diff options
Diffstat (limited to '')
40 files changed, 4847 insertions, 4069 deletions
diff --git a/external/include/glm/gtc/bitfield.hpp b/external/include/glm/gtc/bitfield.hpp index 38a38b6..9dcec53 100644 --- a/external/include/glm/gtc/bitfield.hpp +++ b/external/include/glm/gtc/bitfield.hpp @@ -6,16 +6,17 @@ /// /// @defgroup gtc_bitfield GLM_GTC_bitfield /// @ingroup gtc -/// -/// @brief Allow to perform bit operations on integer values -/// -/// <glm/gtc/bitfield.hpp> need to be included to use these functionalities. +/// +/// Include <glm/gtc/bitfield.hpp> to use the features of this extension. +/// +/// Allow to perform bit operations on integer values + +#include "../detail/setup.hpp" #pragma once // Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../detail/type_int.hpp" #include "../detail/_vectorize.hpp" #include <limits> @@ -32,172 +33,192 @@ namespace glm /// Build a mask of 'count' bits /// /// @see gtc_bitfield - template <typename genIUType> + template<typename genIUType> GLM_FUNC_DECL genIUType mask(genIUType Bits); - + /// Build a mask of 'count' bits /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecIUType> - GLM_FUNC_DECL vecIUType<T, P> mask(vecIUType<T, P> const & v); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> mask(vec<L, T, Q> const& v); /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. /// /// @see gtc_bitfield - template <typename genIUType> + template<typename genIUType> GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift); /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> bitfieldRotateRight(vec<L, T, Q> const& In, int Shift); /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. /// /// @see gtc_bitfield - template <typename genIUType> + template<typename genIUType> GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift); /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> bitfieldRotateLeft(vec<L, T, Q> const& In, int Shift); /// Set to 1 a range of bits. /// /// @see gtc_bitfield - template <typename genIUType> + template<typename genIUType> GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount); /// Set to 1 a range of bits. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> bitfieldFillOne(vec<L, T, Q> const& Value, int FirstBit, int BitCount); /// Set to 0 a range of bits. /// /// @see gtc_bitfield - template <typename genIUType> + template<typename genIUType> GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount); /// Set to 0 a range of bits. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> bitfieldFillZero(vec<L, T, Q> const& Value, int FirstBit, int BitCount); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y); /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z); /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z); - /// Interleaves the bits of x, y and z. + /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z); - /// Interleaves the bits of x, y and z. + /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z); - /// Interleaves the bits of x, y and z. + /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w); diff --git a/external/include/glm/gtc/bitfield.inl b/external/include/glm/gtc/bitfield.inl index 490cfb3..9735740 100644 --- a/external/include/glm/gtc/bitfield.inl +++ b/external/include/glm/gtc/bitfield.inl @@ -6,165 +6,165 @@ namespace glm{ namespace detail { - template <typename PARAM, typename RET> + template<typename PARAM, typename RET> GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); - template <typename PARAM, typename RET> + template<typename PARAM, typename RET> GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); - template <typename PARAM, typename RET> + template<typename PARAM, typename RET> GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); - template <> + template<> GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) { glm::uint16 REG1(x); glm::uint16 REG2(y); - REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); - REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); + REG1 = ((REG1 << 4) | REG1) & static_cast<glm::uint16>(0x0F0F); + REG2 = ((REG2 << 4) | REG2) & static_cast<glm::uint16>(0x0F0F); - REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); - REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); + REG1 = ((REG1 << 2) | REG1) & static_cast<glm::uint16>(0x3333); + REG2 = ((REG2 << 2) | REG2) & static_cast<glm::uint16>(0x3333); - REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); - REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); + REG1 = ((REG1 << 1) | REG1) & static_cast<glm::uint16>(0x5555); + REG2 = ((REG2 << 1) | REG2) & static_cast<glm::uint16>(0x5555); - return REG1 | (REG2 << 1); + return REG1 | static_cast<glm::uint16>(REG2 << 1); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) { glm::uint32 REG1(x); glm::uint32 REG2(y); - REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); - REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); + REG1 = ((REG1 << 8) | REG1) & static_cast<glm::uint32>(0x00FF00FF); + REG2 = ((REG2 << 8) | REG2) & static_cast<glm::uint32>(0x00FF00FF); - REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); - REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); + REG1 = ((REG1 << 4) | REG1) & static_cast<glm::uint32>(0x0F0F0F0F); + REG2 = ((REG2 << 4) | REG2) & static_cast<glm::uint32>(0x0F0F0F0F); - REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); - REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); + REG1 = ((REG1 << 2) | REG1) & static_cast<glm::uint32>(0x33333333); + REG2 = ((REG2 << 2) | REG2) & static_cast<glm::uint32>(0x33333333); - REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); - REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); + REG1 = ((REG1 << 1) | REG1) & static_cast<glm::uint32>(0x55555555); + REG2 = ((REG2 << 1) | REG2) & static_cast<glm::uint32>(0x55555555); return REG1 | (REG2 << 1); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) { glm::uint64 REG1(x); glm::uint64 REG2(y); - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull); + REG1 = ((REG1 << 16) | REG1) & static_cast<glm::uint64>(0x0000FFFF0000FFFFull); + REG2 = ((REG2 << 16) | REG2) & static_cast<glm::uint64>(0x0000FFFF0000FFFFull); - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull); + REG1 = ((REG1 << 8) | REG1) & static_cast<glm::uint64>(0x00FF00FF00FF00FFull); + REG2 = ((REG2 << 8) | REG2) & static_cast<glm::uint64>(0x00FF00FF00FF00FFull); - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full); + REG1 = ((REG1 << 4) | REG1) & static_cast<glm::uint64>(0x0F0F0F0F0F0F0F0Full); + REG2 = ((REG2 << 4) | REG2) & static_cast<glm::uint64>(0x0F0F0F0F0F0F0F0Full); - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull); + REG1 = ((REG1 << 2) | REG1) & static_cast<glm::uint64>(0x3333333333333333ull); + REG2 = ((REG2 << 2) | REG2) & static_cast<glm::uint64>(0x3333333333333333ull); - REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull); - REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull); + REG1 = ((REG1 << 1) | REG1) & static_cast<glm::uint64>(0x5555555555555555ull); + REG2 = ((REG2 << 1) | REG2) & static_cast<glm::uint64>(0x5555555555555555ull); return REG1 | (REG2 << 1); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) { glm::uint32 REG1(x); glm::uint32 REG2(y); glm::uint32 REG3(z); - REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); - REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); - REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); + REG1 = ((REG1 << 16) | REG1) & static_cast<glm::uint32>(0xFF0000FFu); + REG2 = ((REG2 << 16) | REG2) & static_cast<glm::uint32>(0xFF0000FFu); + REG3 = ((REG3 << 16) | REG3) & static_cast<glm::uint32>(0xFF0000FFu); - REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); - REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); - REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); + REG1 = ((REG1 << 8) | REG1) & static_cast<glm::uint32>(0x0F00F00Fu); + REG2 = ((REG2 << 8) | REG2) & static_cast<glm::uint32>(0x0F00F00Fu); + REG3 = ((REG3 << 8) | REG3) & static_cast<glm::uint32>(0x0F00F00Fu); - REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); - REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); - REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); + REG1 = ((REG1 << 4) | REG1) & static_cast<glm::uint32>(0xC30C30C3u); + REG2 = ((REG2 << 4) | REG2) & static_cast<glm::uint32>(0xC30C30C3u); + REG3 = ((REG3 << 4) | REG3) & static_cast<glm::uint32>(0xC30C30C3u); - REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); - REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); - REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); + REG1 = ((REG1 << 2) | REG1) & static_cast<glm::uint32>(0x49249249u); + REG2 = ((REG2 << 2) | REG2) & static_cast<glm::uint32>(0x49249249u); + REG3 = ((REG3 << 2) | REG3) & static_cast<glm::uint32>(0x49249249u); return REG1 | (REG2 << 1) | (REG3 << 2); } - - template <> + + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); - REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); - REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); - REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); + REG1 = ((REG1 << 32) | REG1) & static_cast<glm::uint64>(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & static_cast<glm::uint64>(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & static_cast<glm::uint64>(0xFFFF00000000FFFFull); - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); - REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); + REG1 = ((REG1 << 16) | REG1) & static_cast<glm::uint64>(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & static_cast<glm::uint64>(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & static_cast<glm::uint64>(0x00FF0000FF0000FFull); - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); - REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); + REG1 = ((REG1 << 8) | REG1) & static_cast<glm::uint64>(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & static_cast<glm::uint64>(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & static_cast<glm::uint64>(0xF00F00F00F00F00Full); - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); - REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); + REG1 = ((REG1 << 4) | REG1) & static_cast<glm::uint64>(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & static_cast<glm::uint64>(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & static_cast<glm::uint64>(0x30C30C30C30C30C3ull); - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); - REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); + REG1 = ((REG1 << 2) | REG1) & static_cast<glm::uint64>(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & static_cast<glm::uint64>(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & static_cast<glm::uint64>(0x9249249249249249ull); return REG1 | (REG2 << 1) | (REG3 << 2); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); - REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); - REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); - REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); + REG1 = ((REG1 << 32) | REG1) & static_cast<glm::uint64>(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & static_cast<glm::uint64>(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & static_cast<glm::uint64>(0xFFFF00000000FFFFull); - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); - REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); + REG1 = ((REG1 << 16) | REG1) & static_cast<glm::uint64>(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & static_cast<glm::uint64>(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & static_cast<glm::uint64>(0x00FF0000FF0000FFull); - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); - REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); + REG1 = ((REG1 << 8) | REG1) & static_cast<glm::uint64>(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & static_cast<glm::uint64>(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & static_cast<glm::uint64>(0xF00F00F00F00F00Full); - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); - REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); + REG1 = ((REG1 << 4) | REG1) & static_cast<glm::uint64>(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & static_cast<glm::uint64>(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & static_cast<glm::uint64>(0x30C30C30C30C30C3ull); - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); - REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); + REG1 = ((REG1 << 2) | REG1) & static_cast<glm::uint64>(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & static_cast<glm::uint64>(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & static_cast<glm::uint64>(0x9249249249249249ull); return REG1 | (REG2 << 1) | (REG3 << 2); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) { glm::uint32 REG1(x); @@ -172,25 +172,25 @@ namespace detail glm::uint32 REG3(z); glm::uint32 REG4(w); - REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); - REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); - REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); - REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); + REG1 = ((REG1 << 12) | REG1) & static_cast<glm::uint32>(0x000F000Fu); + REG2 = ((REG2 << 12) | REG2) & static_cast<glm::uint32>(0x000F000Fu); + REG3 = ((REG3 << 12) | REG3) & static_cast<glm::uint32>(0x000F000Fu); + REG4 = ((REG4 << 12) | REG4) & static_cast<glm::uint32>(0x000F000Fu); - REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); - REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); - REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); - REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); + REG1 = ((REG1 << 6) | REG1) & static_cast<glm::uint32>(0x03030303u); + REG2 = ((REG2 << 6) | REG2) & static_cast<glm::uint32>(0x03030303u); + REG3 = ((REG3 << 6) | REG3) & static_cast<glm::uint32>(0x03030303u); + REG4 = ((REG4 << 6) | REG4) & static_cast<glm::uint32>(0x03030303u); - REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); - REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); - REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); - REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); + REG1 = ((REG1 << 3) | REG1) & static_cast<glm::uint32>(0x11111111u); + REG2 = ((REG2 << 3) | REG2) & static_cast<glm::uint32>(0x11111111u); + REG3 = ((REG3 << 3) | REG3) & static_cast<glm::uint32>(0x11111111u); + REG4 = ((REG4 << 3) | REG4) & static_cast<glm::uint32>(0x11111111u); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) { glm::uint64 REG1(x); @@ -198,31 +198,31 @@ namespace detail glm::uint64 REG3(z); glm::uint64 REG4(w); - REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull); - REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull); - REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull); - REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull); + REG1 = ((REG1 << 24) | REG1) & static_cast<glm::uint64>(0x000000FF000000FFull); + REG2 = ((REG2 << 24) | REG2) & static_cast<glm::uint64>(0x000000FF000000FFull); + REG3 = ((REG3 << 24) | REG3) & static_cast<glm::uint64>(0x000000FF000000FFull); + REG4 = ((REG4 << 24) | REG4) & static_cast<glm::uint64>(0x000000FF000000FFull); - REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full); - REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full); - REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full); - REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full); + REG1 = ((REG1 << 12) | REG1) & static_cast<glm::uint64>(0x000F000F000F000Full); + REG2 = ((REG2 << 12) | REG2) & static_cast<glm::uint64>(0x000F000F000F000Full); + REG3 = ((REG3 << 12) | REG3) & static_cast<glm::uint64>(0x000F000F000F000Full); + REG4 = ((REG4 << 12) | REG4) & static_cast<glm::uint64>(0x000F000F000F000Full); - REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull); - REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull); - REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull); - REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull); + REG1 = ((REG1 << 6) | REG1) & static_cast<glm::uint64>(0x0303030303030303ull); + REG2 = ((REG2 << 6) | REG2) & static_cast<glm::uint64>(0x0303030303030303ull); + REG3 = ((REG3 << 6) | REG3) & static_cast<glm::uint64>(0x0303030303030303ull); + REG4 = ((REG4 << 6) | REG4) & static_cast<glm::uint64>(0x0303030303030303ull); - REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull); - REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull); - REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull); - REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull); + REG1 = ((REG1 << 3) | REG1) & static_cast<glm::uint64>(0x1111111111111111ull); + REG2 = ((REG2 << 3) | REG2) & static_cast<glm::uint64>(0x1111111111111111ull); + REG3 = ((REG3 << 3) | REG3) & static_cast<glm::uint64>(0x1111111111111111ull); + REG4 = ((REG4 << 3) | REG4) & static_cast<glm::uint64>(0x1111111111111111ull); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } }//namespace detail - template <typename genIUType> + template<typename genIUType> GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values"); @@ -230,15 +230,15 @@ namespace detail return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1); } - template <typename T, precision P, template <typename, precision> class vecIUType> - GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const& v) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> mask(vec<L, T, Q> const& v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values"); - return detail::functor1<T, T, P, vecIUType>::call(mask, v); + return detail::functor1<L, T, T, Q>::call(mask, v); } - template <typename genIType> + template<typename genIType> GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values"); @@ -247,8 +247,8 @@ namespace detail return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> bitfieldRotateRight(vec<L, T, Q> const& In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values"); @@ -256,7 +256,7 @@ namespace detail return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift)); } - template <typename genIType> + template<typename genIType> GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); @@ -265,8 +265,8 @@ namespace detail return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const& In, int Shift) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> bitfieldRotateLeft(vec<L, T, Q> const& In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); @@ -274,26 +274,26 @@ namespace detail return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift)); } - template <typename genIUType> + template<typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) { return Value | static_cast<genIUType>(mask(BitCount) << FirstBit); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const& Value, int FirstBit, int BitCount) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> bitfieldFillOne(vec<L, T, Q> const& Value, int FirstBit, int BitCount) { return Value | static_cast<T>(mask(BitCount) << FirstBit); } - template <typename genIUType> + template<typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) { return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const& Value, int FirstBit, int BitCount) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> bitfieldFillZero(vec<L, T, Q> const& Value, int FirstBit, int BitCount) { return Value & static_cast<T>(~(mask(BitCount) << FirstBit)); } diff --git a/external/include/glm/gtc/color_encoding.inl b/external/include/glm/gtc/color_encoding.inl deleted file mode 100644 index 68570cb..0000000 --- a/external/include/glm/gtc/color_encoding.inl +++ /dev/null @@ -1,65 +0,0 @@ -/// @ref gtc_color_encoding -/// @file glm/gtc/color_encoding.inl - -namespace glm -{ - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD65XYZ(tvec3<T, P> const& ColorLinearSRGB) - { - tvec3<T, P> const M(0.490f, 0.17697f, 0.2f); - tvec3<T, P> const N(0.31f, 0.8124f, 0.01063f); - tvec3<T, P> const O(0.490f, 0.01f, 0.99f); - - return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast<T>(5.650675255693055f); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToLinearSRGB(tvec3<T, P> const& ColorD65XYZ) - { - tvec3<T, P> const M(0.41847f, -0.091169f, 0.0009209f); - tvec3<T, P> const N(-0.15866f, 0.25243f, 0.015708f); - tvec3<T, P> const O(0.0009209f, -0.0025498f, 0.1786f); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD50XYZ(tvec3<T, P> const& ColorLinearSRGB) - { - tvec3<T, P> const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f); - tvec3<T, P> const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f); - tvec3<T, P> const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f); - - return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToLinearSRGB(tvec3<T, P> const& ColorD50XYZ) - { - tvec3<T, P> const M(); - tvec3<T, P> const N(); - tvec3<T, P> const O(); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToD50XYZ(tvec3<T, P> const& ColorD65XYZ) - { - tvec3<T, P> const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f); - tvec3<T, P> const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f); - tvec3<T, P> const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToD65XYZ(tvec3<T, P> const& ColorD50XYZ) - { - tvec3<T, P> const M(); - tvec3<T, P> const N(); - tvec3<T, P> const O(); - - return M * ColorD50XYZ + N * ColorD50XYZ + O * ColorD50XYZ; - } -}//namespace glm diff --git a/external/include/glm/gtc/color_space.hpp b/external/include/glm/gtc/color_space.hpp index 08ece8f..56cbc8f 100644 --- a/external/include/glm/gtc/color_space.hpp +++ b/external/include/glm/gtc/color_space.hpp @@ -7,15 +7,15 @@ /// @defgroup gtc_color_space GLM_GTC_color_space /// @ingroup gtc /// -/// @brief Allow to perform bit operations on integer values +/// Include <glm/gtc/color_space.hpp> to use the features of this extension. /// -/// <glm/gtc/color.hpp> need to be included to use these functionalities. +/// Allow to perform bit operations on integer values #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../exponential.hpp" #include "../vec3.hpp" #include "../vec4.hpp" @@ -31,24 +31,24 @@ namespace glm /// @{ /// Convert a linear color to sRGB color using a standard gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear); + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> convertLinearToSRGB(vec<L, T, Q> const& ColorLinear); /// Convert a linear color to sRGB color using a custom gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear, T Gamma); + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> convertLinearToSRGB(vec<L, T, Q> const& ColorLinear, T Gamma); /// Convert a sRGB color to linear color using a standard gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB); + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> convertSRGBToLinear(vec<L, T, Q> const& ColorSRGB); /// Convert a sRGB color to linear color using a custom gamma correction. - // IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB, T Gamma); + // IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> convertSRGBToLinear(vec<L, T, Q> const& ColorSRGB, T Gamma); /// @} } //namespace glm diff --git a/external/include/glm/gtc/color_space.inl b/external/include/glm/gtc/color_space.inl index c9a44ef..53241ac 100644 --- a/external/include/glm/gtc/color_space.inl +++ b/external/include/glm/gtc/color_space.inl @@ -4,72 +4,82 @@ namespace glm{ namespace detail { - template <typename T, precision P, template <typename, precision> class vecType> + template<length_t L, typename T, qualifier Q> struct compute_rgbToSrgb { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorRGB, T GammaCorrection) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& ColorRGB, T GammaCorrection) { - vecType<T, P> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1))); + vec<L, T, Q> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1))); return mix( - pow(ClampedColor, vecType<T, P>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055), + pow(ClampedColor, vec<L, T, Q>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055), ClampedColor * static_cast<T>(12.92), - lessThan(ClampedColor, vecType<T, P>(static_cast<T>(0.0031308)))); + lessThan(ClampedColor, vec<L, T, Q>(static_cast<T>(0.0031308)))); } }; - template <typename T, precision P> - struct compute_rgbToSrgb<T, P, tvec4> + template<typename T, qualifier Q> + struct compute_rgbToSrgb<4, T, Q> { - GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorRGB, T GammaCorrection) + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(vec<4, T, Q> const& ColorRGB, T GammaCorrection) { - return tvec4<T, P>(compute_rgbToSrgb<T, P, tvec3>::call(tvec3<T, P>(ColorRGB), GammaCorrection), ColorRGB.w); + return vec<4, T, Q>(compute_rgbToSrgb<3, T, Q>::call(vec<3, T, Q>(ColorRGB), GammaCorrection), ColorRGB.w); } }; - template <typename T, precision P, template <typename, precision> class vecType> + template<length_t L, typename T, qualifier Q> struct compute_srgbToRgb { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorSRGB, T Gamma) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& ColorSRGB, T Gamma) { return mix( - pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vecType<T, P>(Gamma)), + pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vec<L, T, Q>(Gamma)), ColorSRGB * static_cast<T>(0.07739938080495356037151702786378), - lessThanEqual(ColorSRGB, vecType<T, P>(static_cast<T>(0.04045)))); + lessThanEqual(ColorSRGB, vec<L, T, Q>(static_cast<T>(0.04045)))); } }; - template <typename T, precision P> - struct compute_srgbToRgb<T, P, tvec4> + template<typename T, qualifier Q> + struct compute_srgbToRgb<4, T, Q> { - GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorSRGB, T Gamma) + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(vec<4, T, Q> const& ColorSRGB, T Gamma) { - return tvec4<T, P>(compute_srgbToRgb<T, P, tvec3>::call(tvec3<T, P>(ColorSRGB), Gamma), ColorSRGB.w); + return vec<4, T, Q>(compute_srgbToRgb<3, T, Q>::call(vec<3, T, Q>(ColorSRGB), Gamma), ColorSRGB.w); } }; }//namespace detail - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> convertLinearToSRGB(vec<L, T, Q> const& ColorLinear) { - return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(0.41666)); + return detail::compute_rgbToSrgb<L, T, Q>::call(ColorLinear, static_cast<T>(0.41666)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear, T Gamma) + // Based on Ian Taylor http://chilliant.blogspot.fr/2012/08/srgb-approximations-for-hlsl.html + template<> + GLM_FUNC_QUALIFIER vec<3, float, lowp> convertLinearToSRGB(vec<3, float, lowp> const& ColorLinear) { - return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(1) / Gamma); + vec<3, float, lowp> S1 = sqrt(ColorLinear); + vec<3, float, lowp> S2 = sqrt(S1); + vec<3, float, lowp> S3 = sqrt(S2); + return 0.662002687f * S1 + 0.684122060f * S2 - 0.323583601f * S3 - 0.0225411470f * ColorLinear; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> convertLinearToSRGB(vec<L, T, Q> const& ColorLinear, T Gamma) { - return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, static_cast<T>(2.4)); + return detail::compute_rgbToSrgb<L, T, Q>::call(ColorLinear, static_cast<T>(1) / Gamma); } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB, T Gamma) + + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> convertSRGBToLinear(vec<L, T, Q> const& ColorSRGB) + { + return detail::compute_srgbToRgb<L, T, Q>::call(ColorSRGB, static_cast<T>(2.4)); + } + + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> convertSRGBToLinear(vec<L, T, Q> const& ColorSRGB, T Gamma) { - return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, Gamma); + return detail::compute_srgbToRgb<L, T, Q>::call(ColorSRGB, Gamma); } }//namespace glm diff --git a/external/include/glm/gtc/constants.hpp b/external/include/glm/gtc/constants.hpp index d3358c7..f55f619 100644 --- a/external/include/glm/gtc/constants.hpp +++ b/external/include/glm/gtc/constants.hpp @@ -2,14 +2,13 @@ /// @file glm/gtc/constants.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// /// @defgroup gtc_constants GLM_GTC_constants /// @ingroup gtc -/// -/// @brief Provide a list of constants and precomputed useful values. -/// -/// <glm/gtc/constants.hpp> need to be included to use these features. +/// +/// Include <glm/gtc/constants.hpp> to use the features of this extension. +/// +/// Provide a list of constants and precomputed useful values. #pragma once @@ -27,147 +26,147 @@ namespace glm /// Return the epsilon constant for floating point types. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon(); /// Return 0. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType zero(); /// Return 1. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType one(); /// Return the pi constant. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType pi(); /// Return pi * 2. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi(); /// Return square root of pi. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi(); /// Return pi / 2. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi(); /// Return pi / 2 * 3. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi(); /// Return pi / 4. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi(); /// Return 1 / pi. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi(); /// Return 1 / (pi * 2). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi(); /// Return 2 / pi. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi(); /// Return 4 / pi. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi(); /// Return 2 / sqrt(pi). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi(); /// Return 1 / sqrt(2). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two(); /// Return sqrt(pi / 2). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi(); /// Return sqrt(2 * pi). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi(); /// Return sqrt(ln(4)). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four(); /// Return e constant. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType e(); /// Return Euler's constant. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType euler(); /// Return sqrt(2). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_two(); /// Return sqrt(3). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_three(); /// Return sqrt(5). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType root_five(); /// Return ln(2). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two(); /// Return ln(10). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten(); /// Return ln(ln(2)). /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two(); /// Return 1 / 3. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType third(); /// Return 2 / 3. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds(); /// Return the golden ratio constant. /// @see gtc_constants - template <typename genType> + template<typename genType> GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio(); /// @} diff --git a/external/include/glm/gtc/constants.inl b/external/include/glm/gtc/constants.inl index cb451d0..b1d277c 100644 --- a/external/include/glm/gtc/constants.inl +++ b/external/include/glm/gtc/constants.inl @@ -5,175 +5,175 @@ namespace glm { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon() { return std::numeric_limits<genType>::epsilon(); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero() { return genType(0); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one() { return genType(1); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi() { return genType(3.14159265358979323846264338327950288); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi() { return genType(6.28318530717958647692528676655900576); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi() { return genType(1.772453850905516027); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi() { return genType(1.57079632679489661923132169163975144); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi() { - return genType(4.71238898038468985769396507491925432); + return genType(4.71238898038468985769396507491925432); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi() { return genType(0.785398163397448309615660845819875721); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi() { return genType(0.318309886183790671537767526745028724); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi() { return genType(0.159154943091895335768883763372514362); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi() { return genType(0.636619772367581343075535053490057448); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi() { return genType(1.273239544735162686151070106980114898); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi() { return genType(1.12837916709551257389615890312154517); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two() { return genType(0.707106781186547524400844362104849039); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi() { return genType(1.253314137315500251); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi() { return genType(2.506628274631000502); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four() { return genType(1.17741002251547469); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e() { return genType(2.71828182845904523536); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler() { return genType(0.577215664901532860606); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two() { return genType(1.41421356237309504880168872420969808); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three() { return genType(1.73205080756887729352744634150587236); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five() { return genType(2.23606797749978969640917366873127623); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two() { return genType(0.693147180559945309417232121458176568); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten() { return genType(2.30258509299404568401799145468436421); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two() { return genType(-0.3665129205816643); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third() { return genType(0.3333333333333333333333333333333333333333); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds() { return genType(0.666666666666666666666666666666666666667); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio() { return genType(1.61803398874989484820458683436563811); diff --git a/external/include/glm/gtc/epsilon.hpp b/external/include/glm/gtc/epsilon.hpp index 289f5b7..dce03ef 100644 --- a/external/include/glm/gtc/epsilon.hpp +++ b/external/include/glm/gtc/epsilon.hpp @@ -1,22 +1,21 @@ /// @ref gtc_epsilon /// @file glm/gtc/epsilon.hpp -/// +/// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtc_quaternion (dependence) /// /// @defgroup gtc_epsilon GLM_GTC_epsilon /// @ingroup gtc -/// -/// @brief Comparison functions for a user defined epsilon values. -/// -/// <glm/gtc/epsilon.hpp> need to be included to use these functionalities. +/// +/// Include <glm/gtc/epsilon.hpp> to use the features of this extension. +/// +/// Comparison functions for a user defined epsilon values. #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTC_epsilon extension included") @@ -31,41 +30,29 @@ namespace glm /// True if this expression is satisfied. /// /// @see gtc_epsilon - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> epsilonEqual( - vecType<T, P> const & x, - vecType<T, P> const & y, - T const & epsilon); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, bool, Q> epsilonEqual(vec<L, T, Q> const& x, vec<L, T, Q> const& y, T const& epsilon); /// Returns the component-wise comparison of |x - y| < epsilon. /// True if this expression is satisfied. /// /// @see gtc_epsilon - template <typename genType> - GLM_FUNC_DECL bool epsilonEqual( - genType const & x, - genType const & y, - genType const & epsilon); + template<typename genType> + GLM_FUNC_DECL bool epsilonEqual(genType const& x, genType const& y, genType const& epsilon); /// Returns the component-wise comparison of |x - y| < epsilon. /// True if this expression is not satisfied. /// /// @see gtc_epsilon - template <typename genType> - GLM_FUNC_DECL typename genType::boolType epsilonNotEqual( - genType const & x, - genType const & y, - typename genType::value_type const & epsilon); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, bool, Q> epsilonNotEqual(vec<L, T, Q> const& x, vec<L, T, Q> const& y, T const& epsilon); /// Returns the component-wise comparison of |x - y| >= epsilon. /// True if this expression is not satisfied. /// /// @see gtc_epsilon - template <typename genType> - GLM_FUNC_DECL bool epsilonNotEqual( - genType const & x, - genType const & y, - genType const & epsilon); + template<typename genType> + GLM_FUNC_DECL bool epsilonNotEqual(genType const& x, genType const& y, genType const& epsilon); /// @} }//namespace glm diff --git a/external/include/glm/gtc/epsilon.inl b/external/include/glm/gtc/epsilon.inl index b5577d9..2478cab 100644 --- a/external/include/glm/gtc/epsilon.inl +++ b/external/include/glm/gtc/epsilon.inl @@ -5,121 +5,79 @@ #include "quaternion.hpp" #include "../vector_relational.hpp" #include "../common.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" +#include "../detail/type_vec.hpp" namespace glm { - template <> + template<> GLM_FUNC_QUALIFIER bool epsilonEqual ( - float const & x, - float const & y, - float const & epsilon + float const& x, + float const& y, + float const& epsilon ) { return abs(x - y) < epsilon; } - template <> + template<> GLM_FUNC_QUALIFIER bool epsilonEqual ( - double const & x, - double const & y, - double const & epsilon + double const& x, + double const& y, + double const& epsilon ) { return abs(x - y) < epsilon; } - template <> - GLM_FUNC_QUALIFIER bool epsilonNotEqual - ( - float const & x, - float const & y, - float const & epsilon - ) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> epsilonEqual(vec<L, T, Q> const& x, vec<L, T, Q> const& y, T const& epsilon) { - return abs(x - y) >= epsilon; + return lessThan(abs(x - y), vec<L, T, Q>(epsilon)); } - template <> - GLM_FUNC_QUALIFIER bool epsilonNotEqual - ( - double const & x, - double const & y, - double const & epsilon - ) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> epsilonEqual(vec<L, T, Q> const& x, vec<L, T, Q> const& y, vec<L, T, Q> const& epsilon) { - return abs(x - y) >= epsilon; + return lessThan(abs(x - y), vec<L, T, Q>(epsilon)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - T const & epsilon - ) + template<> + GLM_FUNC_QUALIFIER bool epsilonNotEqual(float const& x, float const& y, float const& epsilon) { - return lessThan(abs(x - y), vecType<T, P>(epsilon)); + return abs(x - y) >= epsilon; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - vecType<T, P> const & epsilon - ) + template<> + GLM_FUNC_QUALIFIER bool epsilonNotEqual(double const& x, double const& y, double const& epsilon) { - return lessThan(abs(x - y), vecType<T, P>(epsilon)); + return abs(x - y) >= epsilon; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - T const & epsilon - ) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> epsilonNotEqual(vec<L, T, Q> const& x, vec<L, T, Q> const& y, T const& epsilon) { - return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); + return greaterThanEqual(abs(x - y), vec<L, T, Q>(epsilon)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - vecType<T, P> const & epsilon - ) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> epsilonNotEqual(vec<L, T, Q> const& x, vec<L, T, Q> const& y, vec<L, T, Q> const& epsilon) { - return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); + return greaterThanEqual(abs(x - y), vec<L, T, Q>(epsilon)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonEqual - ( - tquat<T, P> const & x, - tquat<T, P> const & y, - T const & epsilon - ) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> epsilonEqual(tquat<T, Q> const& x, tquat<T, Q> const& y, T const& epsilon) { - tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); - return lessThan(abs(v), tvec4<T, P>(epsilon)); + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return lessThan(abs(v), vec<4, T, Q>(epsilon)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonNotEqual - ( - tquat<T, P> const & x, - tquat<T, P> const & y, - T const & epsilon - ) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> epsilonNotEqual(tquat<T, Q> const& x, tquat<T, Q> const& y, T const& epsilon) { - tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); - return greaterThanEqual(abs(v), tvec4<T, P>(epsilon)); + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return greaterThanEqual(abs(v), vec<4, T, Q>(epsilon)); } }//namespace glm diff --git a/external/include/glm/gtc/functions.hpp b/external/include/glm/gtc/functions.hpp deleted file mode 100644 index ab1590b..0000000 --- a/external/include/glm/gtc/functions.hpp +++ /dev/null @@ -1,53 +0,0 @@ -/// @ref gtc_functions -/// @file glm/gtc/functions.