include/glm/gtc/color_encoding.inl @@ -0,0 +1,65 @@ +/// @ref gtc_color_encoding +/// @file glm/gtc/color_encoding.inl + +namespace glm +{ + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD65XYZ(tvec3<T, P> const& ColorLinearSRGB) + { + tvec3<T, P> const M(0.490f, 0.17697f, 0.2f); + tvec3<T, P> const N(0.31f, 0.8124f, 0.01063f); + tvec3<T, P> const O(0.490f, 0.01f, 0.99f); + + return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast<T>(5.650675255693055f); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToLinearSRGB(tvec3<T, P> const& ColorD65XYZ) + { + tvec3<T, P> const M(0.41847f, -0.091169f, 0.0009209f); + tvec3<T, P> const N(-0.15866f, 0.25243f, 0.015708f); + tvec3<T, P> const O(0.0009209f, -0.0025498f, 0.1786f); + + return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD50XYZ(tvec3<T, P> const& ColorLinearSRGB) + { + tvec3<T, P> const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f); + tvec3<T, P> const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f); + tvec3<T, P> const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f); + + return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToLinearSRGB(tvec3<T, P> const& ColorD50XYZ) + { + tvec3<T, P> const M(); + tvec3<T, P> const N(); + tvec3<T, P> const O(); + + return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToD50XYZ(tvec3<T, P> const& ColorD65XYZ) + { + tvec3<T, P> const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f); + tvec3<T, P> const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f); + tvec3<T, P> const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f); + + return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToD65XYZ(tvec3<T, P> const& ColorD50XYZ) + { + tvec3<T, P> const M(); + tvec3<T, P> const N(); + tvec3<T, P> const O(); + + return M * ColorD50XYZ + N * ColorD50XYZ + O * ColorD50XYZ; + } +}//namespace glm diff --git a/external/include/glm/gtc/color_space.hpp b/external/include/glm/gtc/color_space.hpp new file mode 100644 index 0000000..08ece8f --- /dev/null +++ b/external/include/glm/gtc/color_space.hpp @@ -0,0 +1,56 @@ +/// @ref gtc_color_space +/// @file glm/gtc/color_space.hpp +/// +/// @see core (dependence) +/// @see gtc_color_space (dependence) +/// +/// @defgroup gtc_color_space GLM_GTC_color_space +/// @ingroup gtc +/// +/// @brief Allow to perform bit operations on integer values +/// +/// <glm/gtc/color.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../exponential.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include <limits> + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_color_space extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_color_space + /// @{ + + /// Convert a linear color to sRGB color using a standard gamma correction. + /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear); + + /// Convert a linear color to sRGB color using a custom gamma correction. + /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear, T Gamma); + + /// Convert a sRGB color to linear color using a standard gamma correction. + /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB); + + /// Convert a sRGB color to linear color using a custom gamma correction. + // IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB, T Gamma); + + /// @} +} //namespace glm + +#include "color_space.inl" diff --git a/external/include/glm/gtc/color_space.inl b/external/include/glm/gtc/color_space.inl new file mode 100644 index 0000000..c9a44ef --- /dev/null +++ b/external/include/glm/gtc/color_space.inl @@ -0,0 +1,75 @@ +/// @ref gtc_color_space +/// @file glm/gtc/color_space.inl + +namespace glm{ +namespace detail +{ + template <typename T, precision P, template <typename, precision> class vecType> + struct compute_rgbToSrgb + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorRGB, T GammaCorrection) + { + vecType<T, P> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1))); + + return mix( + pow(ClampedColor, vecType<T, P>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055), + ClampedColor * static_cast<T>(12.92), + lessThan(ClampedColor, vecType<T, P>(static_cast<T>(0.0031308)))); + } + }; + + template <typename T, precision P> + struct compute_rgbToSrgb<T, P, tvec4> + { + GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorRGB, T GammaCorrection) + { + return tvec4<T, P>(compute_rgbToSrgb<T, P, tvec3>::call(tvec3<T, P>(ColorRGB), GammaCorrection), ColorRGB.w); + } + }; + + template <typename T, precision P, template <typename, precision> class vecType> + struct compute_srgbToRgb + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorSRGB, T Gamma) + { + return mix( + pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vecType<T, P>(Gamma)), + ColorSRGB * static_cast<T>(0.07739938080495356037151702786378), + lessThanEqual(ColorSRGB, vecType<T, P>(static_cast<T>(0.04045)))); + } + }; + + template <typename T, precision P> + struct compute_srgbToRgb<T, P, tvec4> + { + GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorSRGB, T Gamma) + { + return tvec4<T, P>(compute_srgbToRgb<T, P, tvec3>::call(tvec3<T, P>(ColorSRGB), Gamma), ColorSRGB.w); + } + }; +}//namespace detail + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear) + { + return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(0.41666)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear, T Gamma) + { + return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(1) / Gamma); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB) + { + return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, static_cast<T>(2.4)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB, T Gamma) + { + return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, Gamma); + } +}//namespace glm diff --git a/external/include/glm/gtc/constants.hpp b/external/include/glm/gtc/constants.hpp new file mode 100644 index 0000000..d3358c7 --- /dev/null +++ b/external/include/glm/gtc/constants.hpp @@ -0,0 +1,176 @@ +/// @ref gtc_constants +/// @file glm/gtc/constants.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// +/// @defgroup gtc_constants GLM_GTC_constants +/// @ingroup gtc +/// +/// @brief Provide a list of constants and precomputed useful values. +/// +/// <glm/gtc/constants.hpp> need to be included to use these features. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_constants extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_constants + /// @{ + + /// Return the epsilon constant for floating point types. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon(); + + /// Return 0. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType zero(); + + /// Return 1. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType one(); + + /// Return the pi constant. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType pi(); + + /// Return pi * 2. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi(); + + /// Return square root of pi. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi(); + + /// Return pi / 2. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi(); + + /// Return pi / 2 * 3. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi(); + + /// Return pi / 4. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi(); + + /// Return 1 / pi. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi(); + + /// Return 1 / (pi * 2). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi(); + + /// Return 2 / pi. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi(); + + /// Return 4 / pi. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi(); + + /// Return 2 / sqrt(pi). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi(); + + /// Return 1 / sqrt(2). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two(); + + /// Return sqrt(pi / 2). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi(); + + /// Return sqrt(2 * pi). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi(); + + /// Return sqrt(ln(4)). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four(); + + /// Return e constant. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType e(); + + /// Return Euler's constant. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType euler(); + + /// Return sqrt(2). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_two(); + + /// Return sqrt(3). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_three(); + + /// Return sqrt(5). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType root_five(); + + /// Return ln(2). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two(); + + /// Return ln(10). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten(); + + /// Return ln(ln(2)). + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two(); + + /// Return 1 / 3. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType third(); + + /// Return 2 / 3. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds(); + + /// Return the golden ratio constant. + /// @see gtc_constants + template <typename genType> + GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio(); + + /// @} +} //namespace glm + +#include "constants.inl" diff --git a/external/include/glm/gtc/constants.inl b/external/include/glm/gtc/constants.inl new file mode 100644 index 0000000..cb451d0 --- /dev/null +++ b/external/include/glm/gtc/constants.inl @@ -0,0 +1,181 @@ +/// @ref gtc_constants +/// @file glm/gtc/constants.inl + +#include <limits> + +namespace glm +{ + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon() + { + return std::numeric_limits<genType>::epsilon(); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero() + { + return genType(0); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one() + { + return genType(1); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi() + { + return genType(3.14159265358979323846264338327950288); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi() + { + return genType(6.28318530717958647692528676655900576); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi() + { + return genType(1.772453850905516027); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi() + { + return genType(1.57079632679489661923132169163975144); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi() + { + return genType(4.71238898038468985769396507491925432); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi() + { + return genType(0.785398163397448309615660845819875721); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi() + { + return genType(0.318309886183790671537767526745028724); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi() + { + return genType(0.159154943091895335768883763372514362); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi() + { + return genType(0.636619772367581343075535053490057448); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi() + { + return genType(1.273239544735162686151070106980114898); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi() + { + return genType(1.12837916709551257389615890312154517); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two() + { + return genType(0.707106781186547524400844362104849039); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi() + { + return genType(1.253314137315500251); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi() + { + return genType(2.506628274631000502); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four() + { + return genType(1.17741002251547469); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e() + { + return genType(2.71828182845904523536); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler() + { + return genType(0.577215664901532860606); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two() + { + return genType(1.41421356237309504880168872420969808); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three() + { + return genType(1.73205080756887729352744634150587236); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five() + { + return genType(2.23606797749978969640917366873127623); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two() + { + return genType(0.693147180559945309417232121458176568); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten() + { + return genType(2.30258509299404568401799145468436421); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two() + { + return genType(-0.3665129205816643); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third() + { + return genType(0.3333333333333333333333333333333333333333); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds() + { + return genType(0.666666666666666666666666666666666666667); + } + + template <typename genType> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio() + { + return genType(1.61803398874989484820458683436563811); + } +} //namespace glm diff --git a/external/include/glm/gtc/epsilon.hpp b/external/include/glm/gtc/epsilon.hpp new file mode 100644 index 0000000..289f5b7 --- /dev/null +++ b/external/include/glm/gtc/epsilon.hpp @@ -0,0 +1,73 @@ +/// @ref gtc_epsilon +/// @file glm/gtc/epsilon.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_epsilon GLM_GTC_epsilon +/// @ingroup gtc +/// +/// @brief Comparison functions for a user defined epsilon values. +/// +/// <glm/gtc/epsilon.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_epsilon extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_epsilon + /// @{ + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @see gtc_epsilon + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<bool, P> epsilonEqual( + vecType<T, P> const & x, + vecType<T, P> const & y, + T const & epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @see gtc_epsilon + template <typename genType> + GLM_FUNC_DECL bool epsilonEqual( + genType const & x, + genType const & y, + genType const & epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is not satisfied. + /// + /// @see gtc_epsilon + template <typename genType> + GLM_FUNC_DECL typename genType::boolType epsilonNotEqual( + genType const & x, + genType const & y, + typename genType::value_type const & epsilon); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// True if this expression is not satisfied. + /// + /// @see gtc_epsilon + template <typename genType> + GLM_FUNC_DECL bool epsilonNotEqual( + genType const & x, + genType const & y, + genType const & epsilon); + + /// @} +}//namespace glm + +#include "epsilon.inl" diff --git a/external/include/glm/gtc/epsilon.inl b/external/include/glm/gtc/epsilon.inl new file mode 100644 index 0000000..b5577d9 --- /dev/null +++ b/external/include/glm/gtc/epsilon.inl @@ -0,0 +1,125 @@ +/// @ref gtc_epsilon +/// @file glm/gtc/epsilon.inl + +// Dependency: +#include "quaternion.hpp" +#include "../vector_relational.hpp" +#include "../common.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" + +namespace glm +{ + template <> + GLM_FUNC_QUALIFIER bool epsilonEqual + ( + float const & x, + float const & y, + float const & epsilon + ) + { + return abs(x - y) < epsilon; + } + + template <> + GLM_FUNC_QUALIFIER bool epsilonEqual + ( + double const & x, + double const & y, + double const & epsilon + ) + { + return abs(x - y) < epsilon; + } + + template <> + GLM_FUNC_QUALIFIER bool epsilonNotEqual + ( + float const & x, + float const & y, + float const & epsilon + ) + { + return abs(x - y) >= epsilon; + } + + template <> + GLM_FUNC_QUALIFIER bool epsilonNotEqual + ( + double const & x, + double const & y, + double const & epsilon + ) + { + return abs(x - y) >= epsilon; + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual + ( + vecType<T, P> const & x, + vecType<T, P> const & y, + T const & epsilon + ) + { + return lessThan(abs(x - y), vecType<T, P>(epsilon)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual + ( + vecType<T, P> const & x, + vecType<T, P> const & y, + vecType<T, P> const & epsilon + ) + { + return lessThan(abs(x - y), vecType<T, P>(epsilon)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual + ( + vecType<T, P> const & x, + vecType<T, P> const & y, + T const & epsilon + ) + { + return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual + ( + vecType<T, P> const & x, + vecType<T, P> const & y, + vecType<T, P> const & epsilon + ) + { + return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonEqual + ( + tquat<T, P> const & x, + tquat<T, P> const & y, + T const & epsilon + ) + { + tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return lessThan(abs(v), tvec4<T, P>(epsilon)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonNotEqual + ( + tquat<T, P> const & x, + tquat<T, P> const & y, + T const & epsilon + ) + { + tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return greaterThanEqual(abs(v), tvec4<T, P>(epsilon)); + } +}//namespace glm diff --git a/external/include/glm/gtc/functions.hpp b/external/include/glm/gtc/functions.hpp new file mode 100644 index 0000000..ab1590b --- /dev/null +++ b/external/include/glm/gtc/functions.hpp @@ -0,0 +1,53 @@ +/// @ref gtc_functions +/// @file glm/gtc/functions.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_functions GLM_GTC_functions +/// @ingroup gtc +/// +/// @brief List of useful common functions. +/// +/// <glm/gtc/functions.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../detail/type_vec2.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_functions extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_functions + /// @{ + + /// 1D gauss function + /// + /// @see gtc_epsilon + template <typename T> + GLM_FUNC_DECL T gauss( + T x, + T ExpectedValue, + T StandardDeviation); + + /// 2D gauss function + /// + /// @see gtc_epsilon + template <typename T, precision P> + GLM_FUNC_DECL T gauss( + tvec2<T, P> const& Coord, + tvec2<T, P> const& ExpectedValue, + tvec2<T, P> const& StandardDeviation); + + /// @} +}//namespace glm + +#include "functions.inl" + diff --git a/external/include/glm/gtc/functions.inl b/external/include/glm/gtc/functions.inl new file mode 100644 index 0000000..1dbc496 --- /dev/null +++ b/external/include/glm/gtc/functions.inl @@ -0,0 +1,31 @@ +/// @ref gtc_functions +/// @file glm/gtc/functions.inl + +#include "../detail/func_exponential.hpp" + +namespace glm +{ + template <typename T> + GLM_FUNC_QUALIFIER T gauss + ( + T x, + T ExpectedValue, + T StandardDeviation + ) + { + return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast<T>(6.28318530717958647692528676655900576))); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T gauss + ( + tvec2<T, P> const& Coord, + tvec2<T, P> const& ExpectedValue, + tvec2<T, P> const& StandardDeviation + ) + { + tvec2<T, P> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation); + return exp(-(Squared.x + Squared.y)); + } +}//namespace glm + diff --git a/external/include/glm/gtc/integer.hpp b/external/include/glm/gtc/integer.hpp new file mode 100644 index 0000000..69ffb1d --- /dev/null +++ b/external/include/glm/gtc/integer.hpp @@ -0,0 +1,102 @@ +/// @ref gtc_integer +/// @file glm/gtc/integer.hpp +/// +/// @see core (dependence) +/// @see gtc_integer (dependence) +/// +/// @defgroup gtc_integer GLM_GTC_integer +/// @ingroup gtc +/// +/// @brief Allow to perform bit operations on integer values +/// +/// <glm/gtc/integer.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../detail/func_common.hpp" +#include "../detail/func_integer.hpp" +#include "../detail/func_exponential.hpp" +#include <limits> + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_integer + /// @{ + + /// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size. + /// @see gtc_integer + template <typename genIUType> + GLM_FUNC_DECL genIUType log2(genIUType x); + + /// Modulus. Returns x % y + /// for each component in x using the floating point value y. + /// + /// @tparam genIUType Integer-point scalar or vector types. + /// + /// @see gtc_integer + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> + template <typename genIUType> + GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y); + + /// Modulus. Returns x % y + /// for each component in x using the floating point value y. + /// + /// @tparam T Integer scalar types. + /// @tparam vecType vector types. + /// + /// @see gtc_integer + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, T y); + + /// Modulus. Returns x % y + /// for each component in x using the floating point value y. + /// + /// @tparam T Integer scalar types. + /// @tparam vecType vector types. + /// + /// @see gtc_integer + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// + /// @param x The values of the argument must be greater or equal to zero. + /// @tparam T floating point scalar types. + /// @tparam vecType vector types. + /// + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> + /// @see gtc_integer + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<int, P> iround(vecType<T, P> const & x); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// + /// @param x The values of the argument must be greater or equal to zero. + /// @tparam T floating point scalar types. + /// @tparam vecType vector types. + /// + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> + /// @see gtc_integer + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<uint, P> uround(vecType<T, P> const & x); + + /// @} +} //namespace glm + +#include "integer.inl" diff --git a/external/include/glm/gtc/integer.inl b/external/include/glm/gtc/integer.inl new file mode 100644 index 0000000..7ce2918 --- /dev/null +++ b/external/include/glm/gtc/integer.inl @@ -0,0 +1,71 @@ +/// @ref gtc_integer +/// @file glm/gtc/integer.inl + +namespace glm{ +namespace detail +{ + template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> + struct compute_log2<T, P, vecType, false, Aligned> + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec) + { + //Equivalent to return findMSB(vec); but save one function call in ASM with VC + //return findMSB(vec); + return vecType<T, P>(detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(vec)); + } + }; + +# if GLM_HAS_BITSCAN_WINDOWS + template <precision P, bool Aligned> + struct compute_log2<int, P, tvec4, false, Aligned> + { + GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & vec) + { + tvec4<int, P> Result(glm::uninitialize); + + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), vec.x); + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), vec.y); + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), vec.z); + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), vec.w); + + return Result; + } + }; +# endif//GLM_HAS_BITSCAN_WINDOWS +}//namespace detail + template <typename genType> + GLM_FUNC_QUALIFIER int iround(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'iround' only accept floating-point inputs"); + assert(static_cast<genType>(0.0) <= x); + + return static_cast<int>(x + static_cast<genType>(0.5)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<int, P> iround(vecType<T, P> const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'iround' only accept floating-point inputs"); + assert(all(lessThanEqual(vecType<T, P>(0), x))); + + return vecType<int, P>(x + static_cast<T>(0.5)); + } + + template <typename genType> + GLM_FUNC_QUALIFIER uint uround(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'uround' only accept floating-point inputs"); + assert(static_cast<genType>(0.0) <= x); + + return static_cast<uint>(x + static_cast<genType>(0.5)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<uint, P> uround(vecType<T, P> const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'uround' only accept floating-point inputs"); + assert(all(lessThanEqual(vecType<T, P>(0), x))); + + return vecType<uint, P>(x + static_cast<T>(0.5)); + } +}//namespace glm diff --git a/external/include/glm/gtc/matrix_access.hpp b/external/include/glm/gtc/matrix_access.hpp new file mode 100644 index 0000000..e4156ef --- /dev/null +++ b/external/include/glm/gtc/matrix_access.hpp @@ -0,0 +1,59 @@ +/// @ref gtc_matrix_access +/// @file glm/gtc/matrix_access.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_matrix_access GLM_GTC_matrix_access +/// @ingroup gtc +/// +/// Defines functions to access rows or columns of a matrix easily. +/// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_access extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_access + /// @{ + + /// Get a specific row of a matrix. + /// @see gtc_matrix_access + template <typename genType> + GLM_FUNC_DECL typename genType::row_type row( + genType const & m, + length_t index); + + /// Set a specific row to a matrix. + /// @see gtc_matrix_access + template <typename genType> + GLM_FUNC_DECL genType row( + genType const & m, + length_t index, + typename genType::row_type const & x); + + /// Get a specific column of a matrix. + /// @see gtc_matrix_access + template <typename genType> + GLM_FUNC_DECL typename genType::col_type column( + genType const & m, + length_t index); + + /// Set a specific column to a matrix. + /// @see gtc_matrix_access + template <typename genType> + GLM_FUNC_DECL genType column( + genType const & m, + length_t index, + typename genType::col_type const & x); + + /// @} +}//namespace glm + +#include "matrix_access.inl" diff --git a/external/include/glm/gtc/matrix_access.inl b/external/include/glm/gtc/matrix_access.inl new file mode 100644 index 0000000..831b940 --- /dev/null +++ b/external/include/glm/gtc/matrix_access.inl @@ -0,0 +1,63 @@ +/// @ref gtc_matrix_access +/// @file glm/gtc/matrix_access.inl + +namespace glm +{ + template <typename genType> + GLM_FUNC_QUALIFIER genType row + ( + genType const & m, + length_t index, + typename genType::row_type const & x + ) + { + assert(index >= 0 && index < m[0].length()); + + genType Result = m; + for(length_t i = 0; i < m.length(); ++i) + Result[i][index] = x[i]; + return Result; + } + + template <typename genType> + GLM_FUNC_QUALIFIER typename genType::row_type row + ( + genType const & m, + length_t index + ) + { + assert(index >= 0 && index < m[0].length()); + + typename genType::row_type Result; + for(length_t i = 0; i < m.length(); ++i) + Result[i] = m[i][index]; + return Result; + } + + template <typename genType> + GLM_FUNC_QUALIFIER genType column + ( + genType const & m, + length_t index, + typename genType::col_type const & x + ) + { + assert(index >= 0 && index < m.length()); + + genType Result = m; + Result[index] = x; + return Result; + } + + template <typename genType> + GLM_FUNC_QUALIFIER typename genType::col_type column + ( + genType const & m, + length_t index + ) + { + assert(index >= 0 && index < m.length()); + + return m[index]; + } +}//namespace glm diff --git a/external/include/glm/gtc/matrix_integer.hpp b/external/include/glm/gtc/matrix_integer.hpp new file mode 100644 index 0000000..fdc816d --- /dev/null +++ b/external/include/glm/gtc/matrix_integer.hpp @@ -0,0 +1,486 @@ +/// @ref gtc_matrix_integer +/// @file glm/gtc/matrix_integer.