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_quaternion (dependence) -/// -/// @defgroup gtc_functions GLM_GTC_functions -/// @ingroup gtc -/// -/// @brief List of useful common functions. -/// -/// <glm/gtc/functions.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/type_vec2.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_functions extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_functions - /// @{ - - /// 1D gauss function - /// - /// @see gtc_epsilon - template <typename T> - GLM_FUNC_DECL T gauss( - T x, - T ExpectedValue, - T StandardDeviation); - - /// 2D gauss function - /// - /// @see gtc_epsilon - template <typename T, precision P> - GLM_FUNC_DECL T gauss( - tvec2<T, P> const& Coord, - tvec2<T, P> const& ExpectedValue, - tvec2<T, P> const& StandardDeviation); - - /// @} -}//namespace glm - -#include "functions.inl" - diff --git a/external/include/glm/gtc/integer.hpp b/external/include/glm/gtc/integer.hpp index 69ffb1d..1d28c32 100644 --- a/external/include/glm/gtc/integer.hpp +++ b/external/include/glm/gtc/integer.hpp @@ -7,18 +7,18 @@ /// @defgroup gtc_integer GLM_GTC_integer /// @ingroup gtc /// -/// @brief Allow to perform bit operations on integer values +/// Include <glm/gtc/integer.hpp> to use the features of this extension. /// -/// <glm/gtc/integer.hpp> need to be included to use these functionalities. +/// @brief Allow to perform bit operations on integer values #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/func_common.hpp" -#include "../detail/func_integer.hpp" -#include "../detail/func_exponential.hpp" +#include "../detail/qualifier.hpp" +#include "../common.hpp" +#include "../integer.hpp" +#include "../exponential.hpp" #include <limits> #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) @@ -32,69 +32,32 @@ namespace glm /// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size. /// @see gtc_integer - template <typename genIUType> + template<typename genIUType> GLM_FUNC_DECL genIUType log2(genIUType x); - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam genIUType Integer-point scalar or vector types. - /// - /// @see gtc_integer - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> - template <typename genIUType> - GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam T Integer scalar types. - /// @tparam vecType vector types. - /// - /// @see gtc_integer - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, T y); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam T Integer scalar types. - /// @tparam vecType vector types. - /// - /// @see gtc_integer - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y); - /// Returns a value equal to the nearest integer to x. /// The fraction 0.5 will round in a direction chosen by the /// implementation, presumably the direction that is fastest. - /// + /// /// @param x The values of the argument must be greater or equal to zero. /// @tparam T floating point scalar types. - /// @tparam vecType vector types. - /// + /// /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> /// @see gtc_integer - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<int, P> iround(vecType<T, P> const & x); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, int, Q> iround(vec<L, T, Q> const& x); /// Returns a value equal to the nearest integer to x. /// The fraction 0.5 will round in a direction chosen by the /// implementation, presumably the direction that is fastest. - /// + /// /// @param x The values of the argument must be greater or equal to zero. /// @tparam T floating point scalar types. - /// @tparam vecType vector types. - /// + /// /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> /// @see gtc_integer - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<uint, P> uround(vecType<T, P> const & x); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, uint, Q> uround(vec<L, T, Q> const& x); /// @} } //namespace glm diff --git a/external/include/glm/gtc/integer.inl b/external/include/glm/gtc/integer.inl index 7ce2918..9d4b618 100644 --- a/external/include/glm/gtc/integer.inl +++ b/external/include/glm/gtc/integer.inl @@ -4,36 +4,34 @@ namespace glm{ namespace detail { - template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> - struct compute_log2<T, P, vecType, false, Aligned> + template<length_t L, typename T, qualifier Q, bool Aligned> + struct compute_log2<L, T, Q, false, Aligned> { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v) { //Equivalent to return findMSB(vec); but save one function call in ASM with VC //return findMSB(vec); - return vecType<T, P>(detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(vec)); + return vec<L, T, Q>(detail::compute_findMSB_vec<L, T, Q, sizeof(T) * 8>::call(v)); } }; # if GLM_HAS_BITSCAN_WINDOWS - template <precision P, bool Aligned> - struct compute_log2<int, P, tvec4, false, Aligned> + template<qualifier Q, bool Aligned> + struct compute_log2<4, int, Q, false, Aligned> { - GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & vec) + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& v) { - tvec4<int, P> Result(glm::uninitialize); - - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), vec.x); - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), vec.y); - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), vec.z); - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), vec.w); - + vec<4, int, Q> Result; + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), v.x); + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), v.y); + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), v.z); + _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), v.w); return Result; } }; # endif//GLM_HAS_BITSCAN_WINDOWS }//namespace detail - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER int iround(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'iround' only accept floating-point inputs"); @@ -42,16 +40,16 @@ namespace detail return static_cast<int>(x + static_cast<genType>(0.5)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<int, P> iround(vecType<T, P> const& x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, int, Q> iround(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'iround' only accept floating-point inputs"); - assert(all(lessThanEqual(vecType<T, P>(0), x))); + assert(all(lessThanEqual(vec<L, T, Q>(0), x))); - return vecType<int, P>(x + static_cast<T>(0.5)); + return vec<L, int, Q>(x + static_cast<T>(0.5)); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER uint uround(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'uround' only accept floating-point inputs"); @@ -60,12 +58,12 @@ namespace detail return static_cast<uint>(x + static_cast<genType>(0.5)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uint, P> uround(vecType<T, P> const& x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, uint, Q> uround(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'uround' only accept floating-point inputs"); - assert(all(lessThanEqual(vecType<T, P>(0), x))); + assert(all(lessThanEqual(vec<L, T, Q>(0), x))); - return vecType<uint, P>(x + static_cast<T>(0.5)); + return vec<L, uint, Q>(x + static_cast<T>(0.5)); } }//namespace glm diff --git a/external/include/glm/gtc/matrix_access.hpp b/external/include/glm/gtc/matrix_access.hpp index e4156ef..3a67cff 100644 --- a/external/include/glm/gtc/matrix_access.hpp +++ b/external/include/glm/gtc/matrix_access.hpp @@ -5,9 +5,10 @@ /// /// @defgroup gtc_matrix_access GLM_GTC_matrix_access /// @ingroup gtc -/// +/// +/// Include <glm/gtc/matrix_access.hpp> to use the features of this extension. +/// /// Defines functions to access rows or columns of a matrix easily. -/// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities. #pragma once @@ -25,33 +26,33 @@ namespace glm /// Get a specific row of a matrix. /// @see gtc_matrix_access - template <typename genType> + template<typename genType> GLM_FUNC_DECL typename genType::row_type row( - genType const & m, + genType const& m, length_t index); /// Set a specific row to a matrix. /// @see gtc_matrix_access - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType row( - genType const & m, + genType const& m, length_t index, - typename genType::row_type const & x); + typename genType::row_type const& x); /// Get a specific column of a matrix. /// @see gtc_matrix_access - template <typename genType> + template<typename genType> GLM_FUNC_DECL typename genType::col_type column( - genType const & m, + genType const& m, length_t index); /// Set a specific column to a matrix. /// @see gtc_matrix_access - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType column( - genType const & m, + genType const& m, length_t index, - typename genType::col_type const & x); + typename genType::col_type const& x); /// @} }//namespace glm diff --git a/external/include/glm/gtc/matrix_access.inl b/external/include/glm/gtc/matrix_access.inl index 831b940..176136a 100644 --- a/external/include/glm/gtc/matrix_access.inl +++ b/external/include/glm/gtc/matrix_access.inl @@ -3,12 +3,12 @@ namespace glm { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType row ( - genType const & m, + genType const& m, length_t index, - typename genType::row_type const & x + typename genType::row_type const& x ) { assert(index >= 0 && index < m[0].length()); @@ -19,27 +19,27 @@ namespace glm return Result; } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER typename genType::row_type row ( - genType const & m, + genType const& m, length_t index ) { assert(index >= 0 && index < m[0].length()); - typename genType::row_type Result; + typename genType::row_type Result(0); for(length_t i = 0; i < m.length(); ++i) Result[i] = m[i][index]; return Result; } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType column ( - genType const & m, + genType const& m, length_t index, - typename genType::col_type const & x + typename genType::col_type const& x ) { assert(index >= 0 && index < m.length()); @@ -49,10 +49,10 @@ namespace glm return Result; } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER typename genType::col_type column ( - genType const & m, + genType const& m, length_t index ) { diff --git a/external/include/glm/gtc/matrix_integer.hpp b/external/include/glm/gtc/matrix_integer.hpp index fdc816d..59aec12 100644 --- a/external/include/glm/gtc/matrix_integer.hpp +++ b/external/include/glm/gtc/matrix_integer.hpp @@ -6,8 +6,9 @@ /// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer /// @ingroup gtc /// +/// Include <glm/gtc/matrix_integer.hpp> to use the features of this extension. +/// /// Defines a number of matrices with integer types. -/// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities. #pragma once @@ -31,302 +32,302 @@ namespace glm /// @addtogroup gtc_matrix_integer /// @{ - /// High-precision signed integer 2x2 matrix. + /// High-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<int, highp> highp_imat2; + typedef mat<2, 2, int, highp> highp_imat2; - /// High-precision signed integer 3x3 matrix. + /// High-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<int, highp> highp_imat3; + typedef mat<3, 3, int, highp> highp_imat3; - /// High-precision signed integer 4x4 matrix. + /// High-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<int, highp> highp_imat4; + typedef mat<4, 4, int, highp> highp_imat4; - /// High-precision signed integer 2x2 matrix. + /// High-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<int, highp> highp_imat2x2; + typedef mat<2, 2, int, highp> highp_imat2x2; - /// High-precision signed integer 2x3 matrix. + /// High-qualifier signed integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3<int, highp> highp_imat2x3; + typedef mat<2, 3, int, highp> highp_imat2x3; - /// High-precision signed integer 2x4 matrix. + /// High-qualifier signed integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4<int, highp> highp_imat2x4; + typedef mat<2, 4, int, highp> highp_imat2x4; - /// High-precision signed integer 3x2 matrix. + /// High-qualifier signed integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2<int, highp> highp_imat3x2; + typedef mat<3, 2, int, highp> highp_imat3x2; - /// High-precision signed integer 3x3 matrix. + /// High-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<int, highp> highp_imat3x3; + typedef mat<3, 3, int, highp> highp_imat3x3; - /// High-precision signed integer 3x4 matrix. + /// High-qualifier signed integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4<int, highp> highp_imat3x4; + typedef mat<3, 4, int, highp> highp_imat3x4; - /// High-precision signed integer 4x2 matrix. + /// High-qualifier signed integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2<int, highp> highp_imat4x2; + typedef mat<4, 2, int, highp> highp_imat4x2; - /// High-precision signed integer 4x3 matrix. + /// High-qualifier signed integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3<int, highp> highp_imat4x3; + typedef mat<4, 3, int, highp> highp_imat4x3; - /// High-precision signed integer 4x4 matrix. + /// High-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<int, highp> highp_imat4x4; + typedef mat<4, 4, int, highp> highp_imat4x4; - /// Medium-precision signed integer 2x2 matrix. + /// Medium-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<int, mediump> mediump_imat2; + typedef mat<2, 2, int, mediump> mediump_imat2; - /// Medium-precision signed integer 3x3 matrix. + /// Medium-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<int, mediump> mediump_imat3; + typedef mat<3, 3, int, mediump> mediump_imat3; - /// Medium-precision signed integer 4x4 matrix. + /// Medium-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<int, mediump> mediump_imat4; + typedef mat<4, 4, int, mediump> mediump_imat4; - /// Medium-precision signed integer 2x2 matrix. + /// Medium-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<int, mediump> mediump_imat2x2; + typedef mat<2, 2, int, mediump> mediump_imat2x2; - /// Medium-precision signed integer 2x3 matrix. + /// Medium-qualifier signed integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3<int, mediump> mediump_imat2x3; + typedef mat<2, 3, int, mediump> mediump_imat2x3; - /// Medium-precision signed integer 2x4 matrix. + /// Medium-qualifier signed integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4<int, mediump> mediump_imat2x4; + typedef mat<2, 4, int, mediump> mediump_imat2x4; - /// Medium-precision signed integer 3x2 matrix. + /// Medium-qualifier signed integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2<int, mediump> mediump_imat3x2; + typedef mat<3, 2, int, mediump> mediump_imat3x2; - /// Medium-precision signed integer 3x3 matrix. + /// Medium-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<int, mediump> mediump_imat3x3; + typedef mat<3, 3, int, mediump> mediump_imat3x3; - /// Medium-precision signed integer 3x4 matrix. + /// Medium-qualifier signed integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4<int, mediump> mediump_imat3x4; + typedef mat<3, 4, int, mediump> mediump_imat3x4; - /// Medium-precision signed integer 4x2 matrix. + /// Medium-qualifier signed integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2<int, mediump> mediump_imat4x2; + typedef mat<4, 2, int, mediump> mediump_imat4x2; - /// Medium-precision signed integer 4x3 matrix. + /// Medium-qualifier signed integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3<int, mediump> mediump_imat4x3; + typedef mat<4, 3, int, mediump> mediump_imat4x3; - /// Medium-precision signed integer 4x4 matrix. + /// Medium-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<int, mediump> mediump_imat4x4; + typedef mat<4, 4, int, mediump> mediump_imat4x4; - /// Low-precision signed integer 2x2 matrix. + /// Low-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<int, lowp> lowp_imat2; - - /// Low-precision signed integer 3x3 matrix. + typedef mat<2, 2, int, lowp> lowp_imat2; + + /// Low-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<int, lowp> lowp_imat3; + typedef mat<3, 3, int, lowp> lowp_imat3; - /// Low-precision signed integer 4x4 matrix. + /// Low-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<int, lowp> lowp_imat4; + typedef mat<4, 4, int, lowp> lowp_imat4; - /// Low-precision signed integer 2x2 matrix. + /// Low-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<int, lowp> lowp_imat2x2; + typedef mat<2, 2, int, lowp> lowp_imat2x2; - /// Low-precision signed integer 2x3 matrix. + /// Low-qualifier signed integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3<int, lowp> lowp_imat2x3; + typedef mat<2, 3, int, lowp> lowp_imat2x3; - /// Low-precision signed integer 2x4 matrix. + /// Low-qualifier signed integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4<int, lowp> lowp_imat2x4; + typedef mat<2, 4, int, lowp> lowp_imat2x4; - /// Low-precision signed integer 3x2 matrix. + /// Low-qualifier signed integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2<int, lowp> lowp_imat3x2; + typedef mat<3, 2, int, lowp> lowp_imat3x2; - /// Low-precision signed integer 3x3 matrix. + /// Low-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<int, lowp> lowp_imat3x3; + typedef mat<3, 3, int, lowp> lowp_imat3x3; - /// Low-precision signed integer 3x4 matrix. + /// Low-qualifier signed integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4<int, lowp> lowp_imat3x4; + typedef mat<3, 4, int, lowp> lowp_imat3x4; - /// Low-precision signed integer 4x2 matrix. + /// Low-qualifier signed integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2<int, lowp> lowp_imat4x2; + typedef mat<4, 2, int, lowp> lowp_imat4x2; - /// Low-precision signed integer 4x3 matrix. + /// Low-qualifier signed integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3<int, lowp> lowp_imat4x3; + typedef mat<4, 3, int, lowp> lowp_imat4x3; - /// Low-precision signed integer 4x4 matrix. + /// Low-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<int, lowp> lowp_imat4x4; + typedef mat<4, 4, int, lowp> lowp_imat4x4; - /// High-precision unsigned integer 2x2 matrix. + /// High-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<uint, highp> highp_umat2; + typedef mat<2, 2, uint, highp> highp_umat2; - /// High-precision unsigned integer 3x3 matrix. + /// High-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<uint, highp> highp_umat3; + typedef mat<3, 3, uint, highp> highp_umat3; - /// High-precision unsigned integer 4x4 matrix. + /// High-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<uint, highp> highp_umat4; + typedef mat<4, 4, uint, highp> highp_umat4; - /// High-precision unsigned integer 2x2 matrix. + /// High-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<uint, highp> highp_umat2x2; + typedef mat<2, 2, uint, highp> highp_umat2x2; - /// High-precision unsigned integer 2x3 matrix. + /// High-qualifier unsigned integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3<uint, highp> highp_umat2x3; + typedef mat<2, 3, uint, highp> highp_umat2x3; - /// High-precision unsigned integer 2x4 matrix. + /// High-qualifier unsigned integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4<uint, highp> highp_umat2x4; + typedef mat<2, 4, uint, highp> highp_umat2x4; - /// High-precision unsigned integer 3x2 matrix. + /// High-qualifier unsigned integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2<uint, highp> highp_umat3x2; + typedef mat<3, 2, uint, highp> highp_umat3x2; - /// High-precision unsigned integer 3x3 matrix. + /// High-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<uint, highp> highp_umat3x3; + typedef mat<3, 3, uint, highp> highp_umat3x3; - /// High-precision unsigned integer 3x4 matrix. + /// High-qualifier unsigned integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4<uint, highp> highp_umat3x4; + typedef mat<3, 4, uint, highp> highp_umat3x4; - /// High-precision unsigned integer 4x2 matrix. + /// High-qualifier unsigned integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2<uint, highp> highp_umat4x2; + typedef mat<4, 2, uint, highp> highp_umat4x2; - /// High-precision unsigned integer 4x3 matrix. + /// High-qualifier unsigned integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3<uint, highp> highp_umat4x3; + typedef mat<4, 3, uint, highp> highp_umat4x3; - /// High-precision unsigned integer 4x4 matrix. + /// High-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<uint, highp> highp_umat4x4; + typedef mat<4, 4, uint, highp> highp_umat4x4; - /// Medium-precision unsigned integer 2x2 matrix. + /// Medium-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<uint, mediump> mediump_umat2; + typedef mat<2, 2, uint, mediump> mediump_umat2; - /// Medium-precision unsigned integer 3x3 matrix. + /// Medium-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<uint, mediump> mediump_umat3; + typedef mat<3, 3, uint, mediump> mediump_umat3; - /// Medium-precision unsigned integer 4x4 matrix. + /// Medium-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<uint, mediump> mediump_umat4; + typedef mat<4, 4, uint, mediump> mediump_umat4; - /// Medium-precision unsigned integer 2x2 matrix. + /// Medium-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<uint, mediump> mediump_umat2x2; + typedef mat<2, 2, uint, mediump> mediump_umat2x2; - /// Medium-precision unsigned integer 2x3 matrix. + /// Medium-qualifier unsigned integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3<uint, mediump> mediump_umat2x3; + typedef mat<2, 3, uint, mediump> mediump_umat2x3; - /// Medium-precision unsigned integer 2x4 matrix. + /// Medium-qualifier unsigned integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4<uint, mediump> mediump_umat2x4; + typedef mat<2, 4, uint, mediump> mediump_umat2x4; - /// Medium-precision unsigned integer 3x2 matrix. + /// Medium-qualifier unsigned integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2<uint, mediump> mediump_umat3x2; + typedef mat<3, 2, uint, mediump> mediump_umat3x2; - /// Medium-precision unsigned integer 3x3 matrix. + /// Medium-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<uint, mediump> mediump_umat3x3; + typedef mat<3, 3, uint, mediump> mediump_umat3x3; - /// Medium-precision unsigned integer 3x4 matrix. + /// Medium-qualifier unsigned integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4<uint, mediump> mediump_umat3x4; + typedef mat<3, 4, uint, mediump> mediump_umat3x4; - /// Medium-precision unsigned integer 4x2 matrix. + /// Medium-qualifier unsigned integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2<uint, mediump> mediump_umat4x2; + typedef mat<4, 2, uint, mediump> mediump_umat4x2; - /// Medium-precision unsigned integer 4x3 matrix. + /// Medium-qualifier unsigned integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3<uint, mediump> mediump_umat4x3; + typedef mat<4, 3, uint, mediump> mediump_umat4x3; - /// Medium-precision unsigned integer 4x4 matrix. + /// Medium-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<uint, mediump> mediump_umat4x4; + typedef mat<4, 4, uint, mediump> mediump_umat4x4; - /// Low-precision unsigned integer 2x2 matrix. + /// Low-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<uint, lowp> lowp_umat2; - - /// Low-precision unsigned integer 3x3 matrix. + typedef mat<2, 2, uint, lowp> lowp_umat2; + + /// Low-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<uint, lowp> lowp_umat3; + typedef mat<3, 3, uint, lowp> lowp_umat3; - /// Low-precision unsigned integer 4x4 matrix. + /// Low-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<uint, lowp> lowp_umat4; + typedef mat<4, 4, uint, lowp> lowp_umat4; - /// Low-precision unsigned integer 2x2 matrix. + /// Low-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2<uint, lowp> lowp_umat2x2; + typedef mat<2, 2, uint, lowp> lowp_umat2x2; - /// Low-precision unsigned integer 2x3 matrix. + /// Low-qualifier unsigned integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3<uint, lowp> lowp_umat2x3; + typedef mat<2, 3, uint, lowp> lowp_umat2x3; - /// Low-precision unsigned integer 2x4 matrix. + /// Low-qualifier unsigned integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4<uint, lowp> lowp_umat2x4; + typedef mat<2, 4, uint, lowp> lowp_umat2x4; - /// Low-precision unsigned integer 3x2 matrix. + /// Low-qualifier unsigned integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2<uint, lowp> lowp_umat3x2; + typedef mat<3, 2, uint, lowp> lowp_umat3x2; - /// Low-precision unsigned integer 3x3 matrix. + /// Low-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3<uint, lowp> lowp_umat3x3; + typedef mat<3, 3, uint, lowp> lowp_umat3x3; - /// Low-precision unsigned integer 3x4 matrix. + /// Low-qualifier unsigned integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4<uint, lowp> lowp_umat3x4; + typedef mat<3, 4, uint, lowp> lowp_umat3x4; - /// Low-precision unsigned integer 4x2 matrix. + /// Low-qualifier unsigned integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2<uint, lowp> lowp_umat4x2; + typedef mat<4, 2, uint, lowp> lowp_umat4x2; - /// Low-precision unsigned integer 4x3 matrix. + /// Low-qualifier unsigned integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3<uint, lowp> lowp_umat4x3; + typedef mat<4, 3, uint, lowp> lowp_umat4x3; - /// Low-precision unsigned integer 4x4 matrix. + /// Low-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4<uint, lowp> lowp_umat4x4; + typedef mat<4, 4, uint, lowp> lowp_umat4x4; #if(defined(GLM_PRECISION_HIGHP_INT)) typedef highp_imat2 imat2; @@ -432,7 +433,7 @@ namespace glm typedef lowp_umat4x3 umat4x3; typedef lowp_umat4x4 umat4x4; #else //if(defined(GLM_PRECISION_MEDIUMP_UINT)) - + /// Unsigned integer 2x2 matrix. /// @see gtc_matrix_integer typedef mediump_umat2 umat2; diff --git a/external/include/glm/gtc/matrix_inverse.hpp b/external/include/glm/gtc/matrix_inverse.hpp index 589381d..97e8d89 100644 --- a/external/include/glm/gtc/matrix_inverse.hpp +++ b/external/include/glm/gtc/matrix_inverse.hpp @@ -6,8 +6,9 @@ /// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse /// @ingroup gtc /// +/// Include <glm/gtc/matrix_integer.hpp> to use the features of this extension. +/// /// Defines additional matrix inverting functions. -/// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities. #pragma once @@ -28,20 +29,20 @@ namespace glm /// @{ /// Fast matrix inverse for affine matrix. - /// + /// /// @param m Input matrix to invert. - /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-qualifier floating point value is highly innacurate. /// @see gtc_matrix_inverse - template <typename genType> - GLM_FUNC_DECL genType affineInverse(genType const & m); + template<typename genType> + GLM_FUNC_DECL genType affineInverse(genType const& m); /// Compute the inverse transpose of a matrix. - /// + /// /// @param m Input matrix to invert transpose. - /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-qualifier floating point value is highly innacurate. /// @see gtc_matrix_inverse - template <typename genType> - GLM_FUNC_DECL genType inverseTranspose(genType const & m); + template<typename genType> + GLM_FUNC_DECL genType inverseTranspose(genType const& m); /// @} }//namespace glm diff --git a/external/include/glm/gtc/matrix_inverse.inl b/external/include/glm/gtc/matrix_inverse.inl index 36c9bf7..592e690 100644 --- a/external/include/glm/gtc/matrix_inverse.inl +++ b/external/include/glm/gtc/matrix_inverse.inl @@ -3,35 +3,35 @@ namespace glm { - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> affineInverse(mat<3, 3, T, Q> const& m) { - tmat2x2<T, P> const Inv(inverse(tmat2x2<T, P>(m))); + mat<2, 2, T, Q> const Inv(inverse(mat<2, 2, T, Q>(m))); - return tmat3x3<T, P>( - tvec3<T, P>(Inv[0], static_cast<T>(0)), - tvec3<T, P>(Inv[1], static_cast<T>(0)), - tvec3<T, P>(-Inv * tvec2<T, P>(m[2]), static_cast<T>(1))); + return mat<3, 3, T, Q>( + vec<3, T, Q>(Inv[0], static_cast<T>(0)), + vec<3, T, Q>(Inv[1], static_cast<T>(0)), + vec<3, T, Q>(-Inv * vec<2, T, Q>(m[2]), static_cast<T>(1))); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> affineInverse(mat<4, 4, T, Q> const& m) { - tmat3x3<T, P> const Inv(inverse(tmat3x3<T, P>(m))); + mat<3, 3, T, Q> const Inv(inverse(mat<3, 3, T, Q>(m))); - return tmat4x4<T, P>( - tvec4<T, P>(Inv[0], static_cast<T>(0)), - tvec4<T, P>(Inv[1], static_cast<T>(0)), - tvec4<T, P>(Inv[2], static_cast<T>(0)), - tvec4<T, P>(-Inv * tvec3<T, P>(m[3]), static_cast<T>(1))); + return mat<4, 4, T, Q>( + vec<4, T, Q>(Inv[0], static_cast<T>(0)), + vec<4, T, Q>(Inv[1], static_cast<T>(0)), + vec<4, T, Q>(Inv[2], static_cast<T>(0)), + vec<4, T, Q>(-Inv * vec<3, T, Q>(m[3]), static_cast<T>(1))); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> inverseTranspose(mat<2, 2, T, Q> const& m) { T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; - tmat2x2<T, P> Inverse( + mat<2, 2, T, Q> Inverse( + m[1][1] / Determinant, - m[0][1] / Determinant, - m[1][0] / Determinant, @@ -40,15 +40,15 @@ namespace glm return Inverse; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> inverseTranspose(mat<3, 3, T, Q> const& m) { T Determinant = + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); - tmat3x3<T, P> Inverse(uninitialize); + mat<3, 3, T, Q> Inverse; Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); @@ -63,8 +63,8 @@ namespace glm return Inverse; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> inverseTranspose(mat<4, 4, T, Q> const& m) { T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; @@ -86,7 +86,7 @@ namespace glm T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; - tmat4x4<T, P> Inverse(uninitialize); + mat<4, 4, T, Q> Inverse; Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); diff --git a/external/include/glm/gtc/matrix_transform.hpp b/external/include/glm/gtc/matrix_transform.hpp index c97b89a..a9d5cd0 100644 --- a/external/include/glm/gtc/matrix_transform.hpp +++ b/external/include/glm/gtc/matrix_transform.hpp @@ -4,19 +4,19 @@ /// @see core (dependence) /// @see gtx_transform /// @see gtx_transform2 -/// +/// /// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform /// @ingroup gtc /// -/// @brief Defines functions that generate common transformation matrices. +/// Include <glm/gtc/matrix_transform.hpp> to use the features of this extension. +/// +/// Defines functions that generate common transformation matrices. /// /// The matrices generated by this extension use standard OpenGL fixed-function /// conventions. For example, the lookAt function generates a transform from world -/// space into the specific eye space that the projective matrix functions +/// space into the specific eye space that the projective matrix functions /// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility /// specifications defines the particular layout of this eye space. -/// -/// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities. #pragma once @@ -37,10 +37,10 @@ namespace glm /// @{ /// Builds a translation 4 * 4 matrix created from a vector of 3 components. - /// + /// /// @param m Input matrix multiplied by this translation matrix. /// @param v Coordinates of a translation vector. - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @code /// #include <glm/glm.hpp> /// #include <glm/gtc/matrix_transform.hpp> @@ -52,412 +52,674 @@ namespace glm /// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f /// @endcode /// @see gtc_matrix_transform - /// @see - translate(tmat4x4<T, P> const & m, T x, T y, T z) - /// @see - translate(tvec3<T, P> const & v) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> translate( - tmat4x4<T, P> const & m, - tvec3<T, P> const & v); - - /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. - /// + /// @see - translate(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - translate(vec<3, T, Q> const& v) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glTranslate.xml">glTranslate man page</a> + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> translate( + mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v); + + /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. + /// /// @param m Input matrix multiplied by this rotation matrix. /// @param angle Rotation angle expressed in radians. /// @param axis Rotation axis, recommended to be normalized. /// @tparam T Value type used to build the matrix. Supported: half, float or double. /// @see gtc_matrix_transform - /// @see - rotate(tmat4x4<T, P> const & m, T angle, T x, T y, T z) - /// @see - rotate(T angle, tvec3<T, P> const & v) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> rotate( - tmat4x4<T, P> const & m, - T angle, - tvec3<T, P> const & axis); - - /// Builds a scale 4 * 4 matrix created from 3 scalars. - /// + /// @see - rotate(mat<4, 4, T, Q> const& m, T angle, T x, T y, T z) + /// @see - rotate(T angle, vec<3, T, Q> const& v) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glRotate.xml">glRotate man page</a> + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> rotate( + mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& axis); + + /// Builds a scale 4 * 4 matrix created from 3 scalars. + /// /// @param m Input matrix multiplied by this scale matrix. /// @param v Ratio of scaling for each axis. - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - scale(tmat4x4<T, P> const & m, T x, T y, T z) - /// @see - scale(tvec3<T, P> const & v) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> scale( - tmat4x4<T, P> const & m, - tvec3<T, P> const & v); - - /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for an orthographic parallel viewing volume, using left-handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> orthoLH( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for an orthographic parallel viewing volume, using right-handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> orthoRH( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - scale(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - scale(vec<3, T, Q> const& v) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glScale.xml">glScale man page</a> + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> scale( + mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v); /// Creates a matrix for projecting two-dimensional coordinates onto the screen. /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( - T left, - T right, - T bottom, - T top); - - /// Creates a frustum matrix with default handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> frustum( - T left, - T right, - T bottom, - T top, - T near, - T far); + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top, T zNear, T zFar); /// Creates a left handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> frustumLH( - T left, - T right, - T bottom, - T top, - T near, - T far); + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO( + T left, T right, T bottom, T top, T near, T far); /// Creates a right handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> frustumRH( - T left, - T right, - T bottom, - T top, - T near, - T far); - - /// Creates a matrix for a symetric perspective-view frustum based on the default handedness. - /// - /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum( + T left, T right, T bottom, T top, T near, T far); + + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspective( - T fovy, - T aspect, - T near, - T far); + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO( + T fovy, T aspect, T near, T far); /// Creates a matrix for a right handed, symetric perspective-view frustum. - /// + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveRH( - T fovy, - T aspect, - T near, - T far); + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO( + T fovy, T aspect, T near, T far); /// Creates a matrix for a left handed, symetric perspective-view frustum. - /// + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveLH( - T fovy, - T aspect, - T near, - T far); + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO( + T fovy, T aspect, T near, T far); - /// Builds a perspective projection matrix based on a field of view and the default handedness. - /// + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective( + T fovy, T aspect, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fov Expressed in radians. - /// @param width - /// @param height + /// @param width Width of the viewport + /// @param height Height of the viewport /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFov( - T fov, - T width, - T height, - T near, - T far); + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO( + T fov, T width, T height, T near, T far); /// Builds a right handed perspective projection matrix based on a field of view. - /// + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fov Expressed in radians. - /// @param width - /// @param height + /// @param width Width of the viewport + /// @param height Height of the viewport /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovRH( - T fov, - T width, - T height, - T near, - T far); + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH( + T fov, T width, T height, T near, T far); /// Builds a left handed perspective projection matrix based on a field of view. - /// + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fov Expressed in radians. - /// @param width - /// @param height + /// @param width Width of the viewport + /// @param height Height of the viewport /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovLH( - T fov, - T width, - T height, - T near, - T far); + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH( + T fov, T width, T height, T near, T far); - /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. + /// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov( + T fov, T width, T height, T near, T far); + + /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective( + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH( T fovy, T aspect, T near); - /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. + /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveLH( + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH( T fovy, T aspect, T