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer +/// @ingroup gtc +/// +/// Defines a number of matrices with integer types. +/// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../mat2x2.hpp" +#include "../mat2x3.hpp" +#include "../mat2x4.hpp" +#include "../mat3x2.hpp" +#include "../mat3x3.hpp" +#include "../mat3x4.hpp" +#include "../mat4x2.hpp" +#include "../mat4x3.hpp" +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_integer + /// @{ + + /// High-precision signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<int, highp> highp_imat2; + + /// High-precision signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<int, highp> highp_imat3; + + /// High-precision signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<int, highp> highp_imat4; + + /// High-precision signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<int, highp> highp_imat2x2; + + /// High-precision signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef tmat2x3<int, highp> highp_imat2x3; + + /// High-precision signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef tmat2x4<int, highp> highp_imat2x4; + + /// High-precision signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef tmat3x2<int, highp> highp_imat3x2; + + /// High-precision signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<int, highp> highp_imat3x3; + + /// High-precision signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef tmat3x4<int, highp> highp_imat3x4; + + /// High-precision signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef tmat4x2<int, highp> highp_imat4x2; + + /// High-precision signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef tmat4x3<int, highp> highp_imat4x3; + + /// High-precision signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<int, highp> highp_imat4x4; + + + /// Medium-precision signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<int, mediump> mediump_imat2; + + /// Medium-precision signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<int, mediump> mediump_imat3; + + /// Medium-precision signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<int, mediump> mediump_imat4; + + + /// Medium-precision signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<int, mediump> mediump_imat2x2; + + /// Medium-precision signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef tmat2x3<int, mediump> mediump_imat2x3; + + /// Medium-precision signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef tmat2x4<int, mediump> mediump_imat2x4; + + /// Medium-precision signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef tmat3x2<int, mediump> mediump_imat3x2; + + /// Medium-precision signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<int, mediump> mediump_imat3x3; + + /// Medium-precision signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef tmat3x4<int, mediump> mediump_imat3x4; + + /// Medium-precision signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef tmat4x2<int, mediump> mediump_imat4x2; + + /// Medium-precision signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef tmat4x3<int, mediump> mediump_imat4x3; + + /// Medium-precision signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<int, mediump> mediump_imat4x4; + + + /// Low-precision signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<int, lowp> lowp_imat2; + + /// Low-precision signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<int, lowp> lowp_imat3; + + /// Low-precision signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<int, lowp> lowp_imat4; + + + /// Low-precision signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<int, lowp> lowp_imat2x2; + + /// Low-precision signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef tmat2x3<int, lowp> lowp_imat2x3; + + /// Low-precision signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef tmat2x4<int, lowp> lowp_imat2x4; + + /// Low-precision signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef tmat3x2<int, lowp> lowp_imat3x2; + + /// Low-precision signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<int, lowp> lowp_imat3x3; + + /// Low-precision signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef tmat3x4<int, lowp> lowp_imat3x4; + + /// Low-precision signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef tmat4x2<int, lowp> lowp_imat4x2; + + /// Low-precision signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef tmat4x3<int, lowp> lowp_imat4x3; + + /// Low-precision signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<int, lowp> lowp_imat4x4; + + + /// High-precision unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<uint, highp> highp_umat2; + + /// High-precision unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<uint, highp> highp_umat3; + + /// High-precision unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<uint, highp> highp_umat4; + + /// High-precision unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<uint, highp> highp_umat2x2; + + /// High-precision unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef tmat2x3<uint, highp> highp_umat2x3; + + /// High-precision unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef tmat2x4<uint, highp> highp_umat2x4; + + /// High-precision unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef tmat3x2<uint, highp> highp_umat3x2; + + /// High-precision unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<uint, highp> highp_umat3x3; + + /// High-precision unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef tmat3x4<uint, highp> highp_umat3x4; + + /// High-precision unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef tmat4x2<uint, highp> highp_umat4x2; + + /// High-precision unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef tmat4x3<uint, highp> highp_umat4x3; + + /// High-precision unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<uint, highp> highp_umat4x4; + + + /// Medium-precision unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<uint, mediump> mediump_umat2; + + /// Medium-precision unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<uint, mediump> mediump_umat3; + + /// Medium-precision unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<uint, mediump> mediump_umat4; + + + /// Medium-precision unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<uint, mediump> mediump_umat2x2; + + /// Medium-precision unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef tmat2x3<uint, mediump> mediump_umat2x3; + + /// Medium-precision unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef tmat2x4<uint, mediump> mediump_umat2x4; + + /// Medium-precision unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef tmat3x2<uint, mediump> mediump_umat3x2; + + /// Medium-precision unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<uint, mediump> mediump_umat3x3; + + /// Medium-precision unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef tmat3x4<uint, mediump> mediump_umat3x4; + + /// Medium-precision unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef tmat4x2<uint, mediump> mediump_umat4x2; + + /// Medium-precision unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef tmat4x3<uint, mediump> mediump_umat4x3; + + /// Medium-precision unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<uint, mediump> mediump_umat4x4; + + + /// Low-precision unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<uint, lowp> lowp_umat2; + + /// Low-precision unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<uint, lowp> lowp_umat3; + + /// Low-precision unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<uint, lowp> lowp_umat4; + + + /// Low-precision unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef tmat2x2<uint, lowp> lowp_umat2x2; + + /// Low-precision unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef tmat2x3<uint, lowp> lowp_umat2x3; + + /// Low-precision unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef tmat2x4<uint, lowp> lowp_umat2x4; + + /// Low-precision unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef tmat3x2<uint, lowp> lowp_umat3x2; + + /// Low-precision unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef tmat3x3<uint, lowp> lowp_umat3x3; + + /// Low-precision unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef tmat3x4<uint, lowp> lowp_umat3x4; + + /// Low-precision unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef tmat4x2<uint, lowp> lowp_umat4x2; + + /// Low-precision unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef tmat4x3<uint, lowp> lowp_umat4x3; + + /// Low-precision unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef tmat4x4<uint, lowp> lowp_umat4x4; + +#if(defined(GLM_PRECISION_HIGHP_INT)) + typedef highp_imat2 imat2; + typedef highp_imat3 imat3; + typedef highp_imat4 imat4; + typedef highp_imat2x2 imat2x2; + typedef highp_imat2x3 imat2x3; + typedef highp_imat2x4 imat2x4; + typedef highp_imat3x2 imat3x2; + typedef highp_imat3x3 imat3x3; + typedef highp_imat3x4 imat3x4; + typedef highp_imat4x2 imat4x2; + typedef highp_imat4x3 imat4x3; + typedef highp_imat4x4 imat4x4; +#elif(defined(GLM_PRECISION_LOWP_INT)) + typedef lowp_imat2 imat2; + typedef lowp_imat3 imat3; + typedef lowp_imat4 imat4; + typedef lowp_imat2x2 imat2x2; + typedef lowp_imat2x3 imat2x3; + typedef lowp_imat2x4 imat2x4; + typedef lowp_imat3x2 imat3x2; + typedef lowp_imat3x3 imat3x3; + typedef lowp_imat3x4 imat3x4; + typedef lowp_imat4x2 imat4x2; + typedef lowp_imat4x3 imat4x3; + typedef lowp_imat4x4 imat4x4; +#else //if(defined(GLM_PRECISION_MEDIUMP_INT)) + + /// Signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat2 imat2; + + /// Signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat3 imat3; + + /// Signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat4 imat4; + + /// Signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat2x2 imat2x2; + + /// Signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat2x3 imat2x3; + + /// Signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat2x4 imat2x4; + + /// Signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat3x2 imat3x2; + + /// Signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat3x3 imat3x3; + + /// Signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat3x4 imat3x4; + + /// Signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat4x2 imat4x2; + + /// Signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat4x3 imat4x3; + + /// Signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_imat4x4 imat4x4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_HIGHP_UINT)) + typedef highp_umat2 umat2; + typedef highp_umat3 umat3; + typedef highp_umat4 umat4; + typedef highp_umat2x2 umat2x2; + typedef highp_umat2x3 umat2x3; + typedef highp_umat2x4 umat2x4; + typedef highp_umat3x2 umat3x2; + typedef highp_umat3x3 umat3x3; + typedef highp_umat3x4 umat3x4; + typedef highp_umat4x2 umat4x2; + typedef highp_umat4x3 umat4x3; + typedef highp_umat4x4 umat4x4; +#elif(defined(GLM_PRECISION_LOWP_UINT)) + typedef lowp_umat2 umat2; + typedef lowp_umat3 umat3; + typedef lowp_umat4 umat4; + typedef lowp_umat2x2 umat2x2; + typedef lowp_umat2x3 umat2x3; + typedef lowp_umat2x4 umat2x4; + typedef lowp_umat3x2 umat3x2; + typedef lowp_umat3x3 umat3x3; + typedef lowp_umat3x4 umat3x4; + typedef lowp_umat4x2 umat4x2; + typedef lowp_umat4x3 umat4x3; + typedef lowp_umat4x4 umat4x4; +#else //if(defined(GLM_PRECISION_MEDIUMP_UINT)) + + /// Unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat2 umat2; + + /// Unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat3 umat3; + + /// Unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat4 umat4; + + /// Unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat2x2 umat2x2; + + /// Unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat2x3 umat2x3; + + /// Unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat2x4 umat2x4; + + /// Unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat3x2 umat3x2; + + /// Unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat3x3 umat3x3; + + /// Unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat3x4 umat3x4; + + /// Unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat4x2 umat4x2; + + /// Unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat4x3 umat4x3; + + /// Unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mediump_umat4x4 umat4x4; +#endif//GLM_PRECISION + + /// @} +}//namespace glm diff --git a/external/include/glm/gtc/matrix_inverse.hpp b/external/include/glm/gtc/matrix_inverse.hpp new file mode 100644 index 0000000..589381d --- /dev/null +++ b/external/include/glm/gtc/matrix_inverse.hpp @@ -0,0 +1,49 @@ +/// @ref gtc_matrix_inverse +/// @file glm/gtc/matrix_inverse.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse +/// @ingroup gtc +/// +/// Defines additional matrix inverting functions. +/// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../matrix.hpp" +#include "../mat2x2.hpp" +#include "../mat3x3.hpp" +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_inverse extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_inverse + /// @{ + + /// Fast matrix inverse for affine matrix. + /// + /// @param m Input matrix to invert. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. + /// @see gtc_matrix_inverse + template <typename genType> + GLM_FUNC_DECL genType affineInverse(genType const & m); + + /// Compute the inverse transpose of a matrix. + /// + /// @param m Input matrix to invert transpose. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. + /// @see gtc_matrix_inverse + template <typename genType> + GLM_FUNC_DECL genType inverseTranspose(genType const & m); + + /// @} +}//namespace glm + +#include "matrix_inverse.inl" diff --git a/external/include/glm/gtc/matrix_inverse.inl b/external/include/glm/gtc/matrix_inverse.inl new file mode 100644 index 0000000..36c9bf7 --- /dev/null +++ b/external/include/glm/gtc/matrix_inverse.inl @@ -0,0 +1,120 @@ +/// @ref gtc_matrix_inverse +/// @file glm/gtc/matrix_inverse.inl + +namespace glm +{ + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m) + { + tmat2x2<T, P> const Inv(inverse(tmat2x2<T, P>(m))); + + return tmat3x3<T, P>( + tvec3<T, P>(Inv[0], static_cast<T>(0)), + tvec3<T, P>(Inv[1], static_cast<T>(0)), + tvec3<T, P>(-Inv * tvec2<T, P>(m[2]), static_cast<T>(1))); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m) + { + tmat3x3<T, P> const Inv(inverse(tmat3x3<T, P>(m))); + + return tmat4x4<T, P>( + tvec4<T, P>(Inv[0], static_cast<T>(0)), + tvec4<T, P>(Inv[1], static_cast<T>(0)), + tvec4<T, P>(Inv[2], static_cast<T>(0)), + tvec4<T, P>(-Inv * tvec3<T, P>(m[3]), static_cast<T>(1))); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m) + { + T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; + + tmat2x2<T, P> Inverse( + + m[1][1] / Determinant, + - m[0][1] / Determinant, + - m[1][0] / Determinant, + + m[0][0] / Determinant); + + return Inverse; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m) + { + T Determinant = + + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) + - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) + + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); + + tmat3x3<T, P> Inverse(uninitialize); + Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); + Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); + Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); + Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); + Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); + Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); + Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); + Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); + Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); + Inverse /= Determinant; + + return Inverse; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m) + { + T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; + T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; + T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; + T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; + T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; + T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; + T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; + T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; + T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; + T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; + T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + tmat4x4<T, P> Inverse(uninitialize); + Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); + Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); + Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); + Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05); + + Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02); + Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04); + Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05); + Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05); + + Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08); + Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10); + Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12); + Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12); + + Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15); + Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17); + Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18); + Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18); + + T Determinant = + + m[0][0] * Inverse[0][0] + + m[0][1] * Inverse[0][1] + + m[0][2] * Inverse[0][2] + + m[0][3] * Inverse[0][3]; + + Inverse /= Determinant; + + return Inverse; + } +}//namespace glm diff --git a/external/include/glm/gtc/matrix_transform.hpp b/external/include/glm/gtc/matrix_transform.hpp new file mode 100644 index 0000000..c97b89a --- /dev/null +++ b/external/include/glm/gtc/matrix_transform.hpp @@ -0,0 +1,465 @@ +/// @ref gtc_matrix_transform +/// @file glm/gtc/matrix_transform.hpp +/// +/// @see core (dependence) +/// @see gtx_transform +/// @see gtx_transform2 +/// +/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform +/// @ingroup gtc +/// +/// @brief Defines functions that generate common transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. +/// +/// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../mat4x4.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../gtc/constants.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_transform extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_transform + /// @{ + + /// Builds a translation 4 * 4 matrix created from a vector of 3 components. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param v Coordinates of a translation vector. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @code + /// #include <glm/glm.hpp> + /// #include <glm/gtc/matrix_transform.hpp> + /// ... + /// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f)); + /// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f + /// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f + /// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f + /// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f + /// @endcode + /// @see gtc_matrix_transform + /// @see - translate(tmat4x4<T, P> const & m, T x, T y, T z) + /// @see - translate(tvec3<T, P> const & v) + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> translate( + tmat4x4<T, P> const & m, + tvec3<T, P> const & v); + + /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. + /// + /// @param m Input matrix multiplied by this rotation matrix. + /// @param angle Rotation angle expressed in radians. + /// @param axis Rotation axis, recommended to be normalized. + /// @tparam T Value type used to build the matrix. Supported: half, float or double. + /// @see gtc_matrix_transform + /// @see - rotate(tmat4x4<T, P> const & m, T angle, T x, T y, T z) + /// @see - rotate(T angle, tvec3<T, P> const & v) + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> rotate( + tmat4x4<T, P> const & m, + T angle, + tvec3<T, P> const & axis); + + /// Builds a scale 4 * 4 matrix created from 3 scalars. + /// + /// @param m Input matrix multiplied by this scale matrix. + /// @param v Ratio of scaling for each axis. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + /// @see - scale(tmat4x4<T, P> const & m, T x, T y, T z) + /// @see - scale(tvec3<T, P> const & v) + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> scale( + tmat4x4<T, P> const & m, + tvec3<T, P> const & v); + + /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @param zNear + /// @param zFar + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( + T left, + T right, + T bottom, + T top, + T zNear, + T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handedness. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @param zNear + /// @param zFar + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> orthoLH( + T left, + T right, + T bottom, + T top, + T zNear, + T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handedness. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @param zNear + /// @param zFar + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> orthoRH( + T left, + T right, + T bottom, + T top, + T zNear, + T zFar); + + /// Creates a matrix for projecting two-dimensional coordinates onto the screen. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar) + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( + T left, + T right, + T bottom, + T top); + + /// Creates a frustum matrix with default handedness. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @param near + /// @param far + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> frustum( + T left, + T right, + T bottom, + T top, + T near, + T far); + + /// Creates a left handed frustum matrix. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @param near + /// @param far + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> frustumLH( + T left, + T right, + T bottom, + T top, + T near, + T far); + + /// Creates a right handed frustum matrix. + /// + /// @param left + /// @param right + /// @param bottom + /// @param top + /// @param near + /// @param far + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> frustumRH( + T left, + T right, + T bottom, + T top, + T near, + T far); + + /// Creates a matrix for a symetric perspective-view frustum based on the default handedness. + /// + /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> perspective( + T fovy, + T aspect, + T near, + T far); + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveRH( + T fovy, + T aspect, + T near, + T far); + + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveLH( + T fovy, + T aspect, + T near, + T far); + + /// Builds a perspective projection matrix based on a field of view and the default handedness. + /// + /// @param fov Expressed in radians. + /// @param width + /// @param height + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFov( + T fov, + T width, + T height, + T near, + T far); + + /// Builds a right handed perspective projection matrix based on a field of view. + /// + /// @param fov Expressed in radians. + /// @param width + /// @param height + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovRH( + T fov, + T width, + T height, + T near, + T far); + + /// Builds a left handed perspective projection matrix based on a field of view. + /// + /// @param fov Expressed in radians. + /// @param width + /// @param height + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovLH( + T fov, + T width, + T height, + T near, + T far); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective( + T fovy, T aspect, T near); + + /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveLH( + T fovy, T aspect, T near); + + /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveRH( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param ep + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @see gtc_matrix_transform + template <typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( + T fovy, T aspect, T near, T ep); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + template <typename T, typename U, precision P> + GLM_FUNC_DECL tvec3<T, P> project( + tvec3<T, P> const & obj, + tmat4x4<T, P> const & model, + tmat4x4<T, P> const & proj, + tvec4<U, P> const & viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + template <typename T, typename U, precision P> + GLM_FUNC_DECL tvec3<T, P> unProject( + tvec3<T, P> const & win, + tmat4x4<T, P> const & model, + tmat4x4<T, P> const & proj, + tvec4<U, P> const & viewport); + + /// Define a picking region + /// + /// @param center + /// @param delta + /// @param viewport + /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + template <typename T, precision P, typename U> + GLM_FUNC_DECL tmat4x4<T, P> pickMatrix( + tvec2<T, P> const & center, + tvec2<T, P> const & delta, + tvec4<U, P> const & viewport); + + /// Build a look at view matrix based on the default handedness. + /// + /// @param eye Position of the camera + /// @param center Position where the camera is looking at + /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) + /// @see gtc_matrix_transform + /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> lookAt( + tvec3<T, P> const & eye, + tvec3<T, P> const & center, + tvec3<T, P> const & up); + + /// Build a right handed look at view matrix. + /// + /// @param eye Position of the camera + /// @param center Position where the camera is looking at + /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) + /// @see gtc_matrix_transform + /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> lookAtRH( + tvec3<T, P> const & eye, + tvec3<T, P> const & center, + tvec3<T, P> const & up); + + /// Build a left handed look at view matrix. + /// + /// @param eye Position of the camera + /// @param center Position where the camera is looking at + /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) + /// @see gtc_matrix_transform + /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> lookAtLH( + tvec3<T, P> const & eye, + tvec3<T, P> const & center, + tvec3<T, P> const & up); + + /// @} +}//namespace glm + +#include "matrix_transform.inl" diff --git a/external/include/glm/gtc/matrix_transform.inl b/external/include/glm/gtc/matrix_transform.inl new file mode 100644 index 0000000..b9ff418 --- /dev/null +++ b/external/include/glm/gtc/matrix_transform.inl @@ -0,0 +1,575 @@ +/// @ref gtc_matrix_transform +/// @file glm/gtc/matrix_transform.inl + +#include "../geometric.hpp" +#include "../trigonometric.hpp" +#include "../matrix.hpp" + +namespace glm +{ + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v) + { + tmat4x4<T, P> Result(m); + Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) + { + T const a = angle; + T const c = cos(a); + T const s = sin(a); + + tvec3<T, P> axis(normalize(v)); + tvec3<T, P> temp((T(1) - c) * axis); + + tmat4x4<T, P> Rotate(uninitialize); + Rotate[0][0] = c + temp[0] * axis[0]; + Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; + Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; + + Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; + Rotate[1][1] = c + temp[1] * axis[1]; + Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; + + Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; + Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; + Rotate[2][2] = c + temp[2] * axis[2]; + + tmat4x4<T, P> Result(uninitialize); + Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; + Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; + Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; + Result[3] = m[3]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) + { + T const a = angle; + T const c = cos(a); + T const s = sin(a); + tmat4x4<T, P> Result; + + tvec3<T, P> axis = normalize(v); + + Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x; + Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z; + Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y; + Result[0][3] = static_cast<T>(0); + + Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z; + Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y; + Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x; + Result[1][3] = static_cast<T>(0); + + Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y; + Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x; + Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z; + Result[2][3] = static_cast<T>(0); + + Result[3] = tvec4<T, P>(0, 0, 0, 1); + return m * Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v) + { + tmat4x4<T, P> Result(uninitialize); + Result[0] = m[0] * v[0]; + Result[1] = m[1] * v[1]; + Result[2] = m[2] * v[2]; + Result[3] = m[3]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v) + { + tmat4x4<T, P> Result(T(1)); + Result[0][0] = v.x; + Result[1][1] = v.y; + Result[2][2] = v.z; + return m * Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho + ( + T left, T right, + T bottom, T top, + T zNear, T zFar + ) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return orthoLH(left, right, bottom, top, zNear, zFar); +# else + return orthoRH(left, right, bottom, top, zNear, zFar); +# endif + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH + ( + T left, T right, + T bottom, T top, + T zNear, T zFar + ) + { + tmat4x4<T, defaultp> Result(1); + Result[0][0] = static_cast<T>(2) / (right - left); + Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = static_cast<T>(1) / (zFar - zNear); + Result[3][2] = - zNear / (zFar - zNear); +# else + Result[2][2] = static_cast<T>(2) / (zFar - zNear); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH + ( + T left, T right, + T bottom, T top, + T zNear, T zFar + ) + { + tmat4x4<T, defaultp> Result(1); + Result[0][0] = static_cast<T>(2) / (right - left); + Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = - static_cast<T>(1) / (zFar - zNear); + Result[3][2] = - zNear / (zFar - zNear); +# else + Result[2][2] = - static_cast<T>(2) / (zFar - zNear); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho + ( + T left, T right, + T bottom, T top + ) + { + tmat4x4<T, defaultp> Result(static_cast<T>(1)); + Result[0][0] = static_cast<T>(2) / (right - left); + Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[2][2] = - static_cast<T>(1); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum + ( + T left, T right, + T bottom, T top, + T nearVal, T farVal + ) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return frustumLH(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH(left, right, bottom, top, nearVal, farVal); +# endif + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH + ( + T left, T right, + T bottom, T top, + T nearVal, T farVal + ) + { + tmat4x4<T, defaultp> Result(0); + Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); + Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][3] = static_cast<T>(1); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = farVal / (farVal - nearVal); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); +# else + Result[2][2] = (farVal + nearVal) / (farVal - nearVal); + Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH + ( + T left, T right, + T bottom, T top, + T nearVal, T farVal + ) + { + tmat4x4<T, defaultp> Result(0); + Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); + Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][3] = static_cast<T>(-1); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = farVal / (nearVal - farVal); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); +# else + Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); + Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return perspectiveLH(fovy, aspect, zNear, zFar); +# else + return perspectiveRH(fovy, aspect, zNear, zFar); +# endif + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); + + T const tanHalfFovy = tan(fovy / static_cast<T>(2)); + + tmat4x4<T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast<T>(1) / (tanHalfFovy); + Result[2][3] = - static_cast<T>(1); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = zFar / (zNear - zFar); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); +# else + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); + + T const tanHalfFovy = tan(fovy / static_cast<T>(2)); + + tmat4x4<T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast<T>(1) / (tanHalfFovy); + Result[2][3] = static_cast<T>(1); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = zFar / (zFar - zNear); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); +# else + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return perspectiveFovLH(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH(fov, width, height, zNear, zFar); +# endif + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast<T>(0)); + assert(height > static_cast<T>(0)); + assert(fov > static_cast<T>(0)); + + T const rad = fov; + T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + + tmat4x4<T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][3] = - static_cast<T>(1); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = zFar / (zNear - zFar); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); +# else + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast<T>(0)); + assert(height > static_cast<T>(0)); + assert(fov > static_cast<T>(0)); + + T const rad = fov; + T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + + tmat4x4<T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][3] = static_cast<T>(1); + +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + Result[2][2] = zFar / (zFar - zNear); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); +# else + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); +# endif + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return infinitePerspectiveLH(fovy, aspect, zNear); +# else + return infinitePerspectiveRH(fovy, aspect, zNear); +# endif + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) + { + T const range = tan(fovy / static_cast<T>(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + tmat4x4<T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); + Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); + Result[2][2] = - static_cast<T>(1); + Result[2][3] = - static_cast<T>(1); + Result[3][2] = - static_cast<T>(2) * zNear; + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) + { + T const range = tan(fovy / static_cast<T>(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + tmat4x4<T, defaultp> Result(T(0)); + Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); + Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); + Result[2][2] = static_cast<T>(1); + Result[2][3] = static_cast<T>(1); + Result[3][2] = - static_cast<T>(2) * zNear; + return Result; + } + + // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) + { + T const range = tan(fovy / static_cast<T>(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + tmat4x4<T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); + Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); + Result[2][2] = ep - static_cast<T>(1); + Result[2][3] = static_cast<T>(-1); + Result[3][2] = (ep - static_cast<T>(2)) * zNear; + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) + { + return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>()); + } + + template <typename T, typename U, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> project + ( + tvec3<T, P> const & obj, + tmat4x4<T, P> const & model, + tmat4x4<T, P> const & proj, + tvec4<U, P> const & viewport + ) + { + tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1)); + tmp = model * tmp; + tmp = proj * tmp; + + tmp /= tmp.w; +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); + tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); +# else + tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); +# endif + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); + tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); + + return tvec3<T, P>(tmp); + } + + template <typename T, typename U, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> unProject + ( + tvec3<T, P> const & win, + tmat4x4<T, P> const & model, + tmat4x4<T, P> const & proj, + tvec4<U, P> const & viewport + ) + { + tmat4x4<T, P> Inverse = inverse(proj * model); + + tvec4<T, P> tmp = tvec4<T, P>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); + tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); +# else + tmp = tmp * static_cast<T>(2) - static_cast<T>(1); +# endif + + tvec4<T, P> obj = Inverse * tmp; + obj /= obj.w; + + return tvec3<T, P>(obj); + } + + template <typename T, precision P, typename U> + GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport) + { + assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)); + tmat4x4<T, P> Result(static_cast<T>(1)); + + if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0))) + return Result; // Error + + tvec3<T, P> Temp( + (static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x, + (static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y, + static_cast<T>(0)); + + // Translate and scale the picked region to the entire window + Result = translate(Result, Temp); + return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return lookAtLH(eye, center, up); +# else + return lookAtRH(eye, center, up); +# endif + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH + ( + tvec3<T, P> const & eye, + tvec3<T, P> const & center, + tvec3<T, P> const & up + ) + { + tvec3<T, P> const f(normalize(center - eye)); + tvec3<T, P> const s(normalize(cross(f, up))); + tvec3<T, P> const u(cross(s, f)); + + tmat4x4<T, P> Result(1); + Result[0][0] = s.x; + Result[1][0] = s.y; + Result[2][0] = s.z; + Result[0][1] = u.x; + Result[1][1] = u.y; + Result[2][1] = u.z; + Result[0][2] =-f.x; + Result[1][2] =-f.y; + Result[2][2] =-f.z; + Result[3][0] =-dot(s, eye); + Result[3][1] =-dot(u, eye); + Result[3][2] = dot(f, eye); + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH + ( + tvec3<T, P> const & eye, + tvec3<T, P> const & center, + tvec3<T, P> const & up + ) + { + tvec3<T, P> const f(normalize(center - eye)); + tvec3<T, P> const s(normalize(cross(up, f))); + tvec3<T, P> const u(cross(f, s)); + + tmat4x4<T, P> Result(1); + Result[0][0] = s.x; + Result[1][0] = s.y; + Result[2][0] = s.z; + Result[0][1] = u.x; + Result[1][1] = u.y; + Result[2][1] = u.z; + Result[0][2] = f.x; + Result[1][2] = f.y; + Result[2][2] = f.z; + Result[3][0] = -dot(s, eye); + Result[3][1] = -dot(u, eye); + Result[3][2] = -dot(f, eye); + return Result; + } +}//namespace glm diff --git a/external/include/glm/gtc/noise.hpp b/external/include/glm/gtc/noise.hpp new file mode 100644 index 0000000..aec4f18 --- /dev/null +++ b/external/include/glm/gtc/noise.hpp @@ -0,0 +1,60 @@ +/// @ref gtc_noise +/// @file glm/gtc/noise.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_noise GLM_GTC_noise +/// @ingroup gtc +/// +/// Defines 2D, 3D and 4D procedural noise functions +/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +/// https://github.com/ashima/webgl-noise +/// Following Stefan Gustavson's paper "Simplex noise demystified": +/// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf +/// <glm/gtc/noise.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../detail/_noise.hpp" +#include "../geometric.hpp" +#include "../common.hpp" +#include "../vector_relational.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_noise extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_noise + /// @{ + + /// Classic perlin noise. + /// @see gtc_noise + template <typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_DECL T perlin( + vecType<T, P> const & p); + + /// Periodic perlin noise. + /// @see gtc_noise + template <typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_DECL T perlin( + vecType<T, P> const & p, + vecType<T, P> const & rep); + + /// Simplex noise. + /// @see gtc_noise + template <typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_DECL T simplex( + vecType<T, P> const & p); + + /// @} +}//namespace glm + +#include "noise.inl" diff --git a/external/include/glm/gtc/noise.inl b/external/include/glm/gtc/noise.inl new file mode 100644 index 0000000..4f2731c --- /dev/null +++ b/external/include/glm/gtc/noise.inl @@ -0,0 +1,808 @@ +/// @ref gtc_noise +/// @file glm/gtc/noise.inl +/// +// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +// https://github.com/ashima/webgl-noise +// Following Stefan Gustavson's paper "Simplex noise demystified": +// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf + +namespace glm{ +namespace gtc +{ + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<T, P> grad4(T const & j, tvec4<T, P> const & ip) + { + tvec3<T, P> pXYZ = floor(fract(tvec3<T, P>(j) * tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1); + T pW = static_cast<T>(1.5) - dot(abs(pXYZ), tvec3<T, P>(1)); + tvec4<T, P> s = tvec4<T, P>(lessThan(tvec4<T, P>(pXYZ, pW), tvec4<T, P>(0.0))); + pXYZ = pXYZ + (tvec3<T, P>(s) * T(2) - T(1)) * s.w; + return tvec4<T, P>(pXYZ, pW); + } +}//namespace gtc + + // Classic Perlin noise + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position) + { + tvec4<T, P> Pi = glm::floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); + tvec4<T, P> Pf = glm::fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation + tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); + tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); + tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); + tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); + + tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1); + tvec4<T, P> gy = glm::abs(gx) - T(0.5); + tvec4<T, P> tx = glm::floor(gx + T(0.5)); + gx = gx - tx; + + tvec2<T, P> g00(gx.x, gy.x); + tvec2<T, P> g10(gx.y, gy.y); + tvec2<T, P> g01(gx.z, gy.z); + tvec2<T, P> g11(gx.w, gy.w); + + tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + g00 *= norm.x; + g01 *= norm.y; + g10 *= norm.z; + g11 *= norm.w; + + T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); + T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); + T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); + T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); + + tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); + tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); + T n_xy = mix(n_x.x, n_x.y, fade_xy.y); + return T(2.3) * n_xy; + } + + // Classic Perlin noise + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position) + { + tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing + tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = detail::mod289(Pi0); + Pi1 = detail::mod289(Pi1); + tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation + tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + tvec4<T, P> iy = tvec4<T, P>(tvec2<T, P>(Pi0.y), tvec2<T, P>(Pi1.y)); + tvec4<T, P> iz0(Pi0.z); + tvec4<T, P> iz1(Pi1.z); + + tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); + tvec4<T, P> ixy0 = detail::permute(ixy + iz0); + tvec4<T, P> ixy1 = detail::permute(ixy + iz1); + + tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0); + tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); + gx0 = fract(gx0); + tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); + tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); + gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); + gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); + + tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0); + tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); + gx1 = fract(gx1); + tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); + tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); + gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); + gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); + + tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); + tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); + tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); + tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); + tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); + tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); + tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); + tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); + + tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + T n000 = dot(g000, Pf0); + T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); + T n111 = dot(g111, Pf1); + + tvec3<T, P> fade_xyz = detail::fade(Pf0); + tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); + tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return T(2.2) * n_xyz; + } + /* + // Classic Perlin noise + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & P) + { + tvec3<T, P> Pi0 = floor(P); // Integer part for indexing + tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = mod(Pi0, T(289)); + Pi1 = mod(Pi1, T(289)); + tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation + tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + tvec4<T, P> iz0(Pi0.z); + tvec4<T, P> iz1(Pi1.z); + + tvec4<T, P> ixy = permute(permute(ix) + iy); + tvec4<T, P> ixy0 = permute(ixy + iz0); + tvec4<T, P> ixy1 = permute(ixy + iz1); + + tvec4<T, P> gx0 = ixy0 / T(7); + tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); + gx0 = fract(gx0); + tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); + tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); + gx0 -= sz0 * (step(0.0, gx0) - T(0.5)); + gy0 -= sz0 * (step(0.0, gy0) - T(0.5)); + + tvec4<T, P> gx1 = ixy1 / T(7); + tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); + gx1 = fract(gx1); + tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); + tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); + gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); + gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); + + tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); + tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); + tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); + tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); + tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); + tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); + tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); + tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); + + tvec4<T, P> norm0 = taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + tvec4<T, P> norm1 = taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + T n000 = dot(g000, Pf0); + T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); + T n111 = dot(g111, Pf1); + + tvec3<T, P> fade_xyz = fade(Pf0); + tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); + tvec2<T, P> n_yz = mix( + tvec2<T, P>(n_z.x, n_z.y), + tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return T(2.2) * n_xyz; + } + */ + // Classic Perlin noise + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position) + { + tvec4<T, P> Pi0 = floor(Position); // Integer part for indexing + tvec4<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = mod(Pi0, tvec4<T, P>(289)); + Pi1 = mod(Pi1, tvec4<T, P>(289)); + tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation + tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + tvec4<T, P> iz0(Pi0.z); + tvec4<T, P> iz1(Pi1.z); + tvec4<T, P> iw0(Pi0.w); + tvec4<T, P> iw1(Pi1.w); + + tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); + tvec4<T, P> ixy0 = detail::permute(ixy + iz0); + tvec4<T, P> ixy1 = detail::permute(ixy + iz1); + tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); + tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); + tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); + tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); + + tvec4<T, P> gx00 = ixy00 / T(7); + tvec4<T, P> gy00 = floor(gx00) / T(7); + tvec4<T, P> gz00 = floor(gy00) / T(6); + gx00 = fract(gx00) - T(0.5); + gy00 = fract(gy00) - T(0.5); + gz00 = fract(gz00) - T(0.5); + tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0.0)); + gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); + gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); + + tvec4<T, P> gx01 = ixy01 / T(7); + tvec4<T, P> gy01 = floor(gx01) / T(7); + tvec4<T, P> gz01 = floor(gy01) / T(6); + gx01 = fract(gx01) - T(0.5); + gy01 = fract(gy01) - T(0.5); + gz01 = fract(gz01) - T(0.5); + tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); + gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); + gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); + + tvec4<T, P> gx10 = ixy10 / T(7); + tvec4<T, P> gy10 = floor(gx10) / T(7); + tvec4<T, P> gz10 = floor(gy10) / T(6); + gx10 = fract(gx10) - T(0.5); + gy10 = fract(gy10) - T(0.5); + gz10 = fract(gz10) - T(0.5); + tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0)); + gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); + gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); + + tvec4<T, P> gx11 = ixy11 / T(7); + tvec4<T, P> gy11 = floor(gx11) / T(7); + tvec4<T, P> gz11 = floor(gy11) / T(6); + gx11 = fract(gx11) - T(0.5); + gy11 = fract(gy11) - T(0.5); + gz11 = fract(gz11) - T(0.5); + tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(0.0)); + gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); + gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); + + tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + g0000 *= norm00.x; + g0100 *= norm00.y; + g1000 *= norm00.z; + g1100 *= norm00.w; + + tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + g0001 *= norm01.x; + g0101 *= norm01.y; + g1001 *= norm01.z; + g1101 *= norm01.w; + + tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + g0010 *= norm10.x; + g0110 *= norm10.y; + g1010 *= norm10.z; + g1110 *= norm10.w; + + tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + g0011 *= norm11.x; + g0111 *= norm11.y; + g1011 *= norm11.z; + g1111 *= norm11.w; + + T n0000 = dot(g0000, Pf0); + T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1111 = dot(g1111, Pf1); + + tvec4<T, P> fade_xyzw = detail::fade(Pf0); + tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); + tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); + tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); + T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); + return T(2.2) * n_xyzw; + } + + // Classic Perlin noise, periodic variant + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position, tvec2<T, P> const & rep) + { + tvec4<T, P> Pi = floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); + tvec4<T, P> Pf = fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period + Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation + tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); + tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); + tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); + tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); + + tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1); + tvec4<T, P> gy = abs(gx) - T(0.5); + tvec4<T, P> tx = floor(gx + T(0.5)); + gx = gx - tx; + + tvec2<T, P> g00(gx.x, gy.x); + tvec2<T, P> g10(gx.y, gy.y); + tvec2<T, P> g01(gx.z, gy.z); + tvec2<T, P> g11(gx.w, gy.w); + + tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + g00 *= norm.x; + g01 *= norm.y; + g10 *= norm.z; + g11 *= norm.w; + + T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); + T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); + T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); + T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); + + tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); + tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); + T n_xy = mix(n_x.x, n_x.y, fade_xy.y); + return T(2.3) * n_xy; + } + + // Classic Perlin noise, periodic variant + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position, tvec3<T, P> const & rep) + { + tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period + tvec3<T, P> Pi1 = mod(Pi0 + tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period + Pi0 = mod(Pi0, tvec3<T, P>(289)); + Pi1 = mod(Pi1, tvec3<T, P>(289)); + tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation + tvec3<T, P> Pf1 = Pf0 - tvec3<T, P>(T(1)); // Fractional part - 1.0 + tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + tvec4<T, P> iz0(Pi0.z); + tvec4<T, P> iz1(Pi1.z); + + tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); + tvec4<T, P> ixy0 = detail::permute(ixy + iz0); + tvec4<T, P> ixy1 = detail::permute(ixy + iz1); + + tvec4<T, P> gx0 = ixy0 / T(7); + tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); + gx0 = fract(gx0); + tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); + tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0)); + gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); + gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); + + tvec4<T, P> gx1 = ixy1 / T(7); + tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); + gx1 = fract(gx1); + tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); + tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(T(0))); + gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); + gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); + + tvec3<T, P> g000 = tvec3<T, P>(gx0.x, gy0.x, gz0.x); + tvec3<T, P> g100 = tvec3<T, P>(gx0.y, gy0.y, gz0.y); + tvec3<T, P> g010 = tvec3<T, P>(gx0.z, gy0.z, gz0.z); + tvec3<T, P> g110 = tvec3<T, P>(gx0.w, gy0.w, gz0.w); + tvec3<T, P> g001 = tvec3<T, P>(gx1.x, gy1.x, gz1.x); + tvec3<T, P> g101 = tvec3<T, P>(gx1.y, gy1.y, gz1.y); + tvec3<T, P> g011 = tvec3<T, P>(gx1.z, gy1.z, gz1.z); + tvec3<T, P> g111 = tvec3<T, P>(gx1.w, gy1.w, gz1.w); + + tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + T n000 = dot(g000, Pf0); + T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); + T n111 = dot(g111, Pf1); + + tvec3<T, P> fade_xyz = detail::fade(Pf0); + tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); + tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return T(2.2) * n_xyz; + } + + // Classic Perlin noise, periodic version + template <typename T, precision P> + GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position, tvec4<T, P> const & rep) + { + tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep + tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep + tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation + tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + tvec4<T, P> iz0(Pi0.z); + tvec4<T, P> iz1(Pi1.z); + tvec4<T, P> iw0(Pi0.w); + tvec4<T, P> iw1(Pi1.w); + + tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); + tvec4<T, P> ixy0 = detail::permute(ixy + iz0); + tvec4<T, P> ixy1 = detail::permute(ixy + iz1); + tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); + tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); + tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); + tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); + + tvec4<T, P> gx00 = ixy00 / T(7); + tvec4<T, P> gy00 = floor(gx00) / T(7); + tvec4<T, P> gz00 = floor(gy00) / T(6); + gx00 = fract(gx00) - T(0.5); + gy00 = fract(gy00) - T(0.5); + gz00 = fract(gz00) - T(0.5); + tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0)); + gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); + gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); + + tvec4<T, P> gx01 = ixy01 / T(7); + tvec4<T, P> gy01 = floor(gx01) / T(7); + tvec4<T, P> gz01 = floor(gy01) / T(6); + gx01 = fract(gx01) - T(0.5); + gy01 = fract(gy01) - T(0.5); + gz01 = fract(gz01) - T(0.5); + tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); + gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); + gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); + + tvec4<T, P> gx10 = ixy10 / T(7); + tvec4<T, P> gy10 = floor(gx10) / T(7); + tvec4<T, P> gz10 = floor(gy10) / T(6); + gx10 = fract(gx10) - T(0.5); + gy10 = fract(gy10) - T(0.5); + gz10 = fract(gz10) - T(0.5); + tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0.0)); + gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); + gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); + + tvec4<T, P> gx11 = ixy11 / T(7); + tvec4<T, P> gy11 = floor(gx11) / T(7); + tvec4<T, P> gz11 = floor(gy11) / T(6); + gx11 = fract(gx11) - T(0.5); + gy11 = fract(gy11) - T(0.5); + gz11 = fract(gz11) - T(0.5); + tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(T(0))); + gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); + gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); + + tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + g0000 *= norm00.x; + g0100 *= norm00.y; + g1000 *= norm00.z; + g1100 *= norm00.w; + + tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + g0001 *= norm01.x; + g0101 *= norm01.y; + g1001 *= norm01.z; + g1101 *= norm01.w; + + tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + g0010 *= norm10.x; + g0110 *= norm10.y; + g1010 *= norm10.z; + g1110 *= norm10.w; + + tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + g0011 *= norm11.x; + g0111 *= norm11.y; + g1011 *= norm11.z; + g1111 *= norm11.w; + + T n0000 = dot(g0000, Pf0); + T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1111 = dot(g1111, Pf1); + + tvec4<T, P> fade_xyzw = detail::fade(Pf0); + tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); + tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); + tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); + T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); + return T(2.2) * n_xyzw; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T simplex(glm::tvec2<T, P> const & v) + { + tvec4<T, P> const C = tvec4<T, P>( + T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0 + T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0) + T(-0.577350269189626), // -1.0 + 2.0 * C.x + T( 0.024390243902439)); // 1.0 / 41.0 + + // First corner + tvec2<T, P> i = floor(v + dot(v, tvec2<T, P>(C[1]))); + tvec2<T, P> x0 = v - i + dot(i, tvec2<T, P>(C[0])); + + // Other corners + //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 + //i1.y = 1.0 - i1.x; + tvec2<T, P> i1 = (x0.x > x0.y) ? tvec2<T, P>(1, 0) : tvec2<T, P>(0, 1); + // x0 = x0 - 0.0 + 0.0 * C.xx ; + // x1 = x0 - i1 + 1.0 * C.xx ; + // x2 = x0 - 1.0 + 2.0 * C.xx ; + tvec4<T, P> x12 = tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + tvec4<T, P>(C.x, C.x, C.z, C.z); + x12 = tvec4<T, P>(tvec2<T, P>(x12) - i1, x12.z, x12.w); + + // Permutations + i = mod(i, tvec2<T, P>(289)); // Avoid truncation effects in permutation + tvec3<T, P> p = detail::permute( + detail::permute(i.y + tvec3<T, P>(T(0), i1.y, T(1))) + + i.x + tvec3<T, P>(T(0), i1.x, T(1))); + + tvec3<T, P> m = max(tvec3<T, P>(0.5) - tvec3<T, P>( + dot(x0, x0), + dot(tvec2<T, P>(x12.x, x12.y), tvec2<T, P>(x12.x, x12.y)), + dot(tvec2<T, P>(x12.z, x12.w), tvec2<T, P>(x12.z, x12.w))), tvec3<T, P>(0)); + m = m * m ; + m = m * m ; + + // Gradients: 41 points uniformly over a line, mapped onto a diamond. + // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) + + tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1); + tvec3<T, P> h = abs(x) - T(0.5); + tvec3<T, P> ox = floor(x + T(0.5)); + tvec3<T, P> a0 = x - ox; + + // Normalise gradients implicitly by scaling m + // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); + m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h); + + // Compute final noise value at P + tvec3<T, P> g; + g.x = a0.x * x0.x + h.x * x0.y; + //g.yz = a0.yz * x12.xz + h.yz * x12.yw; + g.y = a0.y * x12.x + h.y * x12.y; + g.z = a0.z * x12.z + h.z * x12.w; + return T(130) * dot(m, g); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T simplex(tvec3<T, P> const & v) + { + tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0); + tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0); + + // First corner + tvec3<T, P> i(floor(v + dot(v, tvec3<T, P>(C.y)))); + tvec3<T, P> x0(v - i + dot(i, tvec3<T, P>(C.x))); + + // Other corners + tvec3<T, P> g(step(tvec3<T, P>(x0.y, x0.z, x0.x), x0)); + tvec3<T, P> l(T(1) - g); + tvec3<T, P> i1(min(g, tvec3<T, P>(l.z, l.x, l.y))); + tvec3<T, P> i2(max(g, tvec3<T, P>(l.z, l.x, l.y))); + + // x0 = x0 - 0.0 + 0.0 * C.xxx; + // x1 = x0 - i1 + 1.0 * C.xxx; + // x2 = x0 - i2 + 2.0 * C.xxx; + // x3 = x0 - 1.0 + 3.0 * C.xxx; + tvec3<T, P> x1(x0 - i1 + C.x); + tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y + tvec3<T, P> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y + + // Permutations + i = detail::mod289(i); + tvec4<T, P> p(detail::permute(detail::permute(detail::permute( + i.z + tvec4<T, P>(T(0), i1.z, i2.z, T(1))) + + i.y + tvec4<T, P>(T(0), i1.y, i2.y, T(1))) + + i.x + tvec4<T, P>(T(0), i1.x, i2.x, T(1)))); + + // Gradients: 7x7 points over a square, mapped onto an octahedron. + // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) + T n_ = static_cast<T>(0.142857142857); // 1.0/7.0 + tvec3<T, P> ns(n_ * tvec3<T, P>(D.w, D.y, D.z) - tvec3<T, P>(D.x, D.z, D.x)); + + tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) + + tvec4<T, P> x_(floor(j * ns.z)); + tvec4<T, P> y_(floor(j - T(7) * x_)); // mod(j,N) + + tvec4<T, P> x(x_ * ns.x + ns.y); + tvec4<T, P> y(y_ * ns.x + ns.y); + tvec4<T, P> h(T(1) - abs(x) - abs(y)); + + tvec4<T, P> b0(x.x, x.y, y.x, y.y); + tvec4<T, P> b1(x.z, x.w, y.z, y.w); + + // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; + // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; + tvec4<T, P> s0(floor(b0) * T(2) + T(1)); + tvec4<T, P> s1(floor(b1) * T(2) + T(1)); + tvec4<T, P> sh(-step(h, tvec4<T, P>(0.0))); + + tvec4<T, P> a0 = tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * tvec4<T, P>(sh.x, sh.x, sh.y, sh.y); + tvec4<T, P> a1 = tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * tvec4<T, P>(sh.z, sh.z, sh.w, sh.w); + + tvec3<T, P> p0(a0.x, a0.y, h.x); + tvec3<T, P> p1(a0.z, a0.w, h.y); + tvec3<T, P> p2(a1.x, a1.y, h.z); + tvec3<T, P> p3(a1.z, a1.w, h.w); + + // Normalise gradients + tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + p0 *= norm.x; + p1 *= norm.y; + p2 *= norm.z; + p3 *= norm.w; + + // Mix final noise value + tvec4<T, P> m = max(T(0.6) - tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4<T, P>(0)); + m = m * m; + return T(42) * dot(m * m, tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T simplex(tvec4<T, P> const & v) + { + tvec4<T, P> const C( + 0.138196601125011, // (5 - sqrt(5))/20 G4 + 0.276393202250021, // 2 * G4 + 0.414589803375032, // 3 * G4 + -0.447213595499958); // -1 + 4 * G4 + + // (sqrt(5) - 1)/4 = F4, used once below + T const F4 = static_cast<T>(0.309016994374947451); + + // First corner + tvec4<T, P> i = floor(v + dot(v, vec4(F4))); + tvec4<T, P> x0 = v - i + dot(i, vec4(C.x)); + + // Other corners + + // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) + tvec4<T, P> i0; + tvec3<T, P> isX = step(tvec3<T, P>(x0.y, x0.z, x0.w), tvec3<T, P>(x0.x)); + tvec3<T, P> isYZ = step(tvec3<T, P>(x0.z, x0.w, x0.w), tvec3<T, P>(x0.y, x0.y, x0.z)); + // i0.x = dot(isX, vec3(1.0)); + //i0.x = isX.x + isX.y + isX.z; + //i0.yzw = static_cast<T>(1) - isX; + i0 = tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX); + // i0.y += dot(isYZ.xy, vec2(1.0)); + i0.y += isYZ.x + isYZ.y; + //i0.zw += 1.0 - tvec2<T, P>(isYZ.x, isYZ.y); + i0.z += static_cast<T>(1) - isYZ.x; + i0.w += static_cast<T>(1) - isYZ.y; + i0.z += isYZ.z; + i0.w += static_cast<T>(1) - isYZ.z; + + // i0 now contains the unique values 0,1,2,3 in each channel + tvec4<T, P> i3 = clamp(i0, T(0), T(1)); + tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1)); + tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1)); + + // x0 = x0 - 0.0 + 0.0 * C.xxxx + // x1 = x0 - i1 + 0.0 * C.xxxx + // x2 = x0 - i2 + 0.0 * C.xxxx + // x3 = x0 - i3 + 0.0 * C.xxxx + // x4 = x0 - 1.0 + 4.0 * C.xxxx + tvec4<T, P> x1 = x0 - i1 + C.x; + tvec4<T, P> x2 = x0 - i2 + C.y; + tvec4<T, P> x3 = x0 - i3 + C.z; + tvec4<T, P> x4 = x0 + C.w; + + // Permutations + i = mod(i, tvec4<T, P>(289)); + T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x); + tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute( + i.w + tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) + + i.z + tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) + + i.y + tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) + + i.x + tvec4<T, P>(i1.x, i2.x, i3.x, T(1))); + + // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope + // 7*7*6 = 294, which is close to the ring size 17*17 = 289. + tvec4<T, P> ip = tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); + + tvec4<T, P> p0 = gtc::grad4(j0, ip); + tvec4<T, P> p1 = gtc::grad4(j1.x, ip); + tvec4<T, P> p2 = gtc::grad4(j1.y, ip); + tvec4<T, P> p3 = gtc::grad4(j1.z, ip); + tvec4<T, P> p4 = gtc::grad4(j1.w, ip); + + // Normalise gradients + tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + p0 *= norm.x; + p1 *= norm.y; + p2 *= norm.z; + p3 *= norm.w; + p4 *= detail::taylorInvSqrt(dot(p4, p4)); + + // Mix contributions from the five corners + tvec3<T, P> m0 = max(T(0.6) - tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3<T, P>(0)); + tvec2<T, P> m1 = max(T(0.6) - tvec2<T, P>(dot(x3, x3), dot(x4, x4) ), tvec2<T, P>(0)); + m0 = m0 * m0; + m1 = m1 * m1; + return T(49) * + (dot(m0 * m0, tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + + dot(m1 * m1, tvec2<T, P>(dot(p3, x3), dot(p4, x4)))); + } +}//namespace glm diff --git a/external/include/glm/gtc/packing.hpp b/external/include/glm/gtc/packing.hpp new file mode 100644 index 0000000..1389d95 --- /dev/null +++ b/external/include/glm/gtc/packing.hpp @@ -0,0 +1,579 @@ +/// @ref gtc_packing +/// @file glm/gtc/packing.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_packing GLM_GTC_packing +/// @ingroup gtc +/// +/// @brief This extension provides a set of function to convert vertors to packed +/// formats. +/// +/// <glm/gtc/packing.hpp> need to be included to use these features. + +#pragma once + +// Dependency: +#include "type_precision.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_packing extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_packing + /// @{ + + /// First, converts the normalized floating-point value v into a 8-bit integer value. + /// Then, the results are packed into the returned 8-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0) + /// + /// @see gtc_packing + /// @see uint16 packUnorm2x8(vec2 const & v) + /// @see uint32 packUnorm4x8(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint8 packUnorm1x8(float v); + + /// Convert a single 8-bit integer to a normalized floating-point value. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm4x8: f / 255.0 + /// + /// @see gtc_packing + /// @see vec2 unpackUnorm2x8(uint16 p) + /// @see vec4 unpackUnorm4x8(uint32 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL float unpackUnorm1x8(uint8 p); + + /// First, converts each component of the normalized floating-point value v into 8-bit integer values. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm2x8: round(clamp(c, 0, +1) * 255.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint8 packUnorm1x8(float const & v) + /// @see uint32 packUnorm4x8(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v); + + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm4x8: f / 255.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackUnorm1x8(uint8 v) + /// @see vec4 unpackUnorm4x8(uint32 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p); + + /// First, converts the normalized floating-point value v into 8-bit integer value. + /// Then, the results are packed into the returned 8-bit unsigned integer. + /// + /// The conversion to fixed point is done as follows: + /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0) + /// + /// @see gtc_packing + /// @see uint16 packSnorm2x8(vec2 const & v) + /// @see uint32 packSnorm4x8(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint8 packSnorm1x8(float s); + + /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. + /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm1x8: clamp(f / 127.0, -1, +1) + /// + /// @see gtc_packing + /// @see vec2 unpackSnorm2x8(uint16 p) + /// @see vec4 unpackSnorm4x8(uint32 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL float unpackSnorm1x8(uint8 p); + + /// First, converts each component of the normalized floating-point value v into 8-bit integer values. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm2x8: round(clamp(c, -1, +1) * 127.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint8 packSnorm1x8(float const & v) + /// @see uint32 packSnorm4x8(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v); + + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm2x8: clamp(f / 127.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackSnorm1x8(uint8 p) + /// @see vec4 unpackSnorm4x8(uint32 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p); + + /// First, converts the normalized floating-point value v into a 16-bit integer value. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0) + /// + /// @see gtc_packing + /// @see uint16 packSnorm1x16(float const & v) + /// @see uint64 packSnorm4x16(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint16 packUnorm1x16(float v); + + /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. + /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm1x16: f / 65535.0 + /// + /// @see gtc_packing + /// @see vec2 unpackUnorm2x16(uint32 p) + /// @see vec4 unpackUnorm4x16(uint64 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL float unpackUnorm1x16(uint16 p); + + /// First, converts each component of the normalized floating-point value v into 16-bit integer values. + /// Then, the results are packed into the returned 64-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint16 packUnorm1x16(float const & v) + /// @see uint32 packUnorm2x16(vec2 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v); + + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnormx4x16: f / 65535.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackUnorm1x16(uint16 p) + /// @see vec2 unpackUnorm2x16(uint32 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p); + + /// First, converts the normalized floating-point value v into 16-bit integer value. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion to fixed point is done as follows: + /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0) + /// + /// @see gtc_packing + /// @see uint32 packSnorm2x16(vec2 const & v) + /// @see uint64 packSnorm4x16(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint16 packSnorm1x16(float v); + + /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned scalar. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1) + /// + /// @see gtc_packing + /// @see vec2 unpackSnorm2x16(uint32 p) + /// @see vec4 unpackSnorm4x16(uint64 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm1x16.xml">GLSL unpackSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL float unpackSnorm1x16(uint16 p); + + /// First, converts each component of the normalized floating-point value v into 16-bit integer values. + /// Then, the results are packed into the returned 64-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint16 packSnorm1x16(float const & v) + /// @see uint32 packSnorm2x16(vec2 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v); + + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackSnorm1x16(uint16 p) + /// @see vec2 unpackSnorm2x16(uint32 p) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p); + + /// Returns an unsigned integer obtained by converting the components of a floating-point scalar + /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// and then packing this 16-bit value into a 16-bit unsigned integer. + /// + /// @see gtc_packing + /// @see uint32 packHalf2x16(vec2 const & v) + /// @see uint64 packHalf4x16(vec4 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint16 packHalf1x16(float v); + + /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value, + /// interpreted as a 16-bit floating-point number according to the OpenGL Specification, + /// and converting it to 32-bit floating-point values. + /// + /// @see gtc_packing + /// @see vec2 unpackHalf2x16(uint32 const & v) + /// @see vec4 unpackHalf4x16(uint64 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL float unpackHalf1x16(uint16 v); + + /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// and then packing these four 16-bit values into a 64-bit unsigned integer. + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see uint16 packHalf1x16(float const & v) + /// @see uint32 packHalf2x16(vec2 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v); + + /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values, + /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, + /// and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see float unpackHalf1x16(uint16 const & v) + /// @see vec2 unpackHalf2x16(uint32 const & v) + /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p); + + /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector + /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, + /// and then packing these four values into a 32-bit unsigned integer. + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see uint32 packI3x10_1x2(uvec4 const & v) + /// @see uint32 packSnorm3x10_1x2(vec4 const & v) + /// @see uint32 packUnorm3x10_1x2(vec4 const & v) + /// @see ivec4 unpackI3x10_1x2(uint32 const & p) + GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v); + + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packU3x10_1x2(uvec4 const & v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); + /// @see uvec4 unpackI3x10_1x2(uint32 const & p); + GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p); + + /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector + /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, + /// and then packing these four values into a 32-bit unsigned integer. + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see uint32 packI3x10_1x2(ivec4 const & v) + /// @see uint32 packSnorm3x10_1x2(vec4 const & v) + /// @see uint32 packUnorm3x10_1x2(vec4 const & v) + /// @see ivec4 unpackU3x10_1x2(uint32 const & p) + GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v); + + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packU3x10_1x2(uvec4 const & v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); + /// @see uvec4 unpackI3x10_1x2(uint32 const & p); + GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p); + + /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values. + /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0) + /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0) + /// + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p) + /// @see uint32 packUnorm3x10_1x2(vec4 const & v) + /// @see uint32 packU3x10_1x2(uvec4 const & v) + /// @see uint32 packI3x10_1x2(ivec4 const & v) + GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v); + + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1) + /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packSnorm3x10_1x2(vec4 const & v) + /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const & p) + /// @see uvec4 unpackU3x10_1x2(uint32 const & p) + GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p); + + /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values. + /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0) + /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0) + /// + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p) + /// @see uint32 packUnorm3x10_1x2(vec4 const & v) + /// @see uint32 packU3x10_1x2(uvec4 const & v) + /// @see uint32 packI3x10_1x2(ivec4 const & v) + GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v); + + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1) + /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packSnorm3x10_1x2(vec4 const & v) + /// @see vec4 unpackInorm3x10_1x2(uint32 const & p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const & p) + /// @see uvec4 unpackU3x10_1x2(uint32 const & p) + GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p); + + /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. + /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The first vector component specifies the 11 least-significant bits of the result; + /// the last component specifies the 10 most-significant bits. + /// + /// @see gtc_packing + /// @see vec3 unpackF2x11_1x10(uint32 const & p) + GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v); + + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packF2x11_1x10(vec3 const & v) + GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p); + + + /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. + /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The first vector component specifies the 11 least-significant bits of the result; + /// the last component specifies the 10 most-significant bits. + /// + /// @see gtc_packing + /// @see vec3 unpackF3x9_E1x5(uint32 const & p) + GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v); + + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packF3x9_E1x5(vec3 const & v) + GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p); + + /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification. + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see vecType<float, P> unpackHalf(vecType<uint16, P> const & p) + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + template <precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<uint16, P> packHalf(vecType<float, P> const & v); + + /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see vecType<uint16, P> packHalf(vecType<float, P> const & v) + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + template <precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<float, P> unpackHalf(vecType<uint16, P> const & p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vecType<floatType, P> unpackUnorm(vecType<intType, P> const & p); + template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<uintType, P> packUnorm(vecType<floatType, P> const & v); + + /// Convert each unsigned integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see vecType<intType, P> packUnorm(vecType<floatType, P> const & v) + template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v); + + /// Convert each component of the normalized floating-point vector into signed integer values. + /// + /// @see gtc_packing + /// @see vecType<floatType, P> unpackSnorm(vecType<intType, P> const & p); + template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<intType, P> packSnorm(vecType<floatType, P> const & v); + + /// Convert each signed integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see vecType<intType, P> packSnorm(vecType<floatType, P> const & v) + template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec2 unpackUnorm2x4(uint8 p) + GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v); + + /// Convert each unsigned integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see uint8 packUnorm2x4(vec2 const & v) + GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec4 unpackUnorm4x4(uint16 p) + GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v); + + /// Convert each unsigned integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see uint16 packUnorm4x4(vec4 const & v) + GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p) + GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v); + + /// Convert each unsigned integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v) + GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec4 unpackUnorm3x5_1x1(uint16 p) + GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v); + + /// Convert each unsigned integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see uint16 packUnorm3x5_1x1(vec4 const & v) + GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec3 unpackUnorm2x3_1x2(uint8 p) + GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v); + + /// Convert each unsigned integer components of a vector to normalized floating-point values. + /// + /// @see gtc_packing + /// @see uint8 packUnorm2x3_1x2(vec3 const & v) + GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p); + /// @} +}// namespace glm + +#include "packing.inl" diff --git a/external/include/glm/gtc/packing.inl b/external/include/glm/gtc/packing.inl new file mode 100644 index 0000000..618fb9e --- /dev/null +++ b/external/include/glm/gtc/packing.inl @@ -0,0 +1,781 @@ +/// @ref gtc_packing +/// @file glm/gtc/packing.inl + +#include "../common.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../detail/type_half.hpp" +#include <cstring> +#include <limits> + +namespace glm{ +namespace detail +{ + GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x00007c00 => 00000000 00000000 01111100 00000000 + // 0x000003ff => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((f >> 16) & 0x8000) | // sign + ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential + ((f >> 13) & 0x03ff); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x000007c0 => 00000000 00000000 00000111 11000000 + // 0x00007c00 => 00000000 00000000 01111100 00000000 + // 0x000003ff => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential + ((f >> 17) & 0x003f); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x000007c0 => 00000000 00000000 00000111 11000000 + // 0x00007c00 => 00000000 00000000 01111100 00000000 + // 0x000003ff => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential + ((p & 0x003f) << 17); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x0000001F => 00000000 00000000 00000000 00011111 + // 0x0000003F => 00000000 00000000 00000000 00111111 + // 0x000003E0 => 00000000 00000000 00000011 11100000 + // 0x000007C0 => 00000000 00000000 00000111 11000000 + // 0x00007C00 => 00000000 00000000 01111100 00000000 + // 0x000003FF => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential + ((f >> 18) & 0x001f); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x0000001F => 00000000 00000000 00000000 00011111 + // 0x0000003F => 00000000 00000000 00000000 00111111 + // 0x000003E0 => 00000000 00000000 00000011 11100000 + // 0x000007C0 => 00000000 00000000 00000111 11000000 + // 0x00007C00 => 00000000 00000000 01111100 00000000 + // 0x000003FF => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential + ((p & 0x001f) << 18); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h) + { + return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13); + } + + GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x) + { + if(x == 0.0f) + return 0u; + else if(glm::isnan(x)) + return ~0u; + else if(glm::isinf(x)) + return 0x1Fu << 6u; + + uint Pack = 0u; + memcpy(&Pack, &x, sizeof(Pack)); + return float2packed11(Pack); + } + + GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x) + { + if(x == 0) + return 0.0f; + else if(x == ((1 << 11) - 1)) + return ~0;//NaN + else if(x == (0x1f << 6)) + return ~0;//Inf + + uint Result = packed11ToFloat(x); + + float Temp = 0; + memcpy(&Temp, &Result, sizeof(Temp)); + return Temp; + } + + GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x) + { + if(x == 0.0f) + return 0u; + else if(glm::isnan(x)) + return ~0u; + else if(glm::isinf(x)) + return 0x1Fu << 5u; + + uint Pack = 0; + memcpy(&Pack, &x, sizeof(Pack)); + return float2packed10(Pack); + } + + GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x) + { + if(x == 0) + return 0.0f; + else if(x == ((1 << 10) - 1)) + return ~0;//NaN + else if(x == (0x1f << 5)) + return ~0;//Inf + + uint Result = packed10ToFloat(x); + + float Temp = 0; + memcpy(&Temp, &Result, sizeof(Temp)); + return Temp; + } + +// GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z) +// { +// return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22); +// } + + union u3u3u2 + { + struct + { + uint x : 3; + uint y : 3; + uint z : 2; + } data; + uint8 pack; + }; + + union u4u4 + { + struct + { + uint x : 4; + uint y : 4; + } data; + uint8 pack; + }; + + union u4u4u4u4 + { + struct + { + uint x : 4; + uint y : 4; + uint z : 4; + uint w : 4; + } data; + uint16 pack; + }; + + union u5u6u5 + { + struct + { + uint x : 5; + uint y : 6; + uint z : 5; + } data; + uint16 pack; + }; + + union u5u5u5u1 + { + struct + { + uint x : 5; + uint y : 5; + uint z : 5; + uint w : 1; + } data; + uint16 pack; + }; + + union u10u10u10u2 + { + struct + { + uint x : 10; + uint y : 10; + uint z : 10; + uint w : 2; + } data; + uint32 pack; + }; + + union i10i10i10i2 + { + struct + { + int x : 10; + int y : 10; + int z : 10; + int w : 2; + } data; + uint32 pack; + }; + + union u9u9u9e5 + { + struct + { + uint x : 9; + uint y : 9; + uint z : 9; + uint w : 5; + } data; + uint32 pack; + }; + + template <precision P, template <typename, precision> class vecType> + struct compute_half + {}; + + template <precision P> + struct compute_half<P, tvec1> + { + GLM_FUNC_QUALIFIER static tvec1<uint16, P> pack(tvec1<float, P> const & v) + { + int16 const Unpack(detail::toFloat16(v.x)); + u16vec1 Packed(uninitialize); + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static tvec1<float, P> unpack(tvec1<uint16, P> const & v) + { + i16vec1 Unpack(uninitialize); + memcpy(&Unpack, &v, sizeof(Unpack)); + return tvec1<float, P>(detail::toFloat32(v.x)); + } + }; + + template <precision P> + struct compute_half<P, tvec2> + { + GLM_FUNC_QUALIFIER static tvec2<uint16, P> pack(tvec2<float, P> const & v) + { + tvec2<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); + u16vec2 Packed(uninitialize); + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static tvec2<float, P> unpack(tvec2<uint16, P> const & v) + { + i16vec2 Unpack(uninitialize); + memcpy(&Unpack, &v, sizeof(Unpack)); + return tvec2<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y)); + } + }; + + template <precision P> + struct compute_half<P, tvec3> + { + GLM_FUNC_QUALIFIER static tvec3<uint16, P> pack(tvec3<float, P> const & v) + { + tvec3<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); + u16vec3 Packed(uninitialize); + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static tvec3<float, P> unpack(tvec3<uint16, P> const & v) + { + i16vec3 Unpack(uninitialize); + memcpy(&Unpack, &v, sizeof(Unpack)); + return tvec3<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); + } + }; + + template <precision P> + struct compute_half<P, tvec4> + { + GLM_FUNC_QUALIFIER static tvec4<uint16, P> pack(tvec4<float, P> const & v) + { + tvec4<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); + u16vec4 Packed(uninitialize); + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static tvec4<float, P> unpack(tvec4<uint16, P> const & v) + { + i16vec4 Unpack(uninitialize); + memcpy(&Unpack, &v, sizeof(Unpack)); + return tvec4<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); + } + }; +}//namespace detail + + GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v) + { + return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f)); + } + + GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) + { + float const Unpack(p); + return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255 + } + + GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v) + { + u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); + + uint16 Unpack = 0; + memcpy(&Unpack, &Topack, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) + { + u8vec2 Unpack(uninitialize); + memcpy(&Unpack, &p, sizeof(Unpack)); + return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255 + } + + GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v) + { + int8 const Topack(static_cast<int8>(round(clamp(v ,-1.0f, 1.0f) * 127.0f))); + uint8 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) + { + int8 Unpack = 0; + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + static_cast<float>(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v) + { + i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f)); + uint16 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) + { + i8vec2 Unpack(uninitialize); + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s) + { + return static_cast<uint16>(round(clamp(s, 0.0f, 1.0f) * 65535.0f)); + } + + GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p) + { + float const Unpack(p); + return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 + } + + GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v) + { + u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); + uint64 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) + { + u16vec4 Unpack(uninitialize); + memcpy(&Unpack, &p, sizeof(Unpack)); + return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 + } + + GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v) + { + int16 const Topack = static_cast<int16>(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); + uint16 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p) + { + int16 Unpack = 0; + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v) + { + i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); + uint64 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) + { + i16vec4 Unpack(uninitialize); + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v) + { + int16 const Topack(detail::toFloat16(v)); + uint16 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v) + { + int16 Unpack = 0; + memcpy(&Unpack, &v, sizeof(Unpack)); + return detail::toFloat32(Unpack); + } + + GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v) + { + i16vec4 const Unpack( + detail::toFloat16(v.x), + detail::toFloat16(v.y), + detail::toFloat16(v.z), + detail::toFloat16(v.w)); + uint64 Packed = 0; + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) + { + i16vec4 Unpack(uninitialize); + memcpy(&Unpack, &v, sizeof(Unpack)); + return vec4( + detail::toFloat32(Unpack.x), + detail::toFloat32(Unpack.y), + detail::toFloat32(Unpack.z), + detail::toFloat32(Unpack.w)); + } + + GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v) + { + detail::i10i10i10i2 Result; + Result.data.x = v.x; + Result.data.y = v.y; + Result.data.z = v.z; + Result.data.w = v.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) + { + detail::i10i10i10i2 Unpack; + Unpack.pack = v; + return ivec4( + Unpack.data.x, + Unpack.data.y, + Unpack.data.z, + Unpack.data.w); + } + + GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v) + { + detail::u10u10u10u2 Result; + Result.data.x = v.x; + Result.data.y = v.y; + Result.data.z = v.z; + Result.data.w = v.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) + { + detail::u10u10u10u2 Unpack; + Unpack.pack = v; + return uvec4( + Unpack.data.x, + Unpack.data.y, + Unpack.data.z, + Unpack.data.w); + } + + GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v) + { + detail::i10i10i10i2 Result; + Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f)); + Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f)); + Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f)); + Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f)); + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v) + { + detail::i10i10i10i2 Unpack; + Unpack.pack = v; + vec4 Result; + Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f); + Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f); + Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f); + Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f); + return Result; + } + + GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v) + { + uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f))); + + detail::u10u10u10u2 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + Result.data.w = Unpack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v) + { + vec4 const ScaleFactors(1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 3.f); + + detail::u10u10u10u2 Unpack; + Unpack.pack = v; + return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors; + } + + GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v) + { + return + ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) | + ((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) | + ((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22); + } + + GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v) + { + return vec3( + detail::packed11bitToFloat(v >> 0), + detail::packed11bitToFloat(v >> 11), + detail::packed10bitToFloat(v >> 22)); + } + + GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v) + { + float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f); + vec3 const Color = clamp(v, 0.0f, SharedExpMax); + float const MaxColor = max(Color.x, max(Color.y, Color.z)); + + float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f; + float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 16.f - 9.f)) + 0.5f); + float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP; + + uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f)); + + detail::u9u9u9e5 Unpack; + Unpack.data.x = ColorComp.x; + Unpack.data.y = ColorComp.y; + Unpack.data.z = ColorComp.z; + Unpack.data.w = uint(ExpShared); + return Unpack.pack; + } + + GLM_FUNC_QUALIFIER vec3 unpackF3x9_E1x5(uint32 v) + { + detail::u9u9u9e5 Unpack; + Unpack.pack = v; + + return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f); + } + + template <precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<uint16, P> packHalf(vecType<float, P> const & v) + { + return detail::compute_half<P, vecType>::pack(v); + } + + template <precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<float, P> unpackHalf(vecType<uint16, P> const & v) + { + return detail::compute_half<P, vecType>::unpack(v); + } + + template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<uintType, P> packUnorm(vecType<floatType, P> const & v) + { + GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); + + return vecType<uintType, P>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max()))); + } + + template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v) + { + GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); + + return vecType<float, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max())); + } + + template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<intType, P> packSnorm(vecType<floatType, P> const & v) + { + GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); + + return vecType<intType, P>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max()))); + } + + template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v) + { + GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); + + return clamp(vecType<floatType, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1)); + } + + GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v) + { + u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); + detail::u4u4 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x4(uint8 v) + { + float const ScaleFactor(1.f / 15.f); + detail::u4u4 Unpack; + Unpack.pack = v; + return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v) + { + u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); + detail::u4u4u4u4 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + Result.data.w = Unpack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm4x4(uint16 v) + { + float const ScaleFactor(1.f / 15.f); + detail::u4u4u4u4 Unpack; + Unpack.pack = v; + return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v) + { + u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f))); + detail::u5u6u5 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec3 unpackUnorm1x5_1x6_1x5(uint16 v) + { + vec3 const ScaleFactor(1.f / 31.f, 1.f / 63.f, 1.f / 31.f); + detail::u5u6u5 Unpack; + Unpack.pack = v; + return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v) + { + u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f))); + detail::u5u5u5u1 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + Result.data.w = Unpack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm3x5_1x1(uint16 v) + { + vec4 const ScaleFactor(1.f / 31.f, 1.f / 31.f, 1.f / 31.f, 1.f); + detail::u5u5u5u1 Unpack; + Unpack.pack = v; + return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v) + { + u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f))); + detail::u3u3u2 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec3 unpackUnorm2x3_1x2(uint8 v) + { + vec3 const ScaleFactor(1.f / 7.f, 1.f / 7.f, 1.f / 3.f); + detail::u3u3u2 Unpack; + Unpack.pack = v; + return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; + } +}//namespace glm + diff --git a/external/include/glm/gtc/quaternion.hpp b/external/include/glm/gtc/quaternion.hpp new file mode 100644 index 0000000..8af1c8b --- /dev/null +++ b/external/include/glm/gtc/quaternion.hpp @@ -0,0 +1,397 @@ +/// @ref gtc_quaternion +/// @file glm/gtc/quaternion.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// @see gtc_constants (dependence) +/// +/// @defgroup gtc_quaternion GLM_GTC_quaternion +/// @ingroup gtc +/// +/// @brief Defines a templated quaternion type and several quaternion operations. +/// +/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../mat3x3.hpp" +#include "../mat4x4.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../gtc/constants.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_quaternion extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_quaternion + /// @{ + + template <typename T, precision P = defaultp> + struct tquat + { + // -- Implementation detail -- + + typedef tquat<T, P> type; + typedef T value_type; + + // -- Data -- + +# if GLM_HAS_ALIGNED_TYPE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wpedantic" +# endif +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" +# pragma clang diagnostic ignored "-Wnested-anon-types" +# endif + + union + { + struct { T x, y, z, w;}; + typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data; + }; + +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic pop +# endif +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic pop +# endif +# else + T x, y, z, w; +# endif + + // -- Component accesses -- + + typedef length_t length_type; + /// Return the count of components of a quaternion + GLM_FUNC_DECL static length_type length(){return 4;} + + GLM_FUNC_DECL T & operator[](length_type i); + GLM_FUNC_DECL T const & operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; + GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT; + template <precision Q> + GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); + + // -- Conversion constructors -- + + template <typename U, precision Q> + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q); + + /// Explicit conversion operators +# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS + GLM_FUNC_DECL explicit operator tmat3x3<T, P>(); + GLM_FUNC_DECL explicit operator tmat4x4<T, P>(); +# endif + + /// Create a quaternion from two normalized axis + /// + /// @param u A first normalized axis + /// @param v A second normalized axis + /// @see gtc_quaternion + /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors + GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v); + + /// Build a quaternion from euler angles (pitch, yaw, roll), in radians. + GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles); + GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m); + GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m); + + // -- Unary arithmetic operators -- + + GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT; + + template <typename U> + GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m); + template <typename U> + GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q); + template <typename U> + GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q); + template <typename U> + GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q); + template <typename U> + GLM_FUNC_DECL tquat<T, P> & operator*=(U s); + template <typename U> + GLM_FUNC_DECL tquat<T, P> & operator/=(U s); + }; + + // -- Unary bit operators -- + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q); + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q); + + // -- Binary operators -- + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p); + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p); + + template <typename T, precision P> + GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v); + + template <typename T, precision P> + GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q); + + template <typename T, precision P> + GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v); + + template <typename T, precision P> + GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q); + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s); + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q); + + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s); + + // -- Boolean operators -- + + template <typename T, precision P> + GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2); + + template <typename T, precision P> + GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2); + + /// Returns the length of the quaternion. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL T length(tquat<T, P> const & q); + + /// Returns the normalized quaternion. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q); + + /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... + /// + /// @see gtc_quaternion + template <typename T, precision P, template <typename, precision> class quatType> + GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y); + + /// Spherical linear interpolation of two quaternions. + /// The interpolation is oriented and the rotation is performed at constant speed. + /// For short path spherical linear interpolation, use the slerp function. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. + /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @see gtc_quaternion + /// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a); + + /// Linear interpolation of two quaternions. + /// The interpolation is oriented. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. + /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); + + /// Spherical linear interpolation of two quaternions. + /// The interpolation always take the short path and the rotation is performed at constant speed. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. + /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); + + /// Returns the q conjugate. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q); + + /// Returns the q inverse. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q); + + /// Rotates a quaternion from a vector of 3 components axis and an angle. + /// + /// @param q Source orientation + /// @param angle Angle expressed in radians. + /// @param axis Axis of the rotation + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis); + + /// Returns euler angles, pitch as x, yaw as y, roll as z. + /// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x); + + /// Returns roll value of euler angles expressed in radians. + /// + /// @see gtx_quaternion + template <typename T, precision P> + GLM_FUNC_DECL T roll(tquat<T, P> const & x); + + /// Returns pitch value of euler angles expressed in radians. + /// + /// @see gtx_quaternion + template <typename T, precision P> + GLM_FUNC_DECL T pitch(tquat<T, P> const & x); + + /// Returns yaw value of euler angles expressed in radians. + /// + /// @see gtx_quaternion + template <typename T, precision P> + GLM_FUNC_DECL T yaw(tquat<T, P> const & x); + + /// Converts a quaternion to a 3 * 3 matrix. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x); + + /// Converts a quaternion to a 4 * 4 matrix. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x); + + /// Converts a 3 * 3 matrix to a quaternion. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x); + + /// Converts a 4 * 4 matrix to a quaternion. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x); + + /// Returns the quaternion rotation angle. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL T angle(tquat<T, P> const & x); + + /// Returns the q rotation axis. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x); + + /// Build a quaternion from an angle and a normalized axis. + /// + /// @param angle Angle expressed in radians. + /// @param axis Axis of the quaternion, must be normalized. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis); + + /// Returns the component-wise comparison result of x < y. + /// + /// @tparam quatType Floating-point quaternion types. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y); + + /// Returns the component-wise comparison of result x <= y. + /// + /// @tparam quatType Floating-point quaternion types. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); + + /// Returns the component-wise comparison of result x > y. + /// + /// @tparam quatType Floating-point quaternion types. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y); + + /// Returns the component-wise comparison of result x >= y. + /// + /// @tparam quatType Floating-point quaternion types. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); + + /// Returns the component-wise comparison of result x == y. + /// + /// @tparam quatType Floating-point quaternion types. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y); + + /// Returns the component-wise comparison of result x != y. + /// + /// @tparam quatType Floating-point quaternion types. + /// + /// @see gtc_quaternion + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y); + + /// Returns true if x holds a NaN (not a number) + /// representation in the underlying implementation's set of + /// floating point representations. Returns false otherwise, + /// including for implementations with no NaN + /// representations. + /// + /// /!\ When using compiler fast math, this function may fail. + /// + /// @tparam genType Floating-point scalar or vector types. + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x); + + /// Returns true if x holds a positive infinity or negative + /// infinity representation in the underlying implementation's + /// set of floating point representations. Returns false + /// otherwise, including for implementations with no infinity + /// representations. + /// + /// @tparam genType Floating-point scalar or vector types. + template <typename T, precision P> + GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x); + + /// @} +} //namespace glm + +#include "quaternion.inl" diff --git a/external/include/glm/gtc/quaternion.inl b/external/include/glm/gtc/quaternion.inl new file mode 100644 index 0000000..c9b2af7 --- /dev/null +++ b/external/include/glm/gtc/quaternion.inl @@ -0,0 +1,795 @@ +/// @ref gtc_quaternion +/// @file glm/gtc/quaternion.inl + +#include "../trigonometric.hpp" +#include "../geometric.hpp" +#include "../exponential.hpp" +#include <limits> + +namespace glm{ +namespace detail +{ + template <typename T, precision P, bool Aligned> + struct compute_dot<tquat, T, P, Aligned> + { + static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y) + { + tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); + return (tmp.x + tmp.y) + (tmp.z + tmp.w); + } + }; + + template <typename T, precision P, bool Aligned> + struct compute_quat_add + { + static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) + { + return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); + } + }; + + template <typename T, precision P, bool Aligned> + struct compute_quat_sub + { + static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) + { + return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); + } + }; + + template <typename T, precision P, bool Aligned> + struct compute_quat_mul_scalar + { + static tquat<T, P> call(tquat<T, P> const& q, T s) + { + return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s); + } + }; + + template <typename T, precision P, bool Aligned> + struct compute_quat_div_scalar + { + static tquat<T, P> call(tquat<T, P> const& q, T s) + { + return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s); + } + }; + + template <typename T, precision P, bool Aligned> + struct compute_quat_mul_vec4 + { + static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v) + { + return tvec4<T, P>(q * tvec3<T, P>(v), v.w); + } + }; +}//namespace detail + + // -- Component accesses -- + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) + { + assert(i >= 0 && i < this->length()); + return (&x)[i]; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const + { + assert(i >= 0 && i < this->length()); + return (&x)[i]; + } + + // -- Implicit basic constructors -- + +# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) + template <typename T, precision P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat() +# ifndef GLM_FORCE_NO_CTOR_INIT + : x(0), y(0), z(0), w(1) +# endif + {} +# endif + +# if !GLM_HAS_DEFAULTED_FUNCTIONS + template <typename T, precision P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q) + : x(q.x), y(q.y), z(q.z), w(q.w) + {} +# endif//!GLM_HAS_DEFAULTED_FUNCTIONS + + template <typename T, precision P> + template <precision Q> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q) + : x(q.x), y(q.y), z(q.z), w(q.w) + {} + + // -- Explicit basic constructors -- + + template <typename T, precision P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor) + {} + + template <typename T, precision P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v) + : x(v.x), y(v.y), z(v.z), w(s) + {} + + template <typename T, precision P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z) + : x(x), y(y), z(z), w(w) + {} + + // -- Conversion constructors -- + + template <typename T, precision P> + template <typename U, precision Q> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q) + : x(static_cast<T>(q.x)) + , y(static_cast<T>(q.y)) + , z(static_cast<T>(q.z)) + , w(static_cast<T>(q.w)) + {} + + //template <typename valType> + //GLM_FUNC_QUALIFIER tquat<valType>::tquat + //( + // valType const & pitch, + // valType const & yaw, + // valType const & roll + //) + //{ + // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); + // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); + // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); + // + // this->w = c.x * c.y * c.z + s.x * s.y * s.z; + // this->x = s.x * c.y * c.z - c.x * s.y * s.z; + // this->y = c.x * s.y * c.z + s.x * c.y * s.z; + // this->z = c.x * c.y * s.z - s.x * s.y * c.z; + //} + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v) + { + tvec3<T, P> const LocalW(cross(u, v)); + T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v); + tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); + + *this = normalize(q); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle) + { + tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); + tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); + + this->w = c.x * c.y * c.z + s.x * s.y * s.z; + this->x = s.x * c.y * c.z - c.x * s.y * s.z; + this->y = c.x * s.y * c.z + s.x * c.y * s.z; + this->z = c.x * c.y * s.z - s.x * s.y * c.z; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m) + { + *this = quat_cast(m); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m) + { + *this = quat_cast(m); + } + +# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>() + { + return mat3_cast(*this); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>() + { + return mat4_cast(*this); + } +# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q) + { + return tquat<T, P>(q.w, -q.x, -q.y, -q.z); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q) + { + return conjugate(q) / dot(q, q); + } + + // -- Unary arithmetic operators -- + +# if !GLM_HAS_DEFAULTED_FUNCTIONS + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q) + { + this->w = q.w; + this->x = q.x; + this->y = q.y; + this->z = q.z; + return *this; + } +# endif//!GLM_HAS_DEFAULTED_FUNCTIONS + + template <typename T, precision P> + template <typename U> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q) + { + this->w = static_cast<T>(q.w); + this->x = static_cast<T>(q.x); + this->y = static_cast<T>(q.y); + this->z = static_cast<T>(q.z); + return *this; + } + + template <typename T, precision P> + template <typename U> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q) + { + return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); + } + + template <typename T, precision P> + template <typename U> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q) + { + return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); + } + + template <typename T, precision P> + template <typename U> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r) + { + tquat<T, P> const p(*this); + tquat<T, P> const q(r); + + this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; + this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; + this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; + this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; + return *this; + } + + template <typename T, precision P> + template <typename U> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s) + { + return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); + } + + template <typename T, precision P> + template <typename U> + GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s) + { + return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); + } + + // -- Unary bit operators -- + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q) + { + return q; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q) + { + return tquat<T, P>(-q.w, -q.x, -q.y, -q.z); + } + + // -- Binary operators -- + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p) + { + return tquat<T, P>(q) += p; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p) + { + return tquat<T, P>(q) *= p; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v) + { + tvec3<T, P> const QuatVector(q.x, q.y, q.z); + tvec3<T, P> const uv(glm::cross(QuatVector, v)); + tvec3<T, P> const uuv(glm::cross(QuatVector, uv)); + + return v + ((uv * q.w) + uuv) * static_cast<T>(2); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q) + { + return glm::inverse(q) * v; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v) + { + return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q) + { + return glm::inverse(q) * v; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s) + { + return tquat<T, P>( + q.w * s, q.x * s, q.y * s, q.z * s); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q) + { + return q * s; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s) + { + return tquat<T, P>( + q.w / s, q.x / s, q.y / s, q.z / s); + } + + // -- Boolean operators -- + + template <typename T, precision P> + GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2) + { + return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2) + { + return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); + } + + // -- Operations -- + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q) + { + return glm::sqrt(dot(q, q)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q) + { + T len = length(q); + if(len <= T(0)) // Problem + return tquat<T, P>(1, 0, 0, 0); + T oneOverLen = T(1) / len; + return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2) + { + return tquat<T, P>( + q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, + q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, + q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, + q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); + } +/* + // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) + { + if(a <= T(0)) return x; + if(a >= T(1)) return y; + + float fCos = dot(x, y); + tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; + if(fCos < T(0)) + { + y2 = -y; + fCos = -fCos; + } + + //if(fCos > 1.0f) // problem + float k0, k1; + if(fCos > T(0.9999)) + { + k0 = T(1) - a; + k1 = T(0) + a; //BUG!!! 1.0f + a; + } + else + { + T fSin = sqrt(T(1) - fCos * fCos); + T fAngle = atan(fSin, fCos); + T fOneOverSin = static_cast<T>(1) / fSin; + k0 = sin((T(1) - a) * fAngle) * fOneOverSin; + k1 = sin((T(0) + a) * fAngle) * fOneOverSin; + } + + return tquat<T, P>( + k0 * x.w + k1 * y2.w, + k0 * x.x + k1 * y2.x, + k0 * x.y + k1 * y2.y, + k0 * x.z + k1 * y2.z); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> mix2 + ( + tquat<T, P> const & x, + tquat<T, P> const & y, + T const & a + ) + { + bool flip = false; + if(a <= static_cast<T>(0)) return x; + if(a >= static_cast<T>(1)) return y; + + T cos_t = dot(x, y); + if(cos_t < T(0)) + { + cos_t = -cos_t; + flip = true; + } + + T alpha(0), beta(0); + + if(T(1) - cos_t < 1e-7) + beta = static_cast<T>(1) - alpha; + else + { + T theta = acos(cos_t); + T sin_t = sin(theta); + beta = sin(theta * (T(1) - alpha)) / sin_t; + alpha = sin(alpha * theta) / sin_t; + } + + if(flip) + alpha = -alpha; + + return normalize(beta * x + alpha * y); + } +*/ + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a) + { + T cosTheta = dot(x, y); + + // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator + if(cosTheta > T(1) - epsilon<T>()) + { + // Linear interpolation + return tquat<T, P>( + mix(x.w, y.w, a), + mix(x.x, y.x, a), + mix(x.y, y.y, a), + mix(x.z, y.z, a)); + } + else + { + // Essential Mathematics, page 467 + T angle = acos(cosTheta); + return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); + } + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) + { + // Lerp is only defined in [0, 1] + assert(a >= static_cast<T>(0)); + assert(a <= static_cast<T>(1)); + + return x * (T(1) - a) + (y * a); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) + { + tquat<T, P> z = y; + + T cosTheta = dot(x, y); + + // If cosTheta < 0, the interpolation will take the long way around the sphere. + // To fix this, one quat must be negated. + if (cosTheta < T(0)) + { + z = -y; + cosTheta = -cosTheta; + } + + // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator + if(cosTheta > T(1) - epsilon<T>()) + { + // Linear interpolation + return tquat<T, P>( + mix(x.w, z.w, a), + mix(x.x, z.x, a), + mix(x.y, z.y, a), + mix(x.z, z.z, a)); + } + else + { + // Essential Mathematics, page 467 + T angle = acos(cosTheta); + return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); + } + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v) + { + tvec3<T, P> Tmp = v; + + // Axis of rotation must be normalised + T len = glm::length(Tmp); + if(abs(len - T(1)) > T(0.001)) + { + T oneOverLen = static_cast<T>(1) / len; + Tmp.x *= oneOverLen; + Tmp.y *= oneOverLen; + Tmp.z *= oneOverLen; + } + + T const AngleRad(angle); + T const Sin = sin(AngleRad * T(0.5)); + + return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); + //return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x) + { + return tvec3<T, P>(pitch(x), yaw(x), roll(x)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q) + { + return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q) + { + return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q) + { + return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q) + { + tmat3x3<T, P> Result(T(1)); + T qxx(q.x * q.x); + T qyy(q.y * q.y); + T qzz(q.z * q.z); + T qxz(q.x * q.z); + T qxy(q.x * q.y); + T qyz(q.y * q.z); + T qwx(q.w * q.x); + T qwy(q.w * q.y); + T qwz(q.w * q.z); + + Result[0][0] = T(1) - T(2) * (qyy + qzz); + Result[0][1] = T(2) * (qxy + qwz); + Result[0][2] = T(2) * (qxz - qwy); + + Result[1][0] = T(2) * (qxy - qwz); + Result[1][1] = T(1) - T(2) * (qxx + qzz); + Result[1][2] = T(2) * (qyz + qwx); + + Result[2][0] = T(2) * (qxz + qwy); + Result[2][1] = T(2) * (qyz - qwx); + Result[2][2] = T(1) - T(2) * (qxx + qyy); + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q) + { + return tmat4x4<T, P>(mat3_cast(q)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m) + { + T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; + T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; + T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; + T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; + + int biggestIndex = 0; + T fourBiggestSquaredMinus1 = fourWSquaredMinus1; + if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) + { + fourBiggestSquaredMinus1 = fourXSquaredMinus1; + biggestIndex = 1; + } + if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) + { + fourBiggestSquaredMinus1 = fourYSquaredMinus1; + biggestIndex = 2; + } + if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) + { + fourBiggestSquaredMinus1 = fourZSquaredMinus1; + biggestIndex = 3; + } + + T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); + T mult = static_cast<T>(0.25) / biggestVal; + + tquat<T, P> Result(uninitialize); + switch(biggestIndex) + { + case 0: + Result.w = biggestVal; + Result.x = (m[1][2] - m[2][1]) * mult; + Result.y = (m[2][0] - m[0][2]) * mult; + Result.z = (m[0][1] - m[1][0]) * mult; + break; + case 1: + Result.w = (m[1][2] - m[2][1]) * mult; + Result.x = biggestVal; + Result.y = (m[0][1] + m[1][0]) * mult; + Result.z = (m[2][0] + m[0][2]) * mult; + break; + case 2: + Result.w = (m[2][0] - m[0][2]) * mult; + Result.x = (m[0][1] + m[1][0]) * mult; + Result.y = biggestVal; + Result.z = (m[1][2] + m[2][1]) * mult; + break; + case 3: + Result.w = (m[0][1] - m[1][0]) * mult; + Result.x = (m[2][0] + m[0][2]) * mult; + Result.y = (m[1][2] + m[2][1]) * mult; + Result.z = biggestVal; + break; + + default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. + assert(false); + break; + } + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4) + { + return quat_cast(tmat3x3<T, P>(m4)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x) + { + return acos(x.w) * T(2); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x) + { + T tmp1 = static_cast<T>(1) - x.w * x.w; + if(tmp1 <= static_cast<T>(0)) + return tvec3<T, P>(0, 0, 1); + T tmp2 = static_cast<T>(1) / sqrt(tmp1); + return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v) + { + tquat<T, P> Result(uninitialize); + + T const a(angle); + T const s = glm::sin(a * static_cast<T>(0.5)); + + Result.w = glm::cos(a * static_cast<T>(0.5)); + Result.x = v.x * s; + Result.y = v.y * s; + Result.z = v.z * s; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y) + { + tvec4<bool, P> Result(uninitialize); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] < y[i]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) + { + tvec4<bool, P> Result(uninitialize); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] <= y[i]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y) + { + tvec4<bool, P> Result(uninitialize); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] > y[i]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) + { + tvec4<bool, P> Result(uninitialize); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] >= y[i]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y) + { + tvec4<bool, P> Result(uninitialize); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] == y[i]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y) + { + tvec4<bool, P> Result(uninitialize); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] != y[i]; + return Result; + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs"); + + return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); + } + + template <typename T, precision P> + GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs"); + + return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); + } +}//namespace glm + +#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE +# include "quaternion_simd.inl" +#endif + diff --git a/external/include/glm/gtc/quaternion_simd.inl b/external/include/glm/gtc/quaternion_simd.inl new file mode 100644 index 0000000..cca874b --- /dev/null +++ b/external/include/glm/gtc/quaternion_simd.inl @@ -0,0 +1,198 @@ +/// @ref core +/// @file glm/gtc/quaternion_simd.inl + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm{ +namespace detail +{ +/* + template <precision P> + struct compute_quat_mul<float, P, true> + { + static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2) + { + // SSE2 STATS: 11 shuffle, 8 mul, 8 add + // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps + + __m128 const mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3))); + __m128 const mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2))); + __m128 const mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1))); + __m128 const mul3 = _mm_mul_ps(q1.Data, q2.Data); + +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + __m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff); + __m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff); + __m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff); + __m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff); +# else + __m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f)); + __m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4)); + __m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1)); + + __m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f)); + __m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5)); + __m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1)); + + __m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f)); + __m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6)); + __m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1)); + + __m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)); + __m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7)); + __m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1)); + #endif + + // This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than + // the final code below. I'll keep this here for reference - maybe somebody else can do something better... + // + //__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0)); + //__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0)); + // + //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); + + tquat<float, P> Result(uninitialize); + _mm_store_ss(&Result.x, add4); + _mm_store_ss(&Result.y, add5); + _mm_store_ss(&Result.z, add6); + _mm_store_ss(&Result.w, add7); + return Result; + } + }; +*/ + + template <precision P> + struct compute_dot<tquat, float, P, true> + { + static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y) + { + return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); + } + }; + + template <precision P> + struct compute_quat_add<float, P, true> + { + static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) + { + tquat<float, P> Result(uninitialize); + Result.data = _mm_add_ps(q.data, p.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template <precision P> + struct compute_quat_add<double, P, true> + { + static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) + { + tquat<double, P> Result(uninitialize); + Result.data = _mm256_add_pd(a.data, b.data); + return Result; + } + }; +# endif + + template <precision P> + struct compute_quat_sub<float, P, true> + { + static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) + { + tvec4<float, P> Result(uninitialize); + Result.data = _mm_sub_ps(q.data, p.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template <precision P> + struct compute_quat_sub<double, P, true> + { + static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) + { + tquat<double, P> Result(uninitialize); + Result.data = _mm256_sub_pd(a.data, b.data); + return Result; + } + }; +# endif + + template <precision P> + struct compute_quat_mul_scalar<float, P, true> + { + static tquat<float, P> call(tquat<float, P> const& q, float s) + { + tvec4<float, P> Result(uninitialize); + Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template <precision P> + struct compute_quat_mul_scalar<double, P, true> + { + static tquat<double, P> call(tquat<double, P> const& q, double s) + { + tquat<double, P> Result(uninitialize); + Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); + return Result; + } + }; +# endif + + template <precision P> + struct compute_quat_div_scalar<float, P, true> + { + static tquat<float, P> call(tquat<float, P> const& q, float s) + { + tvec4<float, P> Result(uninitialize); + Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template <precision P> + struct compute_quat_div_scalar<double, P, true> + { + static tquat<double, P> call(tquat<double, P> const& q, double s) + { + tquat<double, P> Result(uninitialize); + Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); + return Result; + } + }; +# endif + + template <precision P> + struct compute_quat_mul_vec4<float, P, true> + { + static tvec4<float, P> call(tquat<float, P> const& q, tvec4<float, P> const& v) + { + __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); + __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); + __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); + + __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); + __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); + __m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0)); + + __m128 const two = _mm_set1_ps(2.0f); + uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); + uuv = _mm_mul_ps(uuv, two); + + tvec4<float, P> Result(uninitialize); + Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv)); + return Result; + } + }; +}//namespace detail +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT + diff --git a/external/include/glm/gtc/random.hpp b/external/include/glm/gtc/random.hpp new file mode 100644 index 0000000..fa3956e --- /dev/null +++ b/external/include/glm/gtc/random.hpp @@ -0,0 +1,98 @@ +/// @ref gtc_random +/// @file glm/gtc/random.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// @see gtx_random (extended) +/// +/// @defgroup gtc_random GLM_GTC_random +/// @ingroup gtc +/// +/// @brief Generate random number from various distribution methods. +/// +/// <glm/gtc/random.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../vec2.hpp" +#include "../vec3.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_random extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_random + /// @{ + + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min + /// @param Max + /// @tparam genType Value type. Currently supported: float or double scalars. + /// @see gtc_random + template <typename genTYpe> + GLM_FUNC_DECL genTYpe linearRand( + genTYpe Min, + genTYpe Max); + + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min + /// @param Max + /// @tparam T Value type. Currently supported: float or double. + /// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible + /// @see gtc_random + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> linearRand( + vecType<T, P> const & Min, + vecType<T, P> const & Max); + + /// Generate random numbers in the interval [Min, Max], according a gaussian distribution + /// + /// @param Mean + /// @param Deviation + /// @see gtc_random + template <typename genType> + GLM_FUNC_DECL genType gaussRand( + genType Mean, + genType Deviation); + + /// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius + /// + /// @param Radius + /// @see gtc_random + template <typename T> + GLM_FUNC_DECL tvec2<T, defaultp> circularRand( + T Radius); + + /// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius + /// + /// @param Radius + /// @see gtc_random + template <typename T> + GLM_FUNC_DECL tvec3<T, defaultp> sphericalRand( + T Radius); + + /// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius + /// + /// @param Radius + /// @see gtc_random + template <typename T> + GLM_FUNC_DECL tvec2<T, defaultp> diskRand( + T Radius); + + /// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius + /// + /// @param Radius + /// @see gtc_random + template <typename T> + GLM_FUNC_DECL tvec3<T, defaultp> ballRand( + T Radius); + + /// @} +}//namespace glm + +#include "random.inl" diff --git a/external/include/glm/gtc/random.inl b/external/include/glm/gtc/random.inl new file mode 100644 index 0000000..ad5926e --- /dev/null +++ b/external/include/glm/gtc/random.inl @@ -0,0 +1,350 @@ +/// @ref gtc_random +/// @file glm/gtc/random.inl + +#include "../geometric.hpp" +#include "../exponential.hpp" +#include <cstdlib> +#include <ctime> +#include <cassert> + +namespace glm{ +namespace detail +{ + template <typename T, precision P, template <class, precision> class vecType> + struct compute_rand + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(); + }; + + template <precision P> + struct compute_rand<uint8, P, tvec1> + { + GLM_FUNC_QUALIFIER static tvec1<uint8, P> call() + { + return tvec1<uint8, P>( + std::rand() % std::numeric_limits<uint8>::max()); + } + }; + + template <precision P> + struct compute_rand<uint8, P, tvec2> + { + GLM_FUNC_QUALIFIER static tvec2<uint8, P> call() + { + return tvec2<uint8, P>( + std::rand() % std::numeric_limits<uint8>::max(), + std::rand() % std::numeric_limits<uint8>::max()); + } + }; + + template <precision P> + struct compute_rand<uint8, P, tvec3> + { + GLM_FUNC_QUALIFIER static tvec3<uint8, P> call() + { + return tvec3<uint8, P>( + std::rand() % std::numeric_limits<uint8>::max(), + std::rand() % std::numeric_limits<uint8>::max(), + std::rand() % std::numeric_limits<uint8>::max()); + } + }; + + template <precision P> + struct compute_rand<uint8, P, tvec4> + { + GLM_FUNC_QUALIFIER static tvec4<uint8, P> call() + { + return tvec4<uint8, P>( + std::rand() % std::numeric_limits<uint8>::max(), + std::rand() % std::numeric_limits<uint8>::max(), + std::rand() % std::numeric_limits<uint8>::max(), + std::rand() % std::numeric_limits<uint8>::max()); + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_rand<uint16, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint16, P> call() + { + return + (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(8)) | + (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(0)); + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_rand<uint32, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint32, P> call() + { + return + (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(16)) | + (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(0)); + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_rand<uint64, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint64, P> call() + { + return + (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(32)) | + (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(0)); + } + }; + + template <typename T, precision P, template <class, precision> class vecType> + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & Min, vecType<T, P> const & Max); + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<int8, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<int8, P> call(vecType<int8, P> const & Min, vecType<int8, P> const & Max) + { + return (vecType<int8, P>(compute_rand<uint8, P, vecType>::call() % vecType<uint8, P>(Max + static_cast<int8>(1) - Min))) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<uint8, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint8, P> call(vecType<uint8, P> const & Min, vecType<uint8, P> const & Max) + { + return (compute_rand<uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<int16, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<int16, P> call(vecType<int16, P> const & Min, vecType<int16, P> const & Max) + { + return (vecType<int16, P>(compute_rand<uint16, P, vecType>::call() % vecType<uint16, P>(Max + static_cast<int16>(1) - Min))) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<uint16, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint16, P> call(vecType<uint16, P> const & Min, vecType<uint16, P> const & Max) + { + return (compute_rand<uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<int32, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<int32, P> call(vecType<int32, P> const & Min, vecType<int32, P> const & Max) + { + return (vecType<int32, P>(compute_rand<uint32, P, vecType>::call() % vecType<uint32, P>(Max + static_cast<int32>(1) - Min))) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<uint32, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint32, P> call(vecType<uint32, P> const & Min, vecType<uint32, P> const & Max) + { + return (compute_rand<uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<int64, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<int64, P> call(vecType<int64, P> const & Min, vecType<int64, P> const & Max) + { + return (vecType<int64, P>(compute_rand<uint64, P, vecType>::call() % vecType<uint64, P>(Max + static_cast<int64>(1) - Min))) + Min; + } + }; + + template <precision P, template <class, precision> class vecType> + struct compute_linearRand<uint64, P, vecType> + { + GLM_FUNC_QUALIFIER static vecType<uint64, P> call(vecType<uint64, P> const & Min, vecType<uint64, P> const & Max) + { + return (compute_rand<uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<float, lowp, vecType> + { + GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & Min, vecType<float, lowp> const & Max) + { + return vecType<float, lowp>(compute_rand<uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<float, mediump, vecType> + { + GLM_FUNC_QUALIFIER static vecType<float, mediump> call(vecType<float, mediump> const & Min, vecType<float, mediump> const & Max) + { + return vecType<float, mediump>(compute_rand<uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<float, highp, vecType> + { + GLM_FUNC_QUALIFIER static vecType<float, highp> call(vecType<float, highp> const & Min, vecType<float, highp> const & Max) + { + return vecType<float, highp>(compute_rand<uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<double, lowp, vecType> + { + GLM_FUNC_QUALIFIER static vecType<double, lowp> call(vecType<double, lowp> const & Min, vecType<double, lowp> const & Max) + { + return vecType<double, lowp>(compute_rand<uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<double, mediump, vecType> + { + GLM_FUNC_QUALIFIER static vecType<double, mediump> call(vecType<double, mediump> const & Min, vecType<double, mediump> const & Max) + { + return vecType<double, mediump>(compute_rand<uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<double, highp, vecType> + { + GLM_FUNC_QUALIFIER static vecType<double, highp> call(vecType<double, highp> const & Min, vecType<double, highp> const & Max) + { + return vecType<double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<long double, lowp, vecType> + { + GLM_FUNC_QUALIFIER static vecType<long double, lowp> call(vecType<long double, lowp> const & Min, vecType<long double, lowp> const & Max) + { + return vecType<long double, lowp>(compute_rand<uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<long double, mediump, vecType> + { + GLM_FUNC_QUALIFIER static vecType<long double, mediump> call(vecType<long double, mediump> const & Min, vecType<long double, mediump> const & Max) + { + return vecType<long double, mediump>(compute_rand<uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; + } + }; + + template <template <class, precision> class vecType> + struct compute_linearRand<long double, highp, vecType> + { + GLM_FUNC_QUALIFIER static vecType<long double, highp> call(vecType<long double, highp> const & Min, vecType<long double, highp> const & Max) + { + return vecType<long double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; + } + }; +}//namespace detail + + template <typename genType> + GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max) + { + return detail::compute_linearRand<genType, highp, tvec1>::call( + tvec1<genType, highp>(Min), + tvec1<genType, highp>(Max)).x; + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> linearRand(vecType<T, P> const & Min, vecType<T, P> const & Max) + { + return detail::compute_linearRand<T, P, vecType>::call(Min, Max); + } + + template <typename genType> + GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation) + { + genType w, x1, x2; + + do + { + x1 = linearRand(genType(-1), genType(1)); + x2 = linearRand(genType(-1), genType(1)); + + w = x1 * x1 + x2 * x2; + } while(w > genType(1)); + + return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean; + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> gaussRand(vecType<T, P> const & Mean, vecType<T, P> const & Deviation) + { + return detail::functor2<T, P, vecType>::call(gaussRand, Mean, Deviation); + } + + template <typename T> + GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius) + { + tvec2<T, defaultp> Result(T(0)); + T LenRadius(T(0)); + + do + { + Result = linearRand( + tvec2<T, defaultp>(-Radius), + tvec2<T, defaultp>(Radius)); + LenRadius = length(Result); + } + while(LenRadius > Radius); + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius) + { + tvec3<T, defaultp> Result(T(0)); + T LenRadius(T(0)); + + do + { + Result = linearRand( + tvec3<T, defaultp>(-Radius), + tvec3<T, defaultp>(Radius)); + LenRadius = length(Result); + } + while(LenRadius > Radius); + + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius) + { + T a = linearRand(T(0), T(6.283185307179586476925286766559f)); + return tvec2<T, defaultp>(cos(a), sin(a)) * Radius; + } + + template <typename T> + GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius) + { + T z = linearRand(T(-1), T(1)); + T a = linearRand(T(0), T(6.283185307179586476925286766559f)); + + T r = sqrt(T(1) - z * z); + + T x = r * cos(a); + T y = r * sin(a); + + return tvec3<T, defaultp>(x, y, z) * Radius; + } +}//namespace glm diff --git a/external/include/glm/gtc/reciprocal.hpp b/external/include/glm/gtc/reciprocal.hpp new file mode 100644 index 0000000..c14a4fe --- /dev/null +++ b/external/include/glm/gtc/reciprocal.hpp @@ -0,0 +1,135 @@ +/// @ref gtc_reciprocal +/// @file glm/gtc/reciprocal.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_reciprocal GLM_GTC_reciprocal +/// @ingroup gtc +/// +/// @brief Define secant, cosecant and cotangent functions. +/// +/// <glm/gtc/reciprocal.hpp> need to be included to use these features. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_reciprocal extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_reciprocal + /// @{ + + /// Secant function. + /// hypotenuse / adjacent or 1 / cos(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType sec(genType angle); + + /// Cosecant function. + /// hypotenuse / opposite or 1 / sin(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType csc(genType angle); + + /// Cotangent function. + /// adjacent / opposite or 1 / tan(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType cot(genType angle); + + /// Inverse secant function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType asec(genType x); + + /// Inverse cosecant function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType acsc(genType x); + + /// Inverse cotangent function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType acot(genType x); + + /// Secant hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType sech(genType angle); + + /// Cosecant hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType csch(genType angle); + + /// Cotangent hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType coth(genType angle); + + /// Inverse secant hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType asech(genType x); + + /// Inverse cosecant hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType acsch(genType x); + + /// Inverse cotangent hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see gtc_reciprocal + template <typename genType> + GLM_FUNC_DECL genType acoth(genType x); + + /// @} +}//namespace glm + +#include "reciprocal.inl" diff --git a/external/include/glm/gtc/reciprocal.inl b/external/include/glm/gtc/reciprocal.inl new file mode 100644 index 0000000..c625ac9 --- /dev/null +++ b/external/include/glm/gtc/reciprocal.inl @@ -0,0 +1,192 @@ +/// @ref gtc_reciprocal +/// @file glm/gtc/reciprocal.inl + +#include "../trigonometric.hpp" +#include <limits> + +namespace glm +{ + // sec + template <typename genType> + GLM_FUNC_QUALIFIER genType sec(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values"); + return genType(1) / glm::cos(angle); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> sec(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(sec, x); + } + + // csc + template <typename genType> + GLM_FUNC_QUALIFIER genType csc(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values"); + return genType(1) / glm::sin(angle); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> csc(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(csc, x); + } + + // cot + template <typename genType> + GLM_FUNC_QUALIFIER genType cot(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values"); + + genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); + return glm::tan(pi_over_2 - angle); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> cot(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(cot, x); + } + + // asec + template <typename genType> + GLM_FUNC_QUALIFIER genType asec(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values"); + return acos(genType(1) / x); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> asec(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(asec, x); + } + + // acsc + template <typename genType> + GLM_FUNC_QUALIFIER genType acsc(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values"); + return asin(genType(1) / x); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> acsc(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(acsc, x); + } + + // acot + template <typename genType> + GLM_FUNC_QUALIFIER genType acot(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values"); + + genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); + return pi_over_2 - atan(x); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> acot(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(acot, x); + } + + // sech + template <typename genType> + GLM_FUNC_QUALIFIER genType sech(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values"); + return genType(1) / glm::cosh(angle); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> sech(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(sech, x); + } + + // csch + template <typename genType> + GLM_FUNC_QUALIFIER genType csch(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values"); + return genType(1) / glm::sinh(angle); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> csch(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(csch, x); + } + + // coth + template <typename genType> + GLM_FUNC_QUALIFIER genType coth(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values"); + return glm::cosh(angle) / glm::sinh(angle); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> coth(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(coth, x); + } + + // asech + template <typename genType> + GLM_FUNC_QUALIFIER genType asech(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values"); + return acosh(genType(1) / x); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> asech(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(asech, x); + } + + // acsch + template <typename genType> + GLM_FUNC_QUALIFIER genType acsch(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values"); + return acsch(genType(1) / x); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> acsch(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(acsch, x); + } + + // acoth + template <typename genType> + GLM_FUNC_QUALIFIER genType acoth(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values"); + return atanh(genType(1) / x); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> acoth(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs"); + return detail::functor1<T, T, P, vecType>::call(acoth, x); + } +}//namespace glm diff --git a/external/include/glm/gtc/round.hpp b/external/include/glm/gtc/round.hpp new file mode 100644 index 0000000..a583592 --- /dev/null +++ b/external/include/glm/gtc/round.hpp @@ -0,0 +1,174 @@ +/// @ref gtc_round +/// @file glm/gtc/round.hpp +/// +/// @see core (dependence) +/// @see gtc_round (dependence) +/// +/// @defgroup gtc_round GLM_GTC_round +/// @ingroup gtc +/// +/// @brief rounding value to specific boundings +/// +/// <glm/gtc/round.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../detail/_vectorize.hpp" +#include "../vector_relational.hpp" +#include "../common.hpp" +#include <limits> + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_round + /// @{ + + /// Return true if the value is a power of two number. + /// + /// @see gtc_round + template <typename genIUType> + GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value); + + /// Return true if the value is a power of two number. + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<bool, P> isPowerOfTwo(vecType<T, P> const & value); + + /// Return the power of two number which value is just higher the input value, + /// round up to a power of two. + /// + /// @see gtc_round + template <typename genIUType> + GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value); + + /// Return the power of two number which value is just higher the input value, + /// round up to a power of two. + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & value); + + /// Return the power of two number which value is just lower the input value, + /// round down to a power of two. + /// + /// @see gtc_round + template <typename genIUType> + GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value); + + /// Return the power of two number which value is just lower the input value, + /// round down to a power of two. + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> floorPowerOfTwo(vecType<T, P> const & value); + + /// Return the power of two number which value is the closet to the input value. + /// + /// @see gtc_round + template <typename genIUType> + GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value); + + /// Return the power of two number which value is the closet to the input value. + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> roundPowerOfTwo(vecType<T, P> const & value); + + /// Return true if the 'Value' is a multiple of 'Multiple'. + /// + /// @see gtc_round + template <typename genIUType> + GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple); + + /// Return true if the 'Value' is a multiple of 'Multiple'. + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple); + + /// Return true if the 'Value' is a multiple of 'Multiple'. + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple); + + /// Higher multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// @param Source + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template <typename genType> + GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple); + + /// Higher multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// @param Source + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// @param Source + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template <typename genType> + GLM_FUNC_DECL genType floorMultiple( + genType Source, + genType Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// @param Source + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> floorMultiple( + vecType<T, P> const & Source, + vecType<T, P> const & Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// @param Source + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template <typename genType> + GLM_FUNC_DECL genType roundMultiple( + genType Source, + genType Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// @param Source + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_DECL vecType<T, P> roundMultiple( + vecType<T, P> const & Source, + vecType<T, P> const & Multiple); + + /// @} +} //namespace glm + +#include "round.inl" diff --git a/external/include/glm/gtc/round.inl b/external/include/glm/gtc/round.inl new file mode 100644 index 0000000..f583c40 --- /dev/null +++ b/external/include/glm/gtc/round.inl @@ -0,0 +1,344 @@ +/// @ref gtc_round +/// @file glm/gtc/round.inl + +#include "../detail/func_integer.hpp" + +namespace glm{ +namespace detail +{ + template <typename T, precision P, template <typename, precision> class vecType, bool compute = false> + struct compute_ceilShift + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T) + { + return v; + } + }; + + template <typename T, precision P, template <typename, precision> class vecType> + struct compute_ceilShift<T, P, vecType, true> + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift) + { + return v | (v >> Shift); + } + }; + + template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true> + struct compute_ceilPowerOfTwo + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); + + vecType<T, P> const Sign(sign(x)); + + vecType<T, P> v(abs(x)); + + v = v - static_cast<T>(1); + v = v | (v >> static_cast<T>(1)); + v = v | (v >> static_cast<T>(2)); + v = v | (v >> static_cast<T>(4)); + v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); + v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); + v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); + return (v + static_cast<T>(1)) * Sign; + } + }; + + template <typename T, precision P, template <typename, precision> class vecType> + struct compute_ceilPowerOfTwo<T, P, vecType, false> + { + GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) + { + GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); + + vecType<T, P> v(x); + + v = v - static_cast<T>(1); + v = v | (v >> static_cast<T>(1)); + v = v | (v >> static_cast<T>(2)); + v = v | (v >> static_cast<T>(4)); + v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); + v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); + v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); + return v + static_cast<T>(1); + } + }; + + template <bool is_float, bool is_signed> + struct compute_ceilMultiple{}; + + template <> + struct compute_ceilMultiple<true, true> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source > genType(0)) + return Source + (Multiple - std::fmod(Source, Multiple)); + else + return Source + std::fmod(-Source, Multiple); + } + }; + + template <> + struct compute_ceilMultiple<false, false> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + genType Tmp = Source - genType(1); + return Tmp + (Multiple - (Tmp % Multiple)); + } + }; + + template <> + struct compute_ceilMultiple<false, true> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source > genType(0)) + { + genType Tmp = Source - genType(1); + return Tmp + (Multiple - (Tmp % Multiple)); + } + else + return Source + (-Source % Multiple); + } + }; + + template <bool is_float, bool is_signed> + struct compute_floorMultiple{}; + + template <> + struct compute_floorMultiple<true, true> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - std::fmod(Source, Multiple); + else + return Source - std::fmod(Source, Multiple) - Multiple; + } + }; + + template <> + struct compute_floorMultiple<false, false> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; + + template <> + struct compute_floorMultiple<false, true> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; + + template <bool is_float, bool is_signed> + struct compute_roundMultiple{}; + + template <> + struct compute_roundMultiple<true, true> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - std::fmod(Source, Multiple); + else + { + genType Tmp = Source + genType(1); + return Tmp - std::fmod(Tmp, Multiple) - Multiple; + } + } + }; + + template <> + struct compute_roundMultiple<false, false> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; + + template <> + struct compute_roundMultiple<false, true> + { + template <typename genType> + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; +}//namespace detail + + //////////////// + // isPowerOfTwo + + template <typename genType> + GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value) + { + genType const Result = glm::abs(Value); + return !(Result & (Result - 1)); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value) + { + vecType<T, P> const Result(abs(Value)); + return equal(Result & (Result - 1), vecType<T, P>(0)); + } + + ////////////////// + // ceilPowerOfTwo + + template <typename genType> + GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value) + { + return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x; + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v) + { + return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v); + } + + /////////////////// + // floorPowerOfTwo + + template <typename genType> + GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value) + { + return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v) + { + return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v); + } + + /////////////////// + // roundPowerOfTwo + + template <typename genIUType> + GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value) + { + if(isPowerOfTwo(value)) + return value; + + genIUType const prev = static_cast<genIUType>(1) << findMSB(value); + genIUType const next = prev << static_cast<genIUType>(1); + return (next - value) < (value - prev) ? next : prev; + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v) + { + return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v); + } + + //////////////// + // isMultiple + + template <typename genType> + GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple) + { + return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x; + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple) + { + return (Value % Multiple) == vecType<T, P>(0); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple) + { + return (Value % Multiple) == vecType<T, P>(0); + } + + ////////////////////// + // ceilMultiple + + template <typename genType> + GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple) + { + return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) + { + return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple); + } + + ////////////////////// + // floorMultiple + + template <typename genType> + GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple) + { + return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) + { + return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple); + } + + ////////////////////// + // roundMultiple + + template <typename genType> + GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple) + { + return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); + } + + template <typename T, precision P, template <typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) + { + return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple); + } +}//namespace glm diff --git a/external/include/glm/gtc/type_aligned.hpp b/external/include/glm/gtc/type_aligned.hpp new file mode 100644 index 0000000..2e4503c --- /dev/null +++ b/external/include/glm/gtc/type_aligned.hpp @@ -0,0 +1,362 @@ +/// @ref gtc_type_aligned +/// @file glm/gtc/type_aligned.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_type_aligned GLM_GTC_type_aligned +/// @ingroup gtc +/// +/// @brief Aligned types. +/// <glm/gtc/type_aligned.hpp> need to be included to use these features. + +#pragma once + +#if !GLM_HAS_ALIGNED_TYPE +# error "GLM: Aligned types are not supported on this platform" +#endif +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_type_aligned extension included") +#endif + +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../gtc/vec1.hpp" + +namespace glm +{ + template <typename T, precision P> struct tvec1; + template <typename T, precision P> struct tvec2; + template <typename T, precision P> struct tvec3; + template <typename T, precision P> struct tvec4; + /// @addtogroup gtc_type_aligned + /// @{ + + // -- *vec1 -- + + typedef tvec1<float, aligned_highp> aligned_highp_vec1; + typedef tvec1<float, aligned_mediump> aligned_mediump_vec1; + typedef tvec1<float, aligned_lowp> aligned_lowp_vec1; + typedef tvec1<double, aligned_highp> aligned_highp_dvec1; + typedef tvec1<double, aligned_mediump> aligned_mediump_dvec1; + typedef tvec1<double, aligned_lowp> aligned_lowp_dvec1; + typedef tvec1<int, aligned_highp> aligned_highp_ivec1; + typedef tvec1<int, aligned_mediump> aligned_mediump_ivec1; + typedef tvec1<int, aligned_lowp> aligned_lowp_ivec1; + typedef tvec1<uint, aligned_highp> aligned_highp_uvec1; + typedef tvec1<uint, aligned_mediump> aligned_mediump_uvec1; + typedef tvec1<uint, aligned_lowp> aligned_lowp_uvec1; + typedef tvec1<bool, aligned_highp> aligned_highp_bvec1; + typedef tvec1<bool, aligned_mediump> aligned_mediump_bvec1; + typedef tvec1<bool, aligned_lowp> aligned_lowp_bvec1; + + typedef tvec1<float, packed_highp> packed_highp_vec1; + typedef tvec1<float, packed_mediump> packed_mediump_vec1; + typedef tvec1<float, packed_lowp> packed_lowp_vec1; + typedef tvec1<double, packed_highp> packed_highp_dvec1; + typedef tvec1<double, packed_mediump> packed_mediump_dvec1; + typedef tvec1<double, packed_lowp> packed_lowp_dvec1; + typedef tvec1<int, packed_highp> packed_highp_ivec1; + typedef tvec1<int, packed_mediump> packed_mediump_ivec1; + typedef tvec1<int, packed_lowp> packed_lowp_ivec1; + typedef tvec1<uint, packed_highp> packed_highp_uvec1; + typedef tvec1<uint, packed_mediump> packed_mediump_uvec1; + typedef tvec1<uint, packed_lowp> packed_lowp_uvec1; + typedef tvec1<bool, packed_highp> packed_highp_bvec1; + typedef tvec1<bool, packed_mediump> packed_mediump_bvec1; + typedef tvec1<bool, packed_lowp> packed_lowp_bvec1; + + // -- *vec2 -- + + /// 2 components vector of high single-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<float, aligned_highp> aligned_highp_vec2; + + /// 2 components vector of medium single-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<float, aligned_mediump> aligned_mediump_vec2; + + /// 2 components vector of low single-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<float, aligned_lowp> aligned_lowp_vec2; + + /// 2 components vector of high double-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<double, aligned_highp> aligned_highp_dvec2; + + /// 2 components vector of medium double-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<double, aligned_mediump> aligned_mediump_dvec2; + + /// 2 components vector of low double-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<double, aligned_lowp> aligned_lowp_dvec2; + + /// 2 components vector of high precision signed integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<int, aligned_highp> aligned_highp_ivec2; + + /// 2 components vector of medium precision signed integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<int, aligned_mediump> aligned_mediump_ivec2; + + /// 2 components vector of low precision signed integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<int, aligned_lowp> aligned_lowp_ivec2; + + /// 2 components vector of high precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<uint, aligned_highp> aligned_highp_uvec2; + + /// 2 components vector of medium precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<uint, aligned_mediump> aligned_mediump_uvec2; + + /// 2 components vector of low precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<uint, aligned_lowp> aligned_lowp_uvec2; + + /// 2 components vector of high precision bool numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<bool, aligned_highp> aligned_highp_bvec2; + + /// 2 components vector of medium precision bool numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<bool, aligned_mediump> aligned_mediump_bvec2; + + /// 2 components vector of low precision bool numbers. + /// There is no guarantee on the actual precision. + typedef tvec2<bool, aligned_lowp> aligned_lowp_bvec2; + + // -- *vec3 -- + + /// 3 components vector of high single-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<float, aligned_highp> aligned_highp_vec3; + + /// 3 components vector of medium single-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<float, aligned_mediump> aligned_mediump_vec3; + + /// 3 components vector of low single-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<float, aligned_lowp> aligned_lowp_vec3; + + /// 3 components vector of high double-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<double, aligned_highp> aligned_highp_dvec3; + + /// 3 components vector of medium double-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<double, aligned_mediump> aligned_mediump_dvec3; + + /// 3 components vector of low double-precision floating-point numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<double, aligned_lowp> aligned_lowp_dvec3; + + /// 3 components vector of high precision signed integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<int, aligned_highp> aligned_highp_ivec3; + + /// 3 components vector of medium precision signed integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<int, aligned_mediump> aligned_mediump_ivec3; + + /// 3 components vector of low precision signed integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<int, aligned_lowp> aligned_lowp_ivec3; + + /// 3 components vector of high precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<uint, aligned_highp> aligned_highp_uvec3; + + /// 3 components vector of medium precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<uint, aligned_mediump> aligned_mediump_uvec3; + + /// 3 components vector of low precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + typedef tvec3<uint, aligned_lowp> aligned_lowp_uvec3; + + /// 3 components vector of high precision bool numbers. + typedef tvec3<bool, aligned_highp> aligned_highp_bvec3; + + /// 3 components vector of medium precision bool numbers. + typedef tvec3<bool, aligned_mediump> aligned_mediump_bvec3; + + /// 3 components vector of low precision bool numbers. + typedef tvec3<bool, aligned_lowp> aligned_lowp_bvec3; + + // -- *vec4 -- + + /// 4 components vector of high single-precision floating-point numbers. + typedef tvec4<float, aligned_highp> aligned_highp_vec4; + + /// 4 components vector of medium single-precision floating-point numbers. + typedef tvec4<float, aligned_mediump> aligned_mediump_vec4; + + /// 4 components vector of low single-precision floating-point numbers. + typedef tvec4<float, aligned_lowp> aligned_lowp_vec4; + + /// 4 components vector of high double-precision floating-point numbers. + typedef tvec4<double, aligned_highp> aligned_highp_dvec4; + + /// 4 components vector of medium double-precision floating-point numbers. + typedef tvec4<double, aligned_mediump> aligned_mediump_dvec4; + + /// 4 components vector of low double-precision floating-point numbers. + typedef tvec4<double, aligned_lowp> aligned_lowp_dvec4; + + /// 4 components vector of high precision signed integer numbers. + typedef tvec4<int, aligned_highp> aligned_highp_ivec4; + + /// 4 components vector of medium precision signed integer numbers. + typedef tvec4<int, aligned_mediump> aligned_mediump_ivec4; + + /// 4 components vector of low precision signed integer numbers. + typedef tvec4<int, aligned_lowp> aligned_lowp_ivec4; + + /// 4 components vector of high precision unsigned integer numbers. + typedef tvec4<uint, aligned_highp> aligned_highp_uvec4; + + /// 4 components vector of medium precision unsigned integer numbers. + typedef tvec4<uint, aligned_mediump> aligned_mediump_uvec4; + + /// 4 components vector of low precision unsigned integer numbers. + typedef tvec4<uint, aligned_lowp> aligned_lowp_uvec4; + + /// 4 components vector of high precision bool numbers. + typedef tvec4<bool, aligned_highp> aligned_highp_bvec4; + + /// 4 components vector of medium precision bool numbers. + typedef tvec4<bool, aligned_mediump> aligned_mediump_bvec4; + + /// 4 components vector of low precision bool numbers. + typedef tvec4<bool, aligned_lowp> aligned_lowp_bvec4; + + // -- default -- + +#if(defined(GLM_PRECISION_LOWP_FLOAT)) + typedef aligned_lowp_vec1 aligned_vec1; + typedef aligned_lowp_vec2 aligned_vec2; + typedef aligned_lowp_vec3 aligned_vec3; + typedef aligned_lowp_vec4 aligned_vec4; +#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) + typedef aligned_mediump_vec1 aligned_vec1; + typedef aligned_mediump_vec2 aligned_vec2; + typedef aligned_mediump_vec3 aligned_vec3; + typedef aligned_mediump_vec4 aligned_vec4; +#else //defined(GLM_PRECISION_HIGHP_FLOAT) + /// 1 component vector of floating-point numbers. + typedef aligned_highp_vec1 aligned_vec1; + + /// 2 components vector of floating-point numbers. + typedef aligned_highp_vec2 aligned_vec2; + + /// 3 components vector of floating-point numbers. + typedef aligned_highp_vec3 aligned_vec3; + + /// 4 components vector of floating-point numbers. + typedef aligned_highp_vec4 aligned_vec4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_LOWP_DOUBLE)) + typedef aligned_lowp_dvec1 aligned_dvec1; + typedef aligned_lowp_dvec2 aligned_dvec2; + typedef aligned_lowp_dvec3 aligned_dvec3; + typedef aligned_lowp_dvec4 aligned_dvec4; +#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) + typedef aligned_mediump_dvec1 aligned_dvec1; + typedef aligned_mediump_dvec2 aligned_dvec2; + typedef aligned_mediump_dvec3 aligned_dvec3; + typedef aligned_mediump_dvec4 aligned_dvec4; +#else //defined(GLM_PRECISION_HIGHP_DOUBLE) + /// 1 component vector of double-precision floating-point numbers. + typedef aligned_highp_dvec1 aligned_dvec1; + + /// 2 components vector of double-precision floating-point numbers. + typedef aligned_highp_dvec2 aligned_dvec2; + + /// 3 components vector of double-precision floating-point numbers. + typedef aligned_highp_dvec3 aligned_dvec3; + + /// 4 components vector of double-precision floating-point numbers. + typedef aligned_highp_dvec4 aligned_dvec4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_LOWP_INT)) + typedef aligned_lowp_ivec1 aligned_ivec1; + typedef aligned_lowp_ivec2 aligned_ivec2; + typedef aligned_lowp_ivec3 aligned_ivec3; + typedef aligned_lowp_ivec4 aligned_ivec4; +#elif(defined(GLM_PRECISION_MEDIUMP_INT)) + typedef aligned_mediump_ivec1 aligned_ivec1; + typedef aligned_mediump_ivec2 aligned_ivec2; + typedef aligned_mediump_ivec3 aligned_ivec3; + typedef aligned_mediump_ivec4 aligned_ivec4; +#else //defined(GLM_PRECISION_HIGHP_INT) + /// 1 component vector of signed integer numbers. + typedef aligned_highp_ivec1 aligned_ivec1; + + /// 2 components vector of signed integer numbers. + typedef aligned_highp_ivec2 aligned_ivec2; + + /// 3 components vector of signed integer numbers. + typedef aligned_highp_ivec3 aligned_ivec3; + + /// 4 components vector of signed integer numbers. + typedef aligned_highp_ivec4 aligned_ivec4; +#endif//GLM_PRECISION + + // -- Unsigned integer definition -- + +#if(defined(GLM_PRECISION_LOWP_UINT)) + typedef aligned_lowp_uvec1 aligned_uvec1; + typedef aligned_lowp_uvec2 aligned_uvec2; + typedef aligned_lowp_uvec3 aligned_uvec3; + typedef aligned_lowp_uvec4 aligned_uvec4; +#elif(defined(GLM_PRECISION_MEDIUMP_UINT)) + typedef aligned_mediump_uvec1 aligned_uvec1; + typedef aligned_mediump_uvec2 aligned_uvec2; + typedef aligned_mediump_uvec3 aligned_uvec3; + typedef aligned_mediump_uvec4 aligned_uvec4; +#else //defined(GLM_PRECISION_HIGHP_UINT) + /// 1 component vector of unsigned integer numbers. + typedef aligned_highp_uvec1 aligned_uvec1; + + /// 2 components vector of unsigned integer numbers. + typedef aligned_highp_uvec2 aligned_uvec2; + + /// 3 components vector of unsigned integer numbers. + typedef aligned_highp_uvec3 aligned_uvec3; + + /// 4 components vector of unsigned integer numbers. + typedef aligned_highp_uvec4 aligned_uvec4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_LOWP_BOOL)) + typedef aligned_lowp_bvec1 aligned_bvec1; + typedef aligned_lowp_bvec2 aligned_bvec2; + typedef aligned_lowp_bvec3 aligned_bvec3; + typedef aligned_lowp_bvec4 aligned_bvec4; +#elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) + typedef aligned_mediump_bvec1 aligned_bvec1; + typedef aligned_mediump_bvec2 aligned_bvec2; + typedef aligned_mediump_bvec3 aligned_bvec3; + typedef aligned_mediump_bvec4 aligned_bvec4; +#else //defined(GLM_PRECISION_HIGHP_BOOL) + /// 1 component vector of boolean. + typedef aligned_highp_bvec1 aligned_bvec1; + + /// 2 components vector of boolean. + typedef aligned_highp_bvec2 aligned_bvec2; + + /// 3 components vector of boolean. + typedef aligned_highp_bvec3 aligned_bvec3; + + /// 4 components vector of boolean. + typedef aligned_highp_bvec4 aligned_bvec4; +#endif//GLM_PRECISION + + /// @} +}//namespace glm diff --git a/external/include/glm/gtc/type_precision.hpp b/external/include/glm/gtc/type_precision.hpp new file mode 100644 index 0000000..a2dbb66 --- /dev/null +++ b/external/include/glm/gtc/type_precision.hpp @@ -0,0 +1,861 @@ +/// @ref gtc_type_precision +/// @file glm/gtc/type_precision.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_type_precision GLM_GTC_type_precision +/// @ingroup gtc +/// +/// @brief Defines specific C++-based precision types. +/// +/// @ref core_precision defines types based on GLSL's precision qualifiers. This +/// extension defines types based on explicitly-sized C++ data types. +/// +/// <glm/gtc/type_precision.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../gtc/quaternion.hpp" +#include "../gtc/vec1.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../mat2x2.hpp" +#include "../mat2x3.hpp" +#include "../mat2x4.hpp" +#include "../mat3x2.hpp" +#include "../mat3x3.hpp" +#include "../mat3x4.hpp" +#include "../mat4x2.hpp" +#include "../mat4x3.hpp" +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_type_precision extension included") +#endif + +namespace glm +{ + /////////////////////////// + // Signed int vector types + + /// @addtogroup gtc_type_precision + /// @{ + + /// Low precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 lowp_int8; + + /// Low precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 lowp_int16; + + /// Low precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 lowp_int32; + + /// Low precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 lowp_int64; + + /// Low precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 lowp_int8_t; + + /// Low precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 lowp_int16_t; + + /// Low precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 lowp_int32_t; + + /// Low precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 lowp_int64_t; + + /// Low precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 lowp_i8; + + /// Low precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 lowp_i16; + + /// Low precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 lowp_i32; + + /// Low precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 lowp_i64; + + /// Medium precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 mediump_int8; + + /// Medium precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 mediump_int16; + + /// Medium precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 mediump_int32; + + /// Medium precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 mediump_int64; + + /// Medium precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 mediump_int8_t; + + /// Medium precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 mediump_int16_t; + + /// Medium precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 mediump_int32_t; + + /// Medium precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 mediump_int64_t; + + /// Medium precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 mediump_i8; + + /// Medium precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 mediump_i16; + + /// Medium precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 mediump_i32; + + /// Medium precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 mediump_i64; + + /// High precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 highp_int8; + + /// High precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 highp_int16; + + /// High precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 highp_int32; + + /// High precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 highp_int64; + + /// High precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 highp_int8_t; + + /// High precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 highp_int16_t; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 highp_int32_t; + + /// High precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 highp_int64_t; + + /// High precision 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 highp_i8; + + /// High precision 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 highp_i16; + + /// High precision 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 highp_i32; + + /// High precision 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 highp_i64; + + + /// 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 int8; + + /// 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 int16; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 int32; + + /// 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 int64; + +#if GLM_HAS_EXTENDED_INTEGER_TYPE + using std::int8_t; + using std::int16_t; + using std::int32_t; + using std::int64_t; +#else + /// 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 int8_t; + + /// 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 int16_t; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 int32_t; + + /// 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 int64_t; +#endif + + /// 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 i8; + + /// 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 i16; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 i32; + + /// 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 i64; + + + /// 8 bit signed integer scalar type. + /// @see gtc_type_precision + typedef tvec1<i8, defaultp> i8vec1; + + /// 8 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<i8, defaultp> i8vec2; + + /// 8 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<i8, defaultp> i8vec3; + + /// 8 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<i8, defaultp> i8vec4; + + + /// 16 bit signed integer scalar type. + /// @see gtc_type_precision + typedef tvec1<i16, defaultp> i16vec1; + + /// 16 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<i16, defaultp> i16vec2; + + /// 16 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<i16, defaultp> i16vec3; + + /// 16 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<i16, defaultp> i16vec4; + + + /// 32 bit signed integer scalar type. + /// @see gtc_type_precision + typedef tvec1<i32, defaultp> i32vec1; + + /// 32 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<i32, defaultp> i32vec2; + + /// 32 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<i32, defaultp> i32vec3; + + /// 32 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<i32, defaultp> i32vec4; + + + /// 64 bit signed integer scalar type. + /// @see gtc_type_precision + typedef tvec1<i64, defaultp> i64vec1; + + /// 64 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<i64, defaultp> i64vec2; + + /// 64 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<i64, defaultp> i64vec3; + + /// 64 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<i64, defaultp> i64vec4; + + + ///////////////////////////// + // Unsigned int vector types + + /// Low precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 lowp_uint8; + + /// Low precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 lowp_uint16; + + /// Low precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 lowp_uint32; + + /// Low precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 lowp_uint64; + + /// Low precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 lowp_uint8_t; + + /// Low precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 lowp_uint16_t; + + /// Low precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 lowp_uint32_t; + + /// Low precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 lowp_uint64_t; + + /// Low precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 lowp_u8; + + /// Low precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 lowp_u16; + + /// Low precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 lowp_u32; + + /// Low precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 lowp_u64; + + /// Medium precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 mediump_uint8; + + /// Medium precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 mediump_uint16; + + /// Medium precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 mediump_uint32; + + /// Medium precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 mediump_uint64; + + /// Medium precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 mediump_uint8_t; + + /// Medium precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 mediump_uint16_t; + + /// Medium precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 mediump_uint32_t; + + /// Medium precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 mediump_uint64_t; + + /// Medium precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 mediump_u8; + + /// Medium precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 mediump_u16; + + /// Medium precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 mediump_u32; + + /// Medium precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 mediump_u64; + + /// High precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 highp_uint8; + + /// High precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 highp_uint16; + + /// High precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 highp_uint32; + + /// High precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 highp_uint64; + + /// High precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 highp_uint8_t; + + /// High precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 highp_uint16_t; + + /// High precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 highp_uint32_t; + + /// High precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 highp_uint64_t; + + /// High precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 highp_u8; + + /// High precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 highp_u16; + + /// High precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 highp_u32; + + /// High precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 highp_u64; + + /// Default precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 uint8; + + /// Default precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 uint16; + + /// Default precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 uint32; + + /// Default precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 uint64; + +#if GLM_HAS_EXTENDED_INTEGER_TYPE + using std::uint8_t; + using std::uint16_t; + using std::uint32_t; + using std::uint64_t; +#else + /// Default precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 uint8_t; + + /// Default precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 uint16_t; + + /// Default precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 uint32_t; + + /// Default precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 uint64_t; +#endif + + /// Default precision 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 u8; + + /// Default precision 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 u16; + + /// Default precision 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 u32; + + /// Default precision 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 u64; + + + + /// Default precision 8 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef tvec1<u8, defaultp> u8vec1; + + /// Default precision 8 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<u8, defaultp> u8vec2; + + /// Default precision 8 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<u8, defaultp> u8vec3; + + /// Default precision 8 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<u8, defaultp> u8vec4; + + + /// Default precision 16 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef tvec1<u16, defaultp> u16vec1; + + /// Default precision 16 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<u16, defaultp> u16vec2; + + /// Default precision 16 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<u16, defaultp> u16vec3; + + /// Default precision 16 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<u16, defaultp> u16vec4; + + + /// Default precision 32 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef tvec1<u32, defaultp> u32vec1; + + /// Default precision 32 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<u32, defaultp> u32vec2; + + /// Default precision 32 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<u32, defaultp> u32vec3; + + /// Default precision 32 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<u32, defaultp> u32vec4; + + + /// Default precision 64 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef tvec1<u64, defaultp> u64vec1; + + /// Default precision 64 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef tvec2<u64, defaultp> u64vec2; + + /// Default precision 64 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef tvec3<u64, defaultp> u64vec3; + + /// Default precision 64 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef tvec4<u64, defaultp> u64vec4; + + + ////////////////////// + // Float vector types + + /// 32 bit single-precision floating-point scalar. + /// @see gtc_type_precision + typedef detail::float32 float32; + + /// 64 bit double-precision floating-point scalar. + /// @see gtc_type_precision + typedef detail::float64 float64; + + + /// 32 bit single-precision floating-point scalar. + /// @see gtc_type_precision + typedef detail::float32 float32_t; + + /// 64 bit double-precision floating-point scalar. + /// @see gtc_type_precision + typedef detail::float64 float64_t; + + + /// 32 bit single-precision floating-point scalar. + /// @see gtc_type_precision + typedef float32 f32; + + /// 64 bit double-precision floating-point scalar. + /// @see gtc_type_precision + typedef float64 f64; + + + /// Single-precision floating-point vector of 1 component. + /// @see gtc_type_precision + typedef tvec1<float, defaultp> fvec1; + + /// Single-precision floating-point vector of 2 components. + /// @see gtc_type_precision + typedef tvec2<float, defaultp> fvec2; + + /// Single-precision floating-point vector of 3 components. + /// @see gtc_type_precision + typedef tvec3<float, defaultp> fvec3; + + /// Single-precision floating-point vector of 4 components. + /// @see gtc_type_precision + typedef tvec4<float, defaultp> fvec4; + + + /// Single-precision floating-point vector of 1 component. + /// @see gtc_type_precision + typedef tvec1<f32, defaultp> f32vec1; + + /// Single-precision floating-point vector of 2 components. + /// @see gtc_type_precision + typedef tvec2<f32, defaultp> f32vec2; + + /// Single-precision floating-point vector of 3 components. + /// @see gtc_type_precision + typedef tvec3<f32, defaultp> f32vec3; + + /// Single-precision floating-point vector of 4 components. + /// @see gtc_type_precision + typedef tvec4<f32, defaultp> f32vec4; + + + /// Double-precision floating-point vector of 1 component. + /// @see gtc_type_precision + typedef tvec1<f64, defaultp> f64vec1; + + /// Double-precision floating-point vector of 2 components. + /// @see gtc_type_precision + typedef tvec2<f64, defaultp> f64vec2; + + /// Double-precision floating-point vector of 3 components. + /// @see gtc_type_precision + typedef tvec3<f64, defaultp> f64vec3; + + /// Double-precision floating-point vector of 4 components. + /// @see gtc_type_precision + typedef tvec4<f64, defaultp> f64vec4; + + + ////////////////////// + // Float matrix types + + /// Single-precision floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1<f32> fmat1; + + /// Single-precision floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef tmat2x2<f32, defaultp> fmat2; + + /// Single-precision floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef tmat3x3<f32, defaultp> fmat3; + + /// Single-precision floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef tmat4x4<f32, defaultp> fmat4; + + + /// Single-precision floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 fmat1x1; + + /// Single-precision floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef tmat2x2<f32, defaultp> fmat2x2; + + /// Single-precision floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef tmat2x3<f32, defaultp> fmat2x3; + + /// Single-precision floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef tmat2x4<f32, defaultp> fmat2x4; + + /// Single-precision floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef tmat3x2<f32, defaultp> fmat3x2; + + /// Single-precision floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef tmat3x3<f32, defaultp> fmat3x3; + + /// Single-precision floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef tmat3x4<f32, defaultp> fmat3x4; + + /// Single-precision floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef tmat4x2<f32, defaultp> fmat4x2; + + /// Single-precision floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef tmat4x3<f32, defaultp> fmat4x3; + + /// Single-precision floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef tmat4x4<f32, defaultp> fmat4x4; + + + /// Single-precision floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1<f32, defaultp> f32mat1; + + /// Single-precision floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef tmat2x2<f32, defaultp> f32mat2; + + /// Single-precision floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef tmat3x3<f32, defaultp> f32mat3; + + /// Single-precision floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef tmat4x4<f32, defaultp> f32mat4; + + + /// Single-precision floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 f32mat1x1; + + /// Single-precision floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef tmat2x2<f32, defaultp> f32mat2x2; + + /// Single-precision floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef tmat2x3<f32, defaultp> f32mat2x3; + + /// Single-precision floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef tmat2x4<f32, defaultp> f32mat2x4; + + /// Single-precision floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef tmat3x2<f32, defaultp> f32mat3x2; + + /// Single-precision floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef tmat3x3<f32, defaultp> f32mat3x3; + + /// Single-precision floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef tmat3x4<f32, defaultp> f32mat3x4; + + /// Single-precision floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef tmat4x2<f32, defaultp> f32mat4x2; + + /// Single-precision floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef tmat4x3<f32, defaultp> f32mat4x3; + + /// Single-precision floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef tmat4x4<f32, defaultp> f32mat4x4; + + + /// Double-precision floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1<f64, defaultp> f64mat1; + + /// Double-precision floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef tmat2x2<f64, defaultp> f64mat2; + + /// Double-precision floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef tmat3x3<f64, defaultp> f64mat3; + + /// Double-precision floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef tmat4x4<f64, defaultp> f64mat4; + + + /// Double-precision floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f64 f64mat1x1; + + /// Double-precision floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef tmat2x2<f64, defaultp> f64mat2x2; + + /// Double-precision floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef tmat2x3<f64, defaultp> f64mat2x3; + + /// Double-precision floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef tmat2x4<f64, defaultp> f64mat2x4; + + /// Double-precision floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef tmat3x2<f64, defaultp> f64mat3x2; + + /// Double-precision floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef tmat3x3<f64, defaultp> f64mat3x3; + + /// Double-precision floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef tmat3x4<f64, defaultp> f64mat3x4; + + /// Double-precision floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef tmat4x2<f64, defaultp> f64mat4x2; + + /// Double-precision floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef tmat4x3<f64, defaultp> f64mat4x3; + + /// Double-precision floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef tmat4x4<f64, defaultp> f64mat4x4; + + + ////////////////////////// + // Quaternion types + + /// Single-precision floating-point quaternion. + /// @see gtc_type_precision + typedef tquat<f32, defaultp> f32quat; + + /// Double-precision floating-point quaternion. + /// @see gtc_type_precision + typedef tquat<f64, defaultp> f64quat; + + /// @} +}//namespace glm + +#include "type_precision.inl" diff --git a/external/include/glm/gtc/type_precision.inl b/external/include/glm/gtc/type_precision.inl new file mode 100644 index 0000000..cbfd4d8 --- /dev/null +++ b/external/include/glm/gtc/type_precision.inl @@ -0,0 +1,7 @@ +/// @ref gtc_swizzle +/// @file glm/gtc/swizzle.inl + +namespace glm +{ + +} diff --git a/external/include/glm/gtc/type_ptr.hpp b/external/include/glm/gtc/type_ptr.hpp new file mode 100644 index 0000000..008665e --- /dev/null +++ b/external/include/glm/gtc/type_ptr.hpp @@ -0,0 +1,149 @@ +/// @ref gtc_type_ptr +/// @file glm/gtc/type_ptr.hpp +/// +/// @see core (dependence) +/// @see gtc_half_float (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_type_ptr GLM_GTC_type_ptr +/// @ingroup gtc +/// +/// @brief Handles the interaction between pointers and vector, matrix types. +/// +/// This extension defines an overloaded function, glm::value_ptr, which +/// takes any of the \ref core_template "core template types". It returns +/// a pointer to the memory layout of the object. Matrix types store their values +/// in column-major order. +/// +/// This is useful for uploading data to matrices or copying data to buffer objects. +/// +/// Example: +/// @code +/// #include <glm/glm.hpp> +/// #include <glm/gtc/type_ptr.hpp> +/// +/// glm::vec3 aVector(3); +/// glm::mat4 someMatrix(1.0); +/// +/// glUniform3fv(uniformLoc, 1, glm::value_ptr(aVector)); +/// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix)); +/// @endcode +/// +/// <glm/gtc/type_ptr.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../gtc/quaternion.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../mat2x2.hpp" +#include "../mat2x3.hpp" +#include "../mat2x4.hpp" +#include "../mat3x2.hpp" +#include "../mat3x3.hpp" +#include "../mat3x4.hpp" +#include "../mat4x2.hpp" +#include "../mat4x3.hpp" +#include "../mat4x4.hpp" +#include <cstring> + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_type_ptr extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_type_ptr + /// @{ + + /// Return the constant address to the data of the input parameter. + /// @see gtc_type_ptr + template<typename genType> + GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const & vec); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tvec2<T, defaultp> make_vec2(T const * const ptr); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tvec3<T, defaultp> make_vec3(T const * const ptr); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tvec4<T, defaultp> make_vec4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2x2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat2x3<T, defaultp> make_mat2x3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat2x4<T, defaultp> make_mat2x4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat3x2<T, defaultp> make_mat3x2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3x3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat3x4<T, defaultp> make_mat3x4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat4x2<T, defaultp> make_mat4x2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat4x3<T, defaultp> make_mat4x3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4x4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4(T const * const ptr); + + /// Build a quaternion from a pointer. + /// @see gtc_type_ptr + template<typename T> + GLM_FUNC_DECL tquat<T, defaultp> make_quat(T const * const ptr); + + /// @} +}//namespace glm + +#include "type_ptr.inl" diff --git a/external/include/glm/gtc/type_ptr.inl b/external/include/glm/gtc/type_ptr.inl new file mode 100644 index 0000000..3aa6ae6 --- /dev/null +++ b/external/include/glm/gtc/type_ptr.inl @@ -0,0 +1,450 @@ +/// @ref gtc_type_ptr +/// @file glm/gtc/type_ptr.inl + +#include <cstring> + +namespace glm +{ + /// @addtogroup gtc_type_ptr + /// @{ + + /// Return the constant address to the data of the vector input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tvec2<T, P> const & vec + ) + { + return &(vec.x); + } + + //! Return the address to the data of the vector input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tvec2<T, P> & vec + ) + { + return &(vec.x); + } + + /// Return the constant address to the data of the vector input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tvec3<T, P> const & vec + ) + { + return &(vec.x); + } + + //! Return the address to the data of the vector input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tvec3<T, P> & vec + ) + { + return &(vec.x); + } + + /// Return the constant address to the data of the vector input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tvec4<T, P> const & vec + ) + { + return &(vec.x); + } + + //! Return the address to the data of the vector input. + //! From GLM_GTC_type_ptr extension. + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tvec4<T, P> & vec + ) + { + return &(vec.x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat2x2<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat2x2<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat3x3<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat3x3<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat4x4<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + //! From GLM_GTC_type_ptr extension. + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat4x4<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat2x3<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat2x3<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat3x2<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat3x2<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat2x4<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat2x4<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat4x2<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat4x2<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat3x4<T, P> const & mat + ) + { + return &(mat[0].x); + } + + //! Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tmat3x4<T, P> & mat + ) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tmat4x3<T, P> const & mat + ) + { + return &(mat[0].x); + } + + /// Return the address to the data of the matrix input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr(tmat4x3<T, P> & mat) + { + return &(mat[0].x); + } + + /// Return the constant address to the data of the input parameter. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T const * value_ptr + ( + tquat<T, P> const & q + ) + { + return &(q[0]); + } + + /// Return the address to the data of the quaternion input. + /// @see gtc_type_ptr + template<typename T, precision P> + GLM_FUNC_QUALIFIER T * value_ptr + ( + tquat<T, P> & q + ) + { + return &(q[0]); + } + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tvec2<T, defaultp> make_vec2(T const * const ptr) + { + tvec2<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tvec2<T, defaultp>)); + return Result; + } + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tvec3<T, defaultp> make_vec3(T const * const ptr) + { + tvec3<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tvec3<T, defaultp>)); + return Result; + } + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tvec4<T, defaultp> make_vec4(T const * const ptr) + { + tvec4<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tvec4<T, defaultp>)); + return Result; + } + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2x2(T const * const ptr) + { + tmat2x2<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat2x2<T, defaultp>)); + return Result; + } + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat2x3<T, defaultp> make_mat2x3(T const * const ptr) + { + tmat2x3<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat2x3<T, defaultp>)); + return Result; + } + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat2x4<T, defaultp> make_mat2x4(T const * const ptr) + { + tmat2x4<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat2x4<T, defaultp>)); + return Result; + } + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat3x2<T, defaultp> make_mat3x2(T const * const ptr) + { + tmat3x2<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat3x2<T, defaultp>)); + return Result; + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3x3(T const * const ptr) + { + tmat3x3<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat3x3<T, defaultp>)); + return Result; + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat3x4<T, defaultp> make_mat3x4(T const * const ptr) + { + tmat3x4<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat3x4<T, defaultp>)); + return Result; + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat4x2<T, defaultp> make_mat4x2(T const * const ptr) + { + tmat4x2<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat4x2<T, defaultp>)); + return Result; + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat4x3<T, defaultp> make_mat4x3(T const * const ptr) + { + tmat4x3<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat4x3<T, defaultp>)); + return Result; + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4x4(T const * const ptr) + { + tmat4x4<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tmat4x4<T, defaultp>)); + return Result; + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2(T const * const ptr) + { + return make_mat2x2(ptr); + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3(T const * const ptr) + { + return make_mat3x3(ptr); + } + + //! Build a matrix from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4(T const * const ptr) + { + return make_mat4x4(ptr); + } + + //! Build a quaternion from a pointer. + /// @see gtc_type_ptr + template <typename T> + GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const * const ptr) + { + tquat<T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(tquat<T, defaultp>)); + return Result; + } + + /// @} +}//namespace glm + diff --git a/external/include/glm/gtc/ulp.hpp b/external/include/glm/gtc/ulp.hpp new file mode 100644 index 0000000..a82fa4e --- /dev/null +++ b/external/include/glm/gtc/ulp.hpp @@ -0,0 +1,63 @@ +/// @ref gtc_ulp +/// @file glm/gtc/ulp.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_ulp GLM_GTC_ulp +/// @ingroup gtc +/// +/// @brief Allow the measurement of the accuracy of a function against a reference +/// implementation. This extension works on floating-point data and provide results +/// in ULP. +/// <glm/gtc/ulp.hpp> need to be included to use these features. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/precision.hpp" +#include "../detail/type_int.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_ulp extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_ulp + /// @{ + + /// Return the next ULP value(s) after the input value(s). + /// @see gtc_ulp + template <typename genType> + GLM_FUNC_DECL genType next_float(genType const & x); + + /// Return the previous ULP value(s) before the input value(s). + /// @see gtc_ulp + template <typename genType> + GLM_FUNC_DECL genType prev_float(genType const & x); + + /// Return the value(s) ULP distance after the input value(s). + /// @see gtc_ulp + template <typename genType> + GLM_FUNC_DECL genType next_float(genType const & x, uint const & Distance); + + /// Return the value(s) ULP distance before the input value(s). + /// @see gtc_ulp + template <typename genType> + GLM_FUNC_DECL genType prev_float(genType const & x, uint const & Distance); + + /// Return the distance in the number of ULP between 2 scalars. + /// @see gtc_ulp + template <typename T> + GLM_FUNC_DECL uint float_distance(T const & x, T const & y); + + /// Return the distance in the number of ULP between 2 vectors. + /// @see gtc_ulp + template<typename T, template<typename> class vecType> + GLM_FUNC_DECL vecType<uint> float_distance(vecType<T> const & x, vecType<T> const & y); + + /// @} +}// namespace glm + +#include "ulp.inl" diff --git a/external/include/glm/gtc/ulp.inl b/external/include/glm/gtc/ulp.inl new file mode 100644 index 0000000..54c914a --- /dev/null +++ b/external/include/glm/gtc/ulp.inl @@ -0,0 +1,321 @@ +/// @ref gtc_ulp +/// @file glm/gtc/ulp.inl +/// +/// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +/// +/// Developed at SunPro, a Sun Microsystems, Inc. business. +/// Permission to use, copy, modify, and distribute this +/// software is freely granted, provided that this notice +/// is preserved. + +#include "../detail/type_int.hpp" +#include <cmath> +#include <cfloat> +#include <limits> + +#if(GLM_COMPILER & GLM_COMPILER_VC) +# pragma warning(push) +# pragma warning(disable : 4127) +#endif + +typedef union +{ + float value; + /* FIXME: Assumes 32 bit int. */ + unsigned int word; +} ieee_float_shape_type; + +typedef union +{ + double value; + struct + { + glm::detail::int32 lsw; + glm::detail::int32 msw; + } parts; +} ieee_double_shape_type; + +#define GLM_EXTRACT_WORDS(ix0,ix1,d) \ + do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix0) = ew_u.parts.msw; \ + (ix1) = ew_u.parts.lsw; \ + } while (0) + +#define GLM_GET_FLOAT_WORD(i,d) \ + do { \ + ieee_float_shape_type gf_u; \ + gf_u.value = (d); \ + (i) = gf_u.word; \ + } while (0) + +#define GLM_SET_FLOAT_WORD(d,i) \ + do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ + } while (0) + +#define GLM_INSERT_WORDS(d,ix0,ix1) \ + do { \ + ieee_double_shape_type iw_u; \ + iw_u.parts.msw = (ix0); \ + iw_u.parts.lsw = (ix1); \ + (d) = iw_u.value; \ + } while (0) + +namespace glm{ +namespace detail +{ + GLM_FUNC_QUALIFIER float nextafterf(float x, float y) + { + volatile float t; + glm::detail::int32 hx, hy, ix, iy; + + GLM_GET_FLOAT_WORD(hx, x); + GLM_GET_FLOAT_WORD(hy, y); + ix = hx&0x7fffffff; // |x| + iy = hy&0x7fffffff; // |y| + + if((ix>0x7f800000) || // x is nan + (iy>0x7f800000)) // y is nan + return x+y; + if(x==y) return y; // x=y, return y + if(ix==0) { // x == 0 + GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal + t = x*x; + if(t==x) return t; else return x; // raise underflow flag + } + if(hx>=0) { // x > 0 + if(hx>hy) { // x > y, x -= ulp + hx -= 1; + } else { // x < y, x += ulp + hx += 1; + } + } else { // x < 0 + if(hy>=0||hx>hy){ // x < y, x -= ulp + hx -= 1; + } else { // x > y, x += ulp + hx += 1; + } + } + hy = hx&0x7f800000; + if(hy>=0x7f800000) return x+x; // overflow + if(hy<0x00800000) { // underflow + t = x*x; + if(t!=x) { // raise underflow flag + GLM_SET_FLOAT_WORD(y,hx); + return y; + } + } + GLM_SET_FLOAT_WORD(x,hx); + return x; + } + + GLM_FUNC_QUALIFIER double nextafter(double x, double y) + { + volatile double t; + glm::detail::int32 hx, hy, ix, iy; + glm::detail::uint32 lx, ly; + + GLM_EXTRACT_WORDS(hx, lx, x); + GLM_EXTRACT_WORDS(hy, ly, y); + ix = hx & 0x7fffffff; // |x| + iy = hy & 0x7fffffff; // |y| + + if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan + ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan + return x+y; + if(x==y) return y; // x=y, return y + if((ix|lx)==0) { // x == 0 + GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal + t = x*x; + if(t==x) return t; else return x; // raise underflow flag + } + if(hx>=0) { // x > 0 + if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp + if(lx==0) hx -= 1; + lx -= 1; + } else { // x < y, x += ulp + lx += 1; + if(lx==0) hx += 1; + } + } else { // x < 0 + if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp + if(lx==0) hx -= 1; + lx -= 1; + } else { // x > y, x += ulp + lx += 1; + if(lx==0) hx += 1; + } + } + hy = hx&0x7ff00000; + if(hy>=0x7ff00000) return x+x; // overflow + if(hy<0x00100000) { // underflow + t = x*x; + if(t!=x) { // raise underflow flag + GLM_INSERT_WORDS(y,hx,lx); + return y; + } + } + GLM_INSERT_WORDS(x,hx,lx); + return x; + } +}//namespace detail +}//namespace glm + +#if(GLM_COMPILER & GLM_COMPILER_VC) +# pragma warning(pop) +#endif + +namespace glm +{ + template <> + GLM_FUNC_QUALIFIER float next_float(float const & x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits<float>::max()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafterf(x, FLT_MAX); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafterf(x, FLT_MAX); +# else + return nextafterf(x, FLT_MAX); +# endif + } + + template <> + GLM_FUNC_QUALIFIER double next_float(double const & x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits<double>::max()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafter(x, std::numeric_limits<double>::max()); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafter(x, FLT_MAX); +# else + return nextafter(x, DBL_MAX); +# endif + } + + template<typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x) + { + vecType<T, P> Result(uninitialize); + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = next_float(x[i]); + return Result; + } + + GLM_FUNC_QUALIFIER float prev_float(float const & x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits<float>::min()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafterf(x, FLT_MIN); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafterf(x, FLT_MIN); +# else + return nextafterf(x, FLT_MIN); +# endif + } + + GLM_FUNC_QUALIFIER double prev_float(double const & x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits<double>::min()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return _nextafter(x, DBL_MIN); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafter(x, DBL_MIN); +# else + return nextafter(x, DBL_MIN); +# endif + } + + template<typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x) + { + vecType<T, P> Result(uninitialize); + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prev_float(x[i]); + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) + { + T temp = x; + for(uint i = 0; i < ulps; ++i) + temp = next_float(temp); + return temp; + } + + template<typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) + { + vecType<T, P> Result(uninitialize); + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = next_float(x[i], ulps[i]); + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) + { + T temp = x; + for(uint i = 0; i < ulps; ++i) + temp = prev_float(temp); + return temp; + } + + template<typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) + { + vecType<T, P> Result(uninitialize); + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prev_float(x[i], ulps[i]); + return Result; + } + + template <typename T> + GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) + { + uint ulp = 0; + + if(x < y) + { + T temp = x; + while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max()) + { + ++ulp; + temp = next_float(temp); + } + } + else if(y < x) + { + T temp = y; + while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max()) + { + ++ulp; + temp = next_float(temp); + } + } + else // == + { + + } + + return ulp; + } + + template<typename T, precision P, template<typename, precision> class vecType> + GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y) + { + vecType<uint, P> Result(uninitialize); + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = float_distance(x[i], y[i]); + return Result; + } +}//namespace glm diff --git a/external/include/glm/gtc/vec1.hpp b/external/include/glm/gtc/vec1.hpp new file mode 100644 index 0000000..f84ff97 --- /dev/null +++ b/external/include/glm/gtc/vec1.hpp @@ -0,0 +1,164 @@ +/// @ref gtc_vec1 +/// @file glm/gtc/vec1.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_vec1 GLM_GTC_vec1 +/// @ingroup gtc +/// +/// @brief Add vec1, ivec1, uvec1 and bvec1 types. +/// <glm/gtc/vec1.hpp> need to be included to use these functionalities. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_vec1 extension included") +#endif + +namespace glm +{ + /// 1 component vector of high precision floating-point numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef highp_vec1_t highp_vec1; + + /// 1 component vector of medium precision floating-point numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef mediump_vec1_t mediump_vec1; + + /// 1 component vector of low precision floating-point numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef lowp_vec1_t lowp_vec1; + + /// 1 component vector of high precision floating-point numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef highp_dvec1_t highp_dvec1; + + /// 1 component vector of medium precision floating-point numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef mediump_dvec1_t mediump_dvec1; + + /// 1 component vector of low precision floating-point numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef lowp_dvec1_t lowp_dvec1; + + /// 1 component vector of high precision signed integer numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef highp_ivec1_t highp_ivec1; + + /// 1 component vector of medium precision signed integer numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef mediump_ivec1_t mediump_ivec1; + + /// 1 component vector of low precision signed integer numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef lowp_ivec1_t lowp_ivec1; + + /// 1 component vector of high precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef highp_uvec1_t highp_uvec1; + + /// 1 component vector of medium precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef mediump_uvec1_t mediump_uvec1; + + /// 1 component vector of low precision unsigned integer numbers. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef lowp_uvec1_t lowp_uvec1; + + /// 1 component vector of high precision boolean. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef highp_bvec1_t highp_bvec1; + + /// 1 component vector of medium precision boolean. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef mediump_bvec1_t mediump_bvec1; + + /// 1 component vector of low precision boolean. + /// There is no guarantee on the actual precision. + /// @see gtc_vec1 extension. + typedef lowp_bvec1_t lowp_bvec1; + + ////////////////////////// + // vec1 definition + +#if(defined(GLM_PRECISION_HIGHP_BOOL)) + typedef highp_bvec1 bvec1; +#elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) + typedef mediump_bvec1 bvec1; +#elif(defined(GLM_PRECISION_LOWP_BOOL)) + typedef lowp_bvec1 bvec1; +#else + /// 1 component vector of boolean. + /// @see gtc_vec1 extension. + typedef highp_bvec1 bvec1; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_HIGHP_FLOAT)) + typedef highp_vec1 vec1; +#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) + typedef mediump_vec1 vec1; +#elif(defined(GLM_PRECISION_LOWP_FLOAT)) + typedef lowp_vec1 vec1; +#else + /// 1 component vector of floating-point numbers. + /// @see gtc_vec1 extension. + typedef highp_vec1 vec1; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_HIGHP_DOUBLE)) + typedef highp_dvec1 dvec1; +#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) + typedef mediump_dvec1 dvec1; +#elif(defined(GLM_PRECISION_LOWP_DOUBLE)) + typedef lowp_dvec1 dvec1; +#else + /// 1 component vector of floating-point numbers. + /// @see gtc_vec1 extension. + typedef highp_dvec1 dvec1; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_HIGHP_INT)) + typedef highp_ivec1 ivec1; +#elif(defined(GLM_PRECISION_MEDIUMP_INT)) + typedef mediump_ivec1 ivec1; +#elif(defined(GLM_PRECISION_LOWP_INT)) + typedef lowp_ivec1 ivec1; +#else + /// 1 component vector of signed integer numbers. + /// @see gtc_vec1 extension. + typedef highp_ivec1 ivec1; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_HIGHP_UINT)) + typedef highp_uvec1 uvec1; +#elif(defined(GLM_PRECISION_MEDIUMP_UINT)) + typedef mediump_uvec1 uvec1; +#elif(defined(GLM_PRECISION_LOWP_UINT)) + typedef lowp_uvec1 uvec1; +#else + /// 1 component vector of unsigned integer numbers. + /// @see gtc_vec1 extension. + typedef highp_uvec1 uvec1; +#endif//GLM_PRECISION + +}// namespace glm + +#include "vec1.inl" diff --git a/external/include/glm/gtc/vec1.inl b/external/include/glm/gtc/vec1.inl new file mode 100644 index 0000000..5a6627c --- /dev/null +++ b/external/include/glm/gtc/vec1.inl @@ -0,0 +1,2 @@ +/// @ref gtc_vec1 +/// @file glm/gtc/vec1.inl |