near); - /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveRH( + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective( T fovy, T aspect, T near); /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. - /// + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( T fovy, T aspect, T near); /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. - /// + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param ep - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @param ep Epsilon + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( T fovy, T aspect, T near, T ep); /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. - /// + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a> + template<typename T, typename U, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> projectZO( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a> + template<typename T, typename U, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> projectNO( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition. + /// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// /// @param obj Specify the object coordinates. /// @param model Specifies the current modelview matrix /// @param proj Specifies the current projection matrix /// @param viewport Specifies the current viewport /// @return Return the computed window coordinates. - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. /// @tparam U Currently supported: Floating-point types and integer types. /// @see gtc_matrix_transform - template <typename T, typename U, precision P> - GLM_FUNC_DECL tvec3<T, P> project( - tvec3<T, P> const & obj, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport); + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a> + template<typename T, typename U, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> project( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) /// /// @param win Specify the window coordinates to be mapped. /// @param model Specifies the modelview matrix /// @param proj Specifies the projection matrix /// @param viewport Specifies the viewport /// @return Returns the computed object coordinates. - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. /// @tparam U Currently supported: Floating-point types and integer types. /// @see gtc_matrix_transform - template <typename T, typename U, precision P> - GLM_FUNC_DECL tvec3<T, P> unProject( - tvec3<T, P> const & win, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport); + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a> + template<typename T, typename U, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> unProjectZO( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a> + template<typename T, typename U, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> unProjectNO( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition. + /// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a> + template<typename T, typename U, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> unProject( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); /// Define a picking region /// - /// @param center - /// @param delta - /// @param viewport - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @param center Specify the center of a picking region in window coordinates. + /// @param delta Specify the width and height, respectively, of the picking region in window coordinates. + /// @param viewport Rendering viewport + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. /// @tparam U Currently supported: Floating-point types and integer types. /// @see gtc_matrix_transform - template <typename T, precision P, typename U> - GLM_FUNC_DECL tmat4x4<T, P> pickMatrix( - tvec2<T, P> const & center, - tvec2<T, P> const & delta, - tvec4<U, P> const & viewport); + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPickMatrix.xml">gluPickMatrix man page</a> + template<typename T, qualifier Q, typename U> + GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix( + vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport); - /// Build a look at view matrix based on the default handedness. + /// Build a right handed look at view matrix. /// /// @param eye Position of the camera /// @param center Position where the camera is looking at /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> lookAt( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up); + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> lookAtRH( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); - /// Build a right handed look at view matrix. + /// Build a left handed look at view matrix. /// /// @param eye Position of the camera /// @param center Position where the camera is looking at /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> lookAtRH( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up); + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> lookAtLH( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); - /// Build a left handed look at view matrix. + /// Build a look at view matrix based on the default handedness. /// /// @param eye Position of the camera /// @param center Position where the camera is looking at /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> lookAtLH( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up); + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml">gluLookAt man page</a> + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> lookAt( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); /// @} }//namespace glm diff --git a/external/include/glm/gtc/matrix_transform.inl b/external/include/glm/gtc/matrix_transform.inl index b9ff418..12623d7 100644 --- a/external/include/glm/gtc/matrix_transform.inl +++ b/external/include/glm/gtc/matrix_transform.inl @@ -7,25 +7,25 @@ namespace glm { - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> translate(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { - tmat4x4<T, P> Result(m); + mat<4, 4, T, Q> Result(m); Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; return Result; } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) { T const a = angle; T const c = cos(a); T const s = sin(a); - tvec3<T, P> axis(normalize(v)); - tvec3<T, P> temp((T(1) - c) * axis); + vec<3, T, Q> axis(normalize(v)); + vec<3, T, Q> temp((T(1) - c) * axis); - tmat4x4<T, P> Rotate(uninitialize); + mat<4, 4, T, Q> Rotate; Rotate[0][0] = c + temp[0] * axis[0]; Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; @@ -38,23 +38,23 @@ namespace glm Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; Rotate[2][2] = c + temp[2] * axis[2]; - tmat4x4<T, P> Result(uninitialize); + mat<4, 4, T, Q> Result; Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; Result[3] = m[3]; return Result; } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate_slow(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) { T const a = angle; T const c = cos(a); T const s = sin(a); - tmat4x4<T, P> Result; + mat<4, 4, T, Q> Result; - tvec3<T, P> axis = normalize(v); + vec<3, T, Q> axis = normalize(v); Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x; Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z; @@ -71,14 +71,14 @@ namespace glm Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z; Result[2][3] = static_cast<T>(0); - Result[3] = tvec4<T, P>(0, 0, 0, 1); + Result[3] = vec<4, T, Q>(0, 0, 0, 1); return m * Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { - tmat4x4<T, P> Result(uninitialize); + mat<4, 4, T, Q> Result; Result[0] = m[0] * v[0]; Result[1] = m[1] * v[1]; Result[2] = m[2] * v[2]; @@ -86,296 +86,497 @@ namespace glm return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale_slow(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { - tmat4x4<T, P> Result(T(1)); + mat<4, 4, T, Q> Result(T(1)); Result[0][0] = v.x; Result[1][1] = v.y; Result[2][2] = v.z; return m * Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top) { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return orthoLH(left, right, bottom, top, zNear, zFar); -# else - return orthoRH(left, right, bottom, top, zNear, zFar); -# endif + mat<4, 4, T, defaultp> Result(static_cast<T>(1)); + Result[0][0] = static_cast<T>(2) / (right - left); + Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4<T, defaultp> Result(1); + mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast<T>(2) / (right - left); Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[2][2] = static_cast<T>(1) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = static_cast<T>(1) / (zFar - zNear); - Result[3][2] = - zNear / (zFar - zNear); -# else - Result[2][2] = static_cast<T>(2) / (zFar - zNear); - Result[3][2] = - (zFar + zNear) / (zFar - zNear); -# endif - + Result[3][2] = - zNear / (zFar - zNear); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4<T, defaultp> Result(1); + mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast<T>(2) / (right - left); Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[2][2] = static_cast<T>(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = - static_cast<T>(1) / (zFar - zNear); - Result[3][2] = - zNear / (zFar - zNear); -# else - Result[2][2] = - static_cast<T>(2) / (zFar - zNear); - Result[3][2] = - (zFar + zNear) / (zFar - zNear); -# endif - + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) + { + mat<4, 4, T, defaultp> Result(1); + Result[0][0] = static_cast<T>(2) / (right - left); + Result[1][1] = static_cast<T>(2) / (top - bottom); + Result[2][2] = - static_cast<T>(1) / (zFar - zNear); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - zNear / (zFar - zNear); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho - ( - T left, T right, - T bottom, T top - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4<T, defaultp> Result(static_cast<T>(1)); + mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast<T>(2) / (right - left); Result[1][1] = static_cast<T>(2) / (top - bottom); - Result[2][2] = - static_cast<T>(1); + Result[2][2] = - static_cast<T>(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return frustumLH(left, right, bottom, top, nearVal, farVal); + return orthoLH_NO(left, right, bottom, top, zNear, zFar); # else - return frustumRH(left, right, bottom, top, nearVal, farVal); + return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4<T, defaultp> Result(0); +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = farVal / (farVal - nearVal); Result[2][3] = static_cast<T>(1); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = farVal / (farVal - nearVal); - Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); -# else - Result[2][2] = (farVal + nearVal) / (farVal - nearVal); - Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); -# endif + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); + Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = (farVal + nearVal) / (farVal - nearVal); + Result[2][3] = static_cast<T>(1); + Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); + return Result; + } + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); + Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = farVal / (nearVal - farVal); + Result[2][3] = static_cast<T>(-1); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) { - tmat4x4<T, defaultp> Result(0); + mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast<T>(-1); + Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = farVal / (nearVal - farVal); - Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else - Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); - Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # endif - - return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return perspectiveLH(fovy, aspect, zNear, zFar); + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else - return perspectiveRH(fovy, aspect, zNear, zFar); + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # endif } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); T const tanHalfFovy = tan(fovy / static_cast<T>(2)); - tmat4x4<T, defaultp> Result(static_cast<T>(0)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast<T>(1) / (tanHalfFovy); + Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast<T>(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zNear - zFar); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = - (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); + + T const tanHalfFovy = tan(fovy / static_cast<T>(2)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast<T>(1) / (tanHalfFovy); + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[2][3] = - static_cast<T>(1); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); return Result; } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); T const tanHalfFovy = tan(fovy / static_cast<T>(2)); - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); + + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast<T>(1) / (tanHalfFovy); + Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast<T>(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zFar - zNear); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); + + T const tanHalfFovy = tan(fovy / static_cast<T>(2)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast<T>(1) / (tanHalfFovy); + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[2][3] = static_cast<T>(1); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return perspectiveFovLH(fov, width, height, zNear, zFar); + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # else - return perspectiveFovRH(fov, width, height, zNear, zFar); + return perspectiveLH_NO(fovy, aspect, zNear, zFar); # endif } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast<T>(0)); assert(height > static_cast<T>(0)); assert(fov > static_cast<T>(0)); - + T const rad = fov; T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? - tmat4x4<T, defaultp> Result(static_cast<T>(0)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); Result[0][0] = w; Result[1][1] = h; + Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast<T>(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zNear - zFar); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = - (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast<T>(0)); + assert(height > static_cast<T>(0)); + assert(fov > static_cast<T>(0)); + + T const rad = fov; + T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[2][3] = - static_cast<T>(1); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast<T>(0)); assert(height > static_cast<T>(0)); assert(fov > static_cast<T>(0)); - + T const rad = fov; T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? - tmat4x4<T, defaultp> Result(static_cast<T>(0)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); Result[0][0] = w; Result[1][1] = h; + Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast<T>(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zFar - zNear); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast<T>(0)); + assert(height > static_cast<T>(0)); + assert(fov > static_cast<T>(0)); + + T const rad = fov; + T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[2][3] = static_cast<T>(1); + Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return infinitePerspectiveLH(fovy, aspect, zNear); + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # else - return infinitePerspectiveRH(fovy, aspect, zNear); + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast<T>(2)) * zNear; T const left = -range * aspect; @@ -383,7 +584,7 @@ namespace glm T const bottom = -range; T const top = range; - tmat4x4<T, defaultp> Result(static_cast<T>(0)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); Result[2][2] = - static_cast<T>(1); @@ -392,8 +593,8 @@ namespace glm return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast<T>(2)) * zNear; T const left = -range * aspect; @@ -401,7 +602,7 @@ namespace glm T const bottom = -range; T const top = range; - tmat4x4<T, defaultp> Result(T(0)); + mat<4, 4, T, defaultp> Result(T(0)); Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); Result[2][2] = static_cast<T>(1); @@ -410,17 +611,27 @@ namespace glm return Result; } + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return infinitePerspectiveLH(fovy, aspect, zNear); +# else + return infinitePerspectiveRH(fovy, aspect, zNear); +# endif + } + // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) { - T const range = tan(fovy / static_cast<T>(2)) * zNear; + T const range = tan(fovy / static_cast<T>(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; - tmat4x4<T, defaultp> Result(static_cast<T>(0)); + mat<4, 4, T, defaultp> Result(static_cast<T>(0)); Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); Result[2][2] = ep - static_cast<T>(1); @@ -429,107 +640,124 @@ namespace glm return Result; } - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) { return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>()); } - template <typename T, typename U, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> project - ( - tvec3<T, P> const & obj, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport - ) + template<typename T, typename U, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { - tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1)); + vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1)); tmp = model * tmp; tmp = proj * tmp; tmp /= tmp.w; -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); - tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); -# else - tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); -# endif + tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); + tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); - return tvec3<T, P>(tmp); + return vec<3, T, Q>(tmp); } - template <typename T, typename U, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> unProject - ( - tvec3<T, P> const & win, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport - ) + template<typename T, typename U, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { - tmat4x4<T, P> Inverse = inverse(proj * model); + vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1)); + tmp = model * tmp; + tmp = proj * tmp; - tvec4<T, P> tmp = tvec4<T, P>(win, T(1)); - tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); - tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp /= tmp.w; + tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); + tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); + + return vec<3, T, Q>(tmp); + } + + template<typename T, typename U, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); - tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); + return projectZO(obj, model, proj, viewport); # else - tmp = tmp * static_cast<T>(2) - static_cast<T>(1); + return projectNO(obj, model, proj, viewport); # endif + } + + template<typename T, typename U, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + mat<4, 4, T, Q> Inverse = inverse(proj * model); + + vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); + tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); + + vec<4, T, Q> obj = Inverse * tmp; + obj /= obj.w; + + return vec<3, T, Q>(obj); + } + + template<typename T, typename U, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + mat<4, 4, T, Q> Inverse = inverse(proj * model); + + vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp = tmp * static_cast<T>(2) - static_cast<T>(1); - tvec4<T, P> obj = Inverse * tmp; + vec<4, T, Q> obj = Inverse * tmp; obj /= obj.w; - return tvec3<T, P>(obj); + return vec<3, T, Q>(obj); + } + + template<typename T, typename U, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return unProjectZO(win, model, proj, viewport); +# else + return unProjectNO(win, model, proj, viewport); +# endif } - template <typename T, precision P, typename U> - GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport) + template<typename T, qualifier Q, typename U> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport) { assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)); - tmat4x4<T, P> Result(static_cast<T>(1)); + mat<4, 4, T, Q> Result(static_cast<T>(1)); if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0))) return Result; // Error - tvec3<T, P> Temp( + vec<3, T, Q> Temp( (static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x, (static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y, static_cast<T>(0)); // Translate and scale the picked region to the entire window Result = translate(Result, Temp); - return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); + return scale(Result, vec<3, T, Q>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return lookAtLH(eye, center, up); -# else - return lookAtRH(eye, center, up); -# endif - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH - ( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up - ) - { - tvec3<T, P> const f(normalize(center - eye)); - tvec3<T, P> const s(normalize(cross(f, up))); - tvec3<T, P> const u(cross(s, f)); + vec<3, T, Q> const f(normalize(center - eye)); + vec<3, T, Q> const s(normalize(cross(f, up))); + vec<3, T, Q> const u(cross(s, f)); - tmat4x4<T, P> Result(1); + mat<4, 4, T, Q> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; @@ -545,19 +773,14 @@ namespace glm return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH - ( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up - ) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { - tvec3<T, P> const f(normalize(center - eye)); - tvec3<T, P> const s(normalize(cross(up, f))); - tvec3<T, P> const u(cross(f, s)); + vec<3, T, Q> const f(normalize(center - eye)); + vec<3, T, Q> const s(normalize(cross(up, f))); + vec<3, T, Q> const u(cross(f, s)); - tmat4x4<T, P> Result(1); + mat<4, 4, T, Q> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; @@ -572,4 +795,14 @@ namespace glm Result[3][2] = -dot(f, eye); return Result; } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return lookAtLH(eye, center, up); +# else + return lookAtRH(eye, center, up); +# endif + } }//namespace glm diff --git a/external/include/glm/gtc/noise.hpp b/external/include/glm/gtc/noise.hpp index aec4f18..7b1ca40 100644 --- a/external/include/glm/gtc/noise.hpp +++ b/external/include/glm/gtc/noise.hpp @@ -6,18 +6,19 @@ /// @defgroup gtc_noise GLM_GTC_noise /// @ingroup gtc /// -/// Defines 2D, 3D and 4D procedural noise functions -/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": -/// https://github.com/ashima/webgl-noise -/// Following Stefan Gustavson's paper "Simplex noise demystified": +/// Include <glm/gtc/noise.hpp> to use the features of this extension. +/// +/// Defines 2D, 3D and 4D procedural noise functions +/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +/// https://github.com/ashima/webgl-noise +/// Following Stefan Gustavson's paper "Simplex noise demystified": /// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf -/// <glm/gtc/noise.hpp> need to be included to use these functionalities. #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../detail/_noise.hpp" #include "../geometric.hpp" #include "../common.hpp" @@ -37,22 +38,22 @@ namespace glm /// Classic perlin noise. /// @see gtc_noise - template <typename T, precision P, template<typename, precision> class vecType> + template<length_t L, typename T, qualifier Q> GLM_FUNC_DECL T perlin( - vecType<T, P> const & p); - + vec<L, T, Q> const& p); + /// Periodic perlin noise. /// @see gtc_noise - template <typename T, precision P, template<typename, precision> class vecType> + template<length_t L, typename T, qualifier Q> GLM_FUNC_DECL T perlin( - vecType<T, P> const & p, - vecType<T, P> const & rep); + vec<L, T, Q> const& p, + vec<L, T, Q> const& rep); /// Simplex noise. /// @see gtc_noise - template <typename T, precision P, template<typename, precision> class vecType> + template<length_t L, typename T, qualifier Q> GLM_FUNC_DECL T simplex( - vecType<T, P> const & p); + vec<L, T, Q> const& p); /// @} }//namespace glm diff --git a/external/include/glm/gtc/noise.inl b/external/include/glm/gtc/noise.inl index 4f2731c..00a80ab 100644 --- a/external/include/glm/gtc/noise.inl +++ b/external/include/glm/gtc/noise.inl @@ -1,643 +1,643 @@ /// @ref gtc_noise /// @file glm/gtc/noise.inl /// -// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": -// https://github.com/ashima/webgl-noise -// Following Stefan Gustavson's paper "Simplex noise demystified": +// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +// https://github.com/ashima/webgl-noise +// Following Stefan Gustavson's paper "Simplex noise demystified": // http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf namespace glm{ namespace gtc { - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<T, P> grad4(T const & j, tvec4<T, P> const & ip) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, T, Q> grad4(T const& j, vec<4, T, Q> const& ip) { - tvec3<T, P> pXYZ = floor(fract(tvec3<T, P>(j) * tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1); - T pW = static_cast<T>(1.5) - dot(abs(pXYZ), tvec3<T, P>(1)); - tvec4<T, P> s = tvec4<T, P>(lessThan(tvec4<T, P>(pXYZ, pW), tvec4<T, P>(0.0))); - pXYZ = pXYZ + (tvec3<T, P>(s) * T(2) - T(1)) * s.w; - return tvec4<T, P>(pXYZ, pW); + vec<3, T, Q> pXYZ = floor(fract(vec<3, T, Q>(j) * vec<3, T, Q>(ip)) * T(7)) * ip[2] - T(1); + T pW = static_cast<T>(1.5) - dot(abs(pXYZ), vec<3, T, Q>(1)); + vec<4, T, Q> s = vec<4, T, Q>(lessThan(vec<4, T, Q>(pXYZ, pW), vec<4, T, Q>(0.0))); + pXYZ = pXYZ + (vec<3, T, Q>(s) * T(2) - T(1)) * s.w; + return vec<4, T, Q>(pXYZ, pW); } }//namespace gtc // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position) { - tvec4<T, P> Pi = glm::floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - tvec4<T, P> Pf = glm::fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation - tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); - tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); - tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); - tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); - - tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); - - tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1); - tvec4<T, P> gy = glm::abs(gx) - T(0.5); - tvec4<T, P> tx = glm::floor(gx + T(0.5)); + vec<4, T, Q> Pi = glm::floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + vec<4, T, Q> Pf = glm::fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation + vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z); + vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w); + vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z); + vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy); + + vec<4, T, Q> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1); + vec<4, T, Q> gy = glm::abs(gx) - T(0.5); + vec<4, T, Q> tx = glm::floor(gx + T(0.5)); gx = gx - tx; - tvec2<T, P> g00(gx.x, gy.x); - tvec2<T, P> g10(gx.y, gy.y); - tvec2<T, P> g01(gx.z, gy.z); - tvec2<T, P> g11(gx.w, gy.w); + vec<2, T, Q> g00(gx.x, gy.x); + vec<2, T, Q> g10(gx.y, gy.y); + vec<2, T, Q> g01(gx.z, gy.z); + vec<2, T, Q> g11(gx.w, gy.w); - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; - T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); - T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); - T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); - T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); + T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x)); + T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y)); + T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z)); + T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w)); - tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); - tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); + vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y)); + vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x); T n_xy = mix(n_x.x, n_x.y, fade_xy.y); return T(2.3) * n_xy; } // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position) { - tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing - tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 + vec<3, T, Q> Pi0 = floor(Position); // Integer part for indexing + vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 Pi0 = detail::mod289(Pi0); Pi1 = detail::mod289(Pi1); - tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy = tvec4<T, P>(tvec2<T, P>(Pi0.y), tvec2<T, P>(Pi1.y)); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - - tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0); - tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); + vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(vec<2, T, Q>(Pi0.y), vec<2, T, Q>(Pi1.y)); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 * T(1.0 / 7.0); + vec<4, T, Q> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); gx0 = fract(gx0); - tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); - tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0)); gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); - tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0); - tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); + vec<4, T, Q> gx1 = ixy1 * T(1.0 / 7.0); + vec<4, T, Q> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); gx1 = fract(gx1); - tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); - tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0)); gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); - tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); - tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); - tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); - tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); - tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); - tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); - tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); + vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w); - tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; - tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); T n111 = dot(g111, Pf1); - tvec3<T, P> fade_xyz = detail::fade(Pf0); - tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); - tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + vec<3, T, Q> fade_xyz = detail::fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return T(2.2) * n_xyz; } /* // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & P) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& P) { - tvec3<T, P> Pi0 = floor(P); // Integer part for indexing - tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 + vec<3, T, Q> Pi0 = floor(P); // Integer part for indexing + vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 Pi0 = mod(Pi0, T(289)); Pi1 = mod(Pi1, T(289)); - tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation - tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - - tvec4<T, P> ixy = permute(permute(ix) + iy); - tvec4<T, P> ixy0 = permute(ixy + iz0); - tvec4<T, P> ixy1 = permute(ixy + iz1); - - tvec4<T, P> gx0 = ixy0 / T(7); - tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); + vec<3, T, Q> Pf0 = fract(P); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = permute(permute(ix) + iy); + vec<4, T, Q> ixy0 = permute(ixy + iz0); + vec<4, T, Q> ixy1 = permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 / T(7); + vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5); gx0 = fract(gx0); - tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); - tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0)); gx0 -= sz0 * (step(0.0, gx0) - T(0.5)); gy0 -= sz0 * (step(0.0, gy0) - T(0.5)); - tvec4<T, P> gx1 = ixy1 / T(7); - tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); + vec<4, T, Q> gx1 = ixy1 / T(7); + vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5); gx1 = fract(gx1); - tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); - tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0)); gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); - tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); - tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); - tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); - tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); - tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); - tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); - tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); + vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w); - tvec4<T, P> norm0 = taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + vec<4, T, Q> norm0 = taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; - tvec4<T, P> norm1 = taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + vec<4, T, Q> norm1 = taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); T n111 = dot(g111, Pf1); - tvec3<T, P> fade_xyz = fade(Pf0); - tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); - tvec2<T, P> n_yz = mix( - tvec2<T, P>(n_z.x, n_z.y), - tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + vec<3, T, Q> fade_xyz = fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix( + vec<2, T, Q>(n_z.x, n_z.y), + vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return T(2.2) * n_xyz; } */ // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position) { - tvec4<T, P> Pi0 = floor(Position); // Integer part for indexing - tvec4<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 - Pi0 = mod(Pi0, tvec4<T, P>(289)); - Pi1 = mod(Pi1, tvec4<T, P>(289)); - tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - tvec4<T, P> iw0(Pi0.w); - tvec4<T, P> iw1(Pi1.w); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); - tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); - tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); - tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); - - tvec4<T, P> gx00 = ixy00 / T(7); - tvec4<T, P> gy00 = floor(gx00) / T(7); - tvec4<T, P> gz00 = floor(gy00) / T(6); + vec<4, T, Q> Pi0 = floor(Position); // Integer part for indexing + vec<4, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = mod(Pi0, vec<4, T, Q>(289)); + Pi1 = mod(Pi1, vec<4, T, Q>(289)); + vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + vec<4, T, Q> iw0(Pi0.w); + vec<4, T, Q> iw1(Pi1.w); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0); + vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1); + vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0); + vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1); + + vec<4, T, Q> gx00 = ixy00 / T(7); + vec<4, T, Q> gy00 = floor(gx00) / T(7); + vec<4, T, Q> gz00 = floor(gy00) / T(6); gx00 = fract(gx00) - T(0.5); gy00 = fract(gy00) - T(0.5); gz00 = fract(gz00) - T(0.5); - tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); - tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0.0)); + vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0.0)); gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); - tvec4<T, P> gx01 = ixy01 / T(7); - tvec4<T, P> gy01 = floor(gx01) / T(7); - tvec4<T, P> gz01 = floor(gy01) / T(6); + vec<4, T, Q> gx01 = ixy01 / T(7); + vec<4, T, Q> gy01 = floor(gx01) / T(7); + vec<4, T, Q> gz01 = floor(gy01) / T(6); gx01 = fract(gx01) - T(0.5); gy01 = fract(gy01) - T(0.5); gz01 = fract(gz01) - T(0.5); - tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); - tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); + vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0)); gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); - tvec4<T, P> gx10 = ixy10 / T(7); - tvec4<T, P> gy10 = floor(gx10) / T(7); - tvec4<T, P> gz10 = floor(gy10) / T(6); + vec<4, T, Q> gx10 = ixy10 / T(7); + vec<4, T, Q> gy10 = floor(gx10) / T(7); + vec<4, T, Q> gz10 = floor(gy10) / T(6); gx10 = fract(gx10) - T(0.5); gy10 = fract(gy10) - T(0.5); gz10 = fract(gz10) - T(0.5); - tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); - tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0)); + vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0)); gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); - tvec4<T, P> gx11 = ixy11 / T(7); - tvec4<T, P> gy11 = floor(gx11) / T(7); - tvec4<T, P> gz11 = floor(gy11) / T(6); + vec<4, T, Q> gx11 = ixy11 / T(7); + vec<4, T, Q> gy11 = floor(gx11) / T(7); + vec<4, T, Q> gz11 = floor(gy11) / T(6); gx11 = fract(gx11) - T(0.5); gy11 = fract(gy11) - T(0.5); gz11 = fract(gz11) - T(0.5); - tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); - tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(0.0)); + vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(0.0)); gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); - tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); - tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); - tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); - tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); - tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); - tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); - tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); - tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); - tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); - tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); - tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); - tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); - tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); - tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); - tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); - tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); - - tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); g0000 *= norm00.x; g0100 *= norm00.y; g1000 *= norm00.z; g1100 *= norm00.w; - tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); g0001 *= norm01.x; g0101 *= norm01.y; g1001 *= norm01.z; g1101 *= norm01.w; - tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); g0010 *= norm10.x; g0110 *= norm10.y; g1010 *= norm10.z; g1110 *= norm10.w; - tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); g0011 *= norm11.x; g0111 *= norm11.y; g1011 *= norm11.z; g1111 *= norm11.w; T n0000 = dot(g0000, Pf0); - T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); - T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); - T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); - T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); - T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); - T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); - T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); - T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); - T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); - T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); - T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); - T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); - T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); - T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); T n1111 = dot(g1111, Pf1); - tvec4<T, P> fade_xyzw = detail::fade(Pf0); - tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); - tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); - tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); - tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); + vec<4, T, Q> fade_xyzw = detail::fade(Pf0); + vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y); T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); return T(2.2) * n_xyzw; } // Classic Perlin noise, periodic variant - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position, tvec2<T, P> const & rep) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position, vec<2, T, Q> const& rep) { - tvec4<T, P> Pi = floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - tvec4<T, P> Pf = fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - Pi = mod(Pi, tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period - Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation - tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); - tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); - tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); - tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); - - tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); - - tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1); - tvec4<T, P> gy = abs(gx) - T(0.5); - tvec4<T, P> tx = floor(gx + T(0.5)); + vec<4, T, Q> Pi = floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + vec<4, T, Q> Pf = fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, vec<4, T, Q>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period + Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation + vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z); + vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w); + vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z); + vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy); + + vec<4, T, Q> gx = static_cast<T>(2) * fract(i / T(41)) - T(1); + vec<4, T, Q> gy = abs(gx) - T(0.5); + vec<4, T, Q> tx = floor(gx + T(0.5)); gx = gx - tx; - tvec2<T, P> g00(gx.x, gy.x); - tvec2<T, P> g10(gx.y, gy.y); - tvec2<T, P> g01(gx.z, gy.z); - tvec2<T, P> g11(gx.w, gy.w); + vec<2, T, Q> g00(gx.x, gy.x); + vec<2, T, Q> g10(gx.y, gy.y); + vec<2, T, Q> g01(gx.z, gy.z); + vec<2, T, Q> g11(gx.w, gy.w); - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; - T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); - T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); - T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); - T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); + T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x)); + T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y)); + T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z)); + T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w)); - tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); - tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); + vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y)); + vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x); T n_xy = mix(n_x.x, n_x.y, fade_xy.y); return T(2.3) * n_xy; } // Classic Perlin noise, periodic variant - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position, tvec3<T, P> const & rep) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position, vec<3, T, Q> const& rep) { - tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period - tvec3<T, P> Pi1 = mod(Pi0 + tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period - Pi0 = mod(Pi0, tvec3<T, P>(289)); - Pi1 = mod(Pi1, tvec3<T, P>(289)); - tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec3<T, P> Pf1 = Pf0 - tvec3<T, P>(T(1)); // Fractional part - 1.0 - tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - - tvec4<T, P> gx0 = ixy0 / T(7); - tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); + vec<3, T, Q> Pi0 = mod(floor(Position), rep); // Integer part, modulo period + vec<3, T, Q> Pi1 = mod(Pi0 + vec<3, T, Q>(T(1)), rep); // Integer part + 1, mod period + Pi0 = mod(Pi0, vec<3, T, Q>(289)); + Pi1 = mod(Pi1, vec<3, T, Q>(289)); + vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - vec<3, T, Q>(T(1)); // Fractional part - 1.0 + vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 / T(7); + vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5); gx0 = fract(gx0); - tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); - tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0)); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0)); gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); - tvec4<T, P> gx1 = ixy1 / T(7); - tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); + vec<4, T, Q> gx1 = ixy1 / T(7); + vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5); gx1 = fract(gx1); - tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); - tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(T(0))); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(T(0))); gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - tvec3<T, P> g000 = tvec3<T, P>(gx0.x, gy0.x, gz0.x); - tvec3<T, P> g100 = tvec3<T, P>(gx0.y, gy0.y, gz0.y); - tvec3<T, P> g010 = tvec3<T, P>(gx0.z, gy0.z, gz0.z); - tvec3<T, P> g110 = tvec3<T, P>(gx0.w, gy0.w, gz0.w); - tvec3<T, P> g001 = tvec3<T, P>(gx1.x, gy1.x, gz1.x); - tvec3<T, P> g101 = tvec3<T, P>(gx1.y, gy1.y, gz1.y); - tvec3<T, P> g011 = tvec3<T, P>(gx1.z, gy1.z, gz1.z); - tvec3<T, P> g111 = tvec3<T, P>(gx1.w, gy1.w, gz1.w); + vec<3, T, Q> g000 = vec<3, T, Q>(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100 = vec<3, T, Q>(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010 = vec<3, T, Q>(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110 = vec<3, T, Q>(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001 = vec<3, T, Q>(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101 = vec<3, T, Q>(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011 = vec<3, T, Q>(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111 = vec<3, T, Q>(gx1.w, gy1.w, gz1.w); - tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; - tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); T n111 = dot(g111, Pf1); - tvec3<T, P> fade_xyz = detail::fade(Pf0); - tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); - tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); + vec<3, T, Q> fade_xyz = detail::fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return T(2.2) * n_xyz; } // Classic Perlin noise, periodic version - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position, tvec4<T, P> const & rep) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position, vec<4, T, Q> const& rep) { - tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep - tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep - tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - tvec4<T, P> iw0(Pi0.w); - tvec4<T, P> iw1(Pi1.w); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); - tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); - tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); - tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); - - tvec4<T, P> gx00 = ixy00 / T(7); - tvec4<T, P> gy00 = floor(gx00) / T(7); - tvec4<T, P> gz00 = floor(gy00) / T(6); + vec<4, T, Q> Pi0 = mod(floor(Position), rep); // Integer part modulo rep + vec<4, T, Q> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep + vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + vec<4, T, Q> iw0(Pi0.w); + vec<4, T, Q> iw1(Pi1.w); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0); + vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1); + vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0); + vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1); + + vec<4, T, Q> gx00 = ixy00 / T(7); + vec<4, T, Q> gy00 = floor(gx00) / T(7); + vec<4, T, Q> gz00 = floor(gy00) / T(6); gx00 = fract(gx00) - T(0.5); gy00 = fract(gy00) - T(0.5); gz00 = fract(gz00) - T(0.5); - tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); - tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0)); + vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0)); gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); - tvec4<T, P> gx01 = ixy01 / T(7); - tvec4<T, P> gy01 = floor(gx01) / T(7); - tvec4<T, P> gz01 = floor(gy01) / T(6); + vec<4, T, Q> gx01 = ixy01 / T(7); + vec<4, T, Q> gy01 = floor(gx01) / T(7); + vec<4, T, Q> gz01 = floor(gy01) / T(6); gx01 = fract(gx01) - T(0.5); gy01 = fract(gy01) - T(0.5); gz01 = fract(gz01) - T(0.5); - tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); - tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); + vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0)); gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); - tvec4<T, P> gx10 = ixy10 / T(7); - tvec4<T, P> gy10 = floor(gx10) / T(7); - tvec4<T, P> gz10 = floor(gy10) / T(6); + vec<4, T, Q> gx10 = ixy10 / T(7); + vec<4, T, Q> gy10 = floor(gx10) / T(7); + vec<4, T, Q> gz10 = floor(gy10) / T(6); gx10 = fract(gx10) - T(0.5); gy10 = fract(gy10) - T(0.5); gz10 = fract(gz10) - T(0.5); - tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); - tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0.0)); + vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0.0)); gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); - tvec4<T, P> gx11 = ixy11 / T(7); - tvec4<T, P> gy11 = floor(gx11) / T(7); - tvec4<T, P> gz11 = floor(gy11) / T(6); + vec<4, T, Q> gx11 = ixy11 / T(7); + vec<4, T, Q> gy11 = floor(gx11) / T(7); + vec<4, T, Q> gz11 = floor(gy11) / T(6); gx11 = fract(gx11) - T(0.5); gy11 = fract(gy11) - T(0.5); gz11 = fract(gz11) - T(0.5); - tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); - tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(T(0))); + vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(T(0))); gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); - tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); - tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); - tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); - tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); - tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); - tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); - tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); - tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); - tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); - tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); - tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); - tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); - tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); - tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); - tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); - tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); - - tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); g0000 *= norm00.x; g0100 *= norm00.y; g1000 *= norm00.z; g1100 *= norm00.w; - tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); g0001 *= norm01.x; g0101 *= norm01.y; g1001 *= norm01.z; g1101 *= norm01.w; - tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); g0010 *= norm10.x; g0110 *= norm10.y; g1010 *= norm10.z; g1110 *= norm10.w; - tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); g0011 *= norm11.x; g0111 *= norm11.y; g1011 *= norm11.z; g1111 *= norm11.w; T n0000 = dot(g0000, Pf0); - T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); - T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); - T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); - T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); - T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); - T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); - T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); - T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); - T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); - T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); - T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); - T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); - T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); - T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); T n1111 = dot(g1111, Pf1); - tvec4<T, P> fade_xyzw = detail::fade(Pf0); - tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); - tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); - tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); - tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); + vec<4, T, Q> fade_xyzw = detail::fade(Pf0); + vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y); T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); return T(2.2) * n_xyzw; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T simplex(glm::tvec2<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T simplex(glm::vec<2, T, Q> const& v) { - tvec4<T, P> const C = tvec4<T, P>( + vec<4, T, Q> const C = vec<4, T, Q>( T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0 T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0) T(-0.577350269189626), // -1.0 + 2.0 * C.x T( 0.024390243902439)); // 1.0 / 41.0 // First corner - tvec2<T, P> i = floor(v + dot(v, tvec2<T, P>(C[1]))); - tvec2<T, P> x0 = v - i + dot(i, tvec2<T, P>(C[0])); + vec<2, T, Q> i = floor(v + dot(v, vec<2, T, Q>(C[1]))); + vec<2, T, Q> x0 = v - i + dot(i, vec<2, T, Q>(C[0])); // Other corners //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 //i1.y = 1.0 - i1.x; - tvec2<T, P> i1 = (x0.x > x0.y) ? tvec2<T, P>(1, 0) : tvec2<T, P>(0, 1); + vec<2, T, Q> i1 = (x0.x > x0.y) ? vec<2, T, Q>(1, 0) : vec<2, T, Q>(0, 1); // x0 = x0 - 0.0 + 0.0 * C.xx ; // x1 = x0 - i1 + 1.0 * C.xx ; // x2 = x0 - 1.0 + 2.0 * C.xx ; - tvec4<T, P> x12 = tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + tvec4<T, P>(C.x, C.x, C.z, C.z); - x12 = tvec4<T, P>(tvec2<T, P>(x12) - i1, x12.z, x12.w); + vec<4, T, Q> x12 = vec<4, T, Q>(x0.x, x0.y, x0.x, x0.y) + vec<4, T, Q>(C.x, C.x, C.z, C.z); + x12 = vec<4, T, Q>(vec<2, T, Q>(x12) - i1, x12.z, x12.w); // Permutations - i = mod(i, tvec2<T, P>(289)); // Avoid truncation effects in permutation - tvec3<T, P> p = detail::permute( - detail::permute(i.y + tvec3<T, P>(T(0), i1.y, T(1))) - + i.x + tvec3<T, P>(T(0), i1.x, T(1))); + i = mod(i, vec<2, T, Q>(289)); // Avoid truncation effects in permutation + vec<3, T, Q> p = detail::permute( + detail::permute(i.y + vec<3, T, Q>(T(0), i1.y, T(1))) + + i.x + vec<3, T, Q>(T(0), i1.x, T(1))); - tvec3<T, P> m = max(tvec3<T, P>(0.5) - tvec3<T, P>( + vec<3, T, Q> m = max(vec<3, T, Q>(0.5) - vec<3, T, Q>( dot(x0, x0), - dot(tvec2<T, P>(x12.x, x12.y), tvec2<T, P>(x12.x, x12.y)), - dot(tvec2<T, P>(x12.z, x12.w), tvec2<T, P>(x12.z, x12.w))), tvec3<T, P>(0)); + dot(vec<2, T, Q>(x12.x, x12.y), vec<2, T, Q>(x12.x, x12.y)), + dot(vec<2, T, Q>(x12.z, x12.w), vec<2, T, Q>(x12.z, x12.w))), vec<3, T, Q>(0)); m = m * m ; m = m * m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) - tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1); - tvec3<T, P> h = abs(x) - T(0.5); - tvec3<T, P> ox = floor(x + T(0.5)); - tvec3<T, P> a0 = x - ox; + vec<3, T, Q> x = static_cast<T>(2) * fract(p * C.w) - T(1); + vec<3, T, Q> h = abs(x) - T(0.5); + vec<3, T, Q> ox = floor(x + T(0.5)); + vec<3, T, Q> a0 = x - ox; // Normalise gradients implicitly by scaling m // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h); // Compute final noise value at P - tvec3<T, P> g; + vec<3, T, Q> g; g.x = a0.x * x0.x + h.x * x0.y; //g.yz = a0.yz * x12.xz + h.yz * x12.yw; g.y = a0.y * x12.x + h.y * x12.y; @@ -645,85 +645,85 @@ namespace gtc return T(130) * dot(m, g); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T simplex(tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T simplex(vec<3, T, Q> const& v) { - tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0); - tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0); + vec<2, T, Q> const C(1.0 / 6.0, 1.0 / 3.0); + vec<4, T, Q> const D(0.0, 0.5, 1.0, 2.0); // First corner - tvec3<T, P> i(floor(v + dot(v, tvec3<T, P>(C.y)))); - tvec3<T, P> x0(v - i + dot(i, tvec3<T, P>(C.x))); + vec<3, T, Q> i(floor(v + dot(v, vec<3, T, Q>(C.y)))); + vec<3, T, Q> x0(v - i + dot(i, vec<3, T, Q>(C.x))); // Other corners - tvec3<T, P> g(step(tvec3<T, P>(x0.y, x0.z, x0.x), x0)); - tvec3<T, P> l(T(1) - g); - tvec3<T, P> i1(min(g, tvec3<T, P>(l.z, l.x, l.y))); - tvec3<T, P> i2(max(g, tvec3<T, P>(l.z, l.x, l.y))); + vec<3, T, Q> g(step(vec<3, T, Q>(x0.y, x0.z, x0.x), x0)); + vec<3, T, Q> l(T(1) - g); + vec<3, T, Q> i1(min(g, vec<3, T, Q>(l.z, l.x, l.y))); + vec<3, T, Q> i2(max(g, vec<3, T, Q>(l.z, l.x, l.y))); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; - tvec3<T, P> x1(x0 - i1 + C.x); - tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y - tvec3<T, P> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y + vec<3, T, Q> x1(x0 - i1 + C.x); + vec<3, T, Q> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y + vec<3, T, Q> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = detail::mod289(i); - tvec4<T, P> p(detail::permute(detail::permute(detail::permute( - i.z + tvec4<T, P>(T(0), i1.z, i2.z, T(1))) + - i.y + tvec4<T, P>(T(0), i1.y, i2.y, T(1))) + - i.x + tvec4<T, P>(T(0), i1.x, i2.x, T(1)))); + vec<4, T, Q> p(detail::permute(detail::permute(detail::permute( + i.z + vec<4, T, Q>(T(0), i1.z, i2.z, T(1))) + + i.y + vec<4, T, Q>(T(0), i1.y, i2.y, T(1))) + + i.x + vec<4, T, Q>(T(0), i1.x, i2.x, T(1)))); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) T n_ = static_cast<T>(0.142857142857); // 1.0/7.0 - tvec3<T, P> ns(n_ * tvec3<T, P>(D.w, D.y, D.z) - tvec3<T, P>(D.x, D.z, D.x)); + vec<3, T, Q> ns(n_ * vec<3, T, Q>(D.w, D.y, D.z) - vec<3, T, Q>(D.x, D.z, D.x)); - tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) + vec<4, T, Q> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) - tvec4<T, P> x_(floor(j * ns.z)); - tvec4<T, P> y_(floor(j - T(7) * x_)); // mod(j,N) + vec<4, T, Q> x_(floor(j * ns.z)); + vec<4, T, Q> y_(floor(j - T(7) * x_)); // mod(j,N) - tvec4<T, P> x(x_ * ns.x + ns.y); - tvec4<T, P> y(y_ * ns.x + ns.y); - tvec4<T, P> h(T(1) - abs(x) - abs(y)); + vec<4, T, Q> x(x_ * ns.x + ns.y); + vec<4, T, Q> y(y_ * ns.x + ns.y); + vec<4, T, Q> h(T(1) - abs(x) - abs(y)); - tvec4<T, P> b0(x.x, x.y, y.x, y.y); - tvec4<T, P> b1(x.z, x.w, y.z, y.w); + vec<4, T, Q> b0(x.x, x.y, y.x, y.y); + vec<4, T, Q> b1(x.z, x.w, y.z, y.w); // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; - tvec4<T, P> s0(floor(b0) * T(2) + T(1)); - tvec4<T, P> s1(floor(b1) * T(2) + T(1)); - tvec4<T, P> sh(-step(h, tvec4<T, P>(0.0))); + vec<4, T, Q> s0(floor(b0) * T(2) + T(1)); + vec<4, T, Q> s1(floor(b1) * T(2) + T(1)); + vec<4, T, Q> sh(-step(h, vec<4, T, Q>(0.0))); - tvec4<T, P> a0 = tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * tvec4<T, P>(sh.x, sh.x, sh.y, sh.y); - tvec4<T, P> a1 = tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * tvec4<T, P>(sh.z, sh.z, sh.w, sh.w); + vec<4, T, Q> a0 = vec<4, T, Q>(b0.x, b0.z, b0.y, b0.w) + vec<4, T, Q>(s0.x, s0.z, s0.y, s0.w) * vec<4, T, Q>(sh.x, sh.x, sh.y, sh.y); + vec<4, T, Q> a1 = vec<4, T, Q>(b1.x, b1.z, b1.y, b1.w) + vec<4, T, Q>(s1.x, s1.z, s1.y, s1.w) * vec<4, T, Q>(sh.z, sh.z, sh.w, sh.w); - tvec3<T, P> p0(a0.x, a0.y, h.x); - tvec3<T, P> p1(a0.z, a0.w, h.y); - tvec3<T, P> p2(a1.x, a1.y, h.z); - tvec3<T, P> p3(a1.z, a1.w, h.w); + vec<3, T, Q> p0(a0.x, a0.y, h.x); + vec<3, T, Q> p1(a0.z, a0.w, h.y); + vec<3, T, Q> p2(a1.x, a1.y, h.z); + vec<3, T, Q> p3(a1.z, a1.w, h.w); // Normalise gradients - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value - tvec4<T, P> m = max(T(0.6) - tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4<T, P>(0)); + vec<4, T, Q> m = max(T(0.6) - vec<4, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), vec<4, T, Q>(0)); m = m * m; - return T(42) * dot(m * m, tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); + return T(42) * dot(m * m, vec<4, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T simplex(tvec4<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T simplex(vec<4, T, Q> const& v) { - tvec4<T, P> const C( + vec<4, T, Q> const C( 0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 @@ -733,63 +733,63 @@ namespace gtc T const F4 = static_cast<T>(0.309016994374947451); // First corner - tvec4<T, P> i = floor(v + dot(v, vec4(F4))); - tvec4<T, P> x0 = v - i + dot(i, vec4(C.x)); + vec<4, T, Q> i = floor(v + dot(v, vec4(F4))); + vec<4, T, Q> x0 = v - i + dot(i, vec4(C.x)); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) - tvec4<T, P> i0; - tvec3<T, P> isX = step(tvec3<T, P>(x0.y, x0.z, x0.w), tvec3<T, P>(x0.x)); - tvec3<T, P> isYZ = step(tvec3<T, P>(x0.z, x0.w, x0.w), tvec3<T, P>(x0.y, x0.y, x0.z)); + vec<4, T, Q> i0; + vec<3, T, Q> isX = step(vec<3, T, Q>(x0.y, x0.z, x0.w), vec<3, T, Q>(x0.x)); + vec<3, T, Q> isYZ = step(vec<3, T, Q>(x0.z, x0.w, x0.w), vec<3, T, Q>(x0.y, x0.y, x0.z)); // i0.x = dot(isX, vec3(1.0)); //i0.x = isX.x + isX.y + isX.z; //i0.yzw = static_cast<T>(1) - isX; - i0 = tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX); + i0 = vec<4, T, Q>(isX.x + isX.y + isX.z, T(1) - isX); // i0.y += dot(isYZ.xy, vec2(1.0)); i0.y += isYZ.x + isYZ.y; - //i0.zw += 1.0 - tvec2<T, P>(isYZ.x, isYZ.y); + //i0.zw += 1.0 - vec<2, T, Q>(isYZ.x, isYZ.y); i0.z += static_cast<T>(1) - isYZ.x; i0.w += static_cast<T>(1) - isYZ.y; i0.z += isYZ.z; i0.w += static_cast<T>(1) - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel - tvec4<T, P> i3 = clamp(i0, T(0), T(1)); - tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1)); - tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1)); + vec<4, T, Q> i3 = clamp(i0, T(0), T(1)); + vec<4, T, Q> i2 = clamp(i0 - T(1), T(0), T(1)); + vec<4, T, Q> i1 = clamp(i0 - T(2), T(0), T(1)); // x0 = x0 - 0.0 + 0.0 * C.xxxx // x1 = x0 - i1 + 0.0 * C.xxxx // x2 = x0 - i2 + 0.0 * C.xxxx // x3 = x0 - i3 + 0.0 * C.xxxx // x4 = x0 - 1.0 + 4.0 * C.xxxx - tvec4<T, P> x1 = x0 - i1 + C.x; - tvec4<T, P> x2 = x0 - i2 + C.y; - tvec4<T, P> x3 = x0 - i3 + C.z; - tvec4<T, P> x4 = x0 + C.w; + vec<4, T, Q> x1 = x0 - i1 + C.x; + vec<4, T, Q> x2 = x0 - i2 + C.y; + vec<4, T, Q> x3 = x0 - i3 + C.z; + vec<4, T, Q> x4 = x0 + C.w; // Permutations - i = mod(i, tvec4<T, P>(289)); + i = mod(i, vec<4, T, Q>(289)); T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x); - tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute( - i.w + tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) + - i.z + tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) + - i.y + tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) + - i.x + tvec4<T, P>(i1.x, i2.x, i3.x, T(1))); + vec<4, T, Q> j1 = detail::permute(detail::permute(detail::permute(detail::permute( + i.w + vec<4, T, Q>(i1.w, i2.w, i3.w, T(1))) + + i.z + vec<4, T, Q>(i1.z, i2.z, i3.z, T(1))) + + i.y + vec<4, T, Q>(i1.y, i2.y, i3.y, T(1))) + + i.x + vec<4, T, Q>(i1.x, i2.x, i3.x, T(1))); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. - tvec4<T, P> ip = tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); + vec<4, T, Q> ip = vec<4, T, Q>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); - tvec4<T, P> p0 = gtc::grad4(j0, ip); - tvec4<T, P> p1 = gtc::grad4(j1.x, ip); - tvec4<T, P> p2 = gtc::grad4(j1.y, ip); - tvec4<T, P> p3 = gtc::grad4(j1.z, ip); - tvec4<T, P> p4 = gtc::grad4(j1.w, ip); + vec<4, T, Q> p0 = gtc::grad4(j0, ip); + vec<4, T, Q> p1 = gtc::grad4(j1.x, ip); + vec<4, T, Q> p2 = gtc::grad4(j1.y, ip); + vec<4, T, Q> p3 = gtc::grad4(j1.z, ip); + vec<4, T, Q> p4 = gtc::grad4(j1.w, ip); // Normalise gradients - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; @@ -797,12 +797,12 @@ namespace gtc p4 *= detail::taylorInvSqrt(dot(p4, p4)); // Mix contributions from the five corners - tvec3<T, P> m0 = max(T(0.6) - tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3<T, P>(0)); - tvec2<T, P> m1 = max(T(0.6) - tvec2<T, P>(dot(x3, x3), dot(x4, x4) ), tvec2<T, P>(0)); + vec<3, T, Q> m0 = max(T(0.6) - vec<3, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), vec<3, T, Q>(0)); + vec<2, T, Q> m1 = max(T(0.6) - vec<2, T, Q>(dot(x3, x3), dot(x4, x4) ), vec<2, T, Q>(0)); m0 = m0 * m0; m1 = m1 * m1; - return T(49) * - (dot(m0 * m0, tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + - dot(m1 * m1, tvec2<T, P>(dot(p3, x3), dot(p4, x4)))); + return T(49) * + (dot(m0 * m0, vec<3, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + + dot(m1 * m1, vec<2, T, Q>(dot(p3, x3), dot(p4, x4)))); } }//namespace glm diff --git a/external/include/glm/gtc/packing.hpp b/external/include/glm/gtc/packing.hpp index 1389d95..96070c2 100644 --- a/external/include/glm/gtc/packing.hpp +++ b/external/include/glm/gtc/packing.hpp @@ -6,10 +6,10 @@ /// @defgroup gtc_packing GLM_GTC_packing /// @ingroup gtc /// -/// @brief This extension provides a set of function to convert vertors to packed -/// formats. +/// Include <glm/gtc/packing.hpp> to use the features of this extension. /// -/// <glm/gtc/packing.hpp> need to be included to use these features. +/// This extension provides a set of function to convert vertors to packed +/// formats. #pragma once @@ -32,17 +32,17 @@ namespace glm /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0) /// /// @see gtc_packing - /// @see uint16 packUnorm2x8(vec2 const & v) - /// @see uint32 packUnorm4x8(vec4 const & v) + /// @see uint16 packUnorm2x8(vec2 const& v) + /// @see uint32 packUnorm4x8(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL uint8 packUnorm1x8(float v); /// Convert a single 8-bit integer to a normalized floating-point value. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackUnorm4x8: f / 255.0 - /// + /// /// @see gtc_packing /// @see vec2 unpackUnorm2x8(uint16 p) /// @see vec4 unpackUnorm4x8(uint32 p) @@ -60,28 +60,28 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint8 packUnorm1x8(float const & v) - /// @see uint32 packUnorm4x8(vec4 const & v) + /// @see uint8 packUnorm1x8(float const& v) + /// @see uint32 packUnorm4x8(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v); + GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const& v); - /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackUnorm4x8: f / 255.0 - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackUnorm1x8(uint8 v) /// @see vec4 unpackUnorm4x8(uint32 p) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p); - + /// First, converts the normalized floating-point value v into 8-bit integer value. /// Then, the results are packed into the returned 8-bit unsigned integer. /// @@ -89,25 +89,25 @@ namespace glm /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0) /// /// @see gtc_packing - /// @see uint16 packSnorm2x8(vec2 const & v) - /// @see uint32 packSnorm4x8(vec4 const & v) + /// @see uint16 packSnorm2x8(vec2 const& v) + /// @see uint32 packSnorm4x8(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL uint8 packSnorm1x8(float s); - /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. + /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm1x8: clamp(f / 127.0, -1, +1) - /// + /// /// @see gtc_packing /// @see vec2 unpackSnorm2x8(uint16 p) /// @see vec4 unpackSnorm4x8(uint32 p) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL float unpackSnorm1x8(uint8 p); - + /// First, converts each component of the normalized floating-point value v into 8-bit integer values. /// Then, the results are packed into the returned 16-bit unsigned integer. /// @@ -118,28 +118,28 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint8 packSnorm1x8(float const & v) - /// @see uint32 packSnorm4x8(vec4 const & v) + /// @see uint8 packSnorm1x8(float const& v) + /// @see uint32 packSnorm4x8(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v); + GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const& v); - /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm2x8: clamp(f / 127.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackSnorm1x8(uint8 p) /// @see vec4 unpackSnorm4x8(uint32 p) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p); - + /// First, converts the normalized floating-point value v into a 16-bit integer value. /// Then, the results are packed into the returned 16-bit unsigned integer. /// @@ -147,18 +147,18 @@ namespace glm /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0) /// /// @see gtc_packing - /// @see uint16 packSnorm1x16(float const & v) - /// @see uint64 packSnorm4x16(vec4 const & v) + /// @see uint16 packSnorm1x16(float const& v) + /// @see uint64 packSnorm4x16(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL uint16 packUnorm1x16(float v); - /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. + /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnorm1x16: f / 65535.0 - /// + /// unpackUnorm1x16: f / 65535.0 + /// /// @see gtc_packing /// @see vec2 unpackUnorm2x16(uint32 p) /// @see vec4 unpackUnorm4x16(uint64 p) @@ -176,21 +176,21 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint16 packUnorm1x16(float const & v) - /// @see uint32 packUnorm2x16(vec2 const & v) + /// @see uint16 packUnorm1x16(float const& v) + /// @see uint32 packUnorm2x16(vec2 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v); + GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const& v); - /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnormx4x16: f / 65535.0 - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// unpackUnormx4x16: f / 65535.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackUnorm1x16(uint16 p) /// @see vec2 unpackUnorm2x16(uint32 p) @@ -205,18 +205,18 @@ namespace glm /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0) /// /// @see gtc_packing - /// @see uint32 packSnorm2x16(vec2 const & v) - /// @see uint64 packSnorm4x16(vec4 const & v) + /// @see uint32 packSnorm2x16(vec2 const& v) + /// @see uint64 packSnorm4x16(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL uint16 packSnorm1x16(float v); - /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. + /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned scalar. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1) - /// + /// /// @see gtc_packing /// @see vec2 unpackSnorm2x16(uint32 p) /// @see vec4 unpackSnorm4x16(uint64 p) @@ -234,122 +234,122 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint16 packSnorm1x16(float const & v) - /// @see uint32 packSnorm2x16(vec2 const & v) + /// @see uint16 packSnorm1x16(float const& v) + /// @see uint32 packSnorm2x16(vec2 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v); + GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const& v); - /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackSnorm1x16(uint16 p) /// @see vec2 unpackSnorm2x16(uint32 p) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p); - + /// Returns an unsigned integer obtained by converting the components of a floating-point scalar /// to the 16-bit floating-point representation found in the OpenGL Specification, /// and then packing this 16-bit value into a 16-bit unsigned integer. /// /// @see gtc_packing - /// @see uint32 packHalf2x16(vec2 const & v) - /// @see uint64 packHalf4x16(vec4 const & v) + /// @see uint32 packHalf2x16(vec2 const& v) + /// @see uint64 packHalf4x16(vec4 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL uint16 packHalf1x16(float v); - + /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value, /// interpreted as a 16-bit floating-point number according to the OpenGL Specification, /// and converting it to 32-bit floating-point values. /// /// @see gtc_packing - /// @see vec2 unpackHalf2x16(uint32 const & v) - /// @see vec4 unpackHalf4x16(uint64 const & v) + /// @see vec2 unpackHalf2x16(uint32 const& v) + /// @see vec4 unpackHalf4x16(uint64 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL float unpackHalf1x16(uint16 v); - /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector - /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification, /// and then packing these four 16-bit values into a 64-bit unsigned integer. - /// The first vector component specifies the 16 least-significant bits of the result; + /// The first vector component specifies the 16 least-significant bits of the result; /// the forth component specifies the 16 most-significant bits. - /// + /// /// @see gtc_packing - /// @see uint16 packHalf1x16(float const & v) - /// @see uint32 packHalf2x16(vec2 const & v) + /// @see uint16 packHalf1x16(float const& v) + /// @see uint32 packHalf2x16(vec2 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v); - + GLM_FUNC_DECL uint64 packHalf4x16(vec4 const& v); + /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values, - /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, + /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, /// and converting them to 32-bit floating-point values. - /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// The first component of the vector is obtained from the 16 least-significant bits of v; /// the forth component is obtained from the 16 most-significant bits of v. - /// + /// /// @see gtc_packing - /// @see float unpackHalf1x16(uint16 const & v) - /// @see vec2 unpackHalf2x16(uint32 const & v) + /// @see float unpackHalf1x16(uint16 const& v) + /// @see vec2 unpackHalf2x16(uint32 const& v) /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p); - /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector - /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, + /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector + /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, /// and then packing these four values into a 32-bit unsigned integer. - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packI3x10_1x2(uvec4 const & v) - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see ivec4 unpackI3x10_1x2(uint32 const & p) - GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v); + /// @see uint32 packI3x10_1x2(uvec4 const& v) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see ivec4 unpackI3x10_1x2(uint32 const& p) + GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const& v); - /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); - /// @see uvec4 unpackI3x10_1x2(uint32 const & p); + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p); + /// @see uvec4 unpackI3x10_1x2(uint32 const& p); GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p); - /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector - /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, + /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector + /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, /// and then packing these four values into a 32-bit unsigned integer. - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packI3x10_1x2(ivec4 const & v) - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see ivec4 unpackU3x10_1x2(uint32 const & p) - GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v); + /// @see uint32 packI3x10_1x2(ivec4 const& v) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see ivec4 unpackU3x10_1x2(uint32 const& p) + GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const& v); - /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); - /// @see uvec4 unpackI3x10_1x2(uint32 const & p); + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p); + /// @see uvec4 unpackI3x10_1x2(uint32 const& p); GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p); /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values. @@ -360,31 +360,31 @@ namespace glm /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0) /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0) /// - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. /// /// @see gtc_packing - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see uint32 packI3x10_1x2(ivec4 const & v) - GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v); + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see uint32 packI3x10_1x2(ivec4 const& v) + GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const& v); - /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1) /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)) - /// @see uvec4 unpackI3x10_1x2(uint32 const & p) - /// @see uvec4 unpackU3x10_1x2(uint32 const & p) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see vec4 unpackUnorm3x10_1x2(uint32 const& p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const& p) + /// @see uvec4 unpackU3x10_1x2(uint32 const& p) GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p); /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values. @@ -395,52 +395,52 @@ namespace glm /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0) /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0) /// - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. /// /// @see gtc_packing - /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see uint32 packI3x10_1x2(ivec4 const & v) - GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v); + /// @see vec4 unpackUnorm3x10_1x2(uint32 const& p) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see uint32 packI3x10_1x2(ivec4 const& v) + GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const& v); - /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1) /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see vec4 unpackInorm3x10_1x2(uint32 const & p)) - /// @see uvec4 unpackI3x10_1x2(uint32 const & p) - /// @see uvec4 unpackU3x10_1x2(uint32 const & p) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see vec4 unpackInorm3x10_1x2(uint32 const& p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const& p) + /// @see uvec4 unpackU3x10_1x2(uint32 const& p) GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p); /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. /// Then, the results are packed into the returned 32-bit unsigned integer. /// - /// The first vector component specifies the 11 least-significant bits of the result; + /// The first vector component specifies the 11 least-significant bits of the result; /// the last component specifies the 10 most-significant bits. /// /// @see gtc_packing - /// @see vec3 unpackF2x11_1x10(uint32 const & p) - GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v); + /// @see vec3 unpackF2x11_1x10(uint32 const& p) + GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const& v); - /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packF2x11_1x10(vec3 const & v) + /// @see uint32 packF2x11_1x10(vec3 const& v) GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p); @@ -448,131 +448,280 @@ namespace glm /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. /// Then, the results are packed into the returned 32-bit unsigned integer. /// - /// The first vector component specifies the 11 least-significant bits of the result; + /// The first vector component specifies the 11 least-significant bits of the result; /// the last component specifies the 10 most-significant bits. /// + /// packF3x9_E1x5 allows encoding into RGBE / RGB9E5 format + /// /// @see gtc_packing - /// @see vec3 unpackF3x9_E1x5(uint32 const & p) - GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v); + /// @see vec3 unpackF3x9_E1x5(uint32 const& p) + GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const& v); - /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// + /// unpackF3x9_E1x5 allows decoding RGBE / RGB9E5 data + /// /// @see gtc_packing - /// @see uint32 packF3x9_E1x5(vec3 const & v) + /// @see uint32 packF3x9_E1x5(vec3 const& v) GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p); /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector /// to the 16-bit floating-point representation found in the OpenGL Specification. - /// The first vector component specifies the 16 least-significant bits of the result; + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& p) + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> packRGBM(vec<3, T, Q> const& rgb); + + /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see vec<4, T, Q> packRGBM(vec<3, float, Q> const& v) + /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& rgbm); + + /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification. + /// The first vector component specifies the 16 least-significant bits of the result; /// the forth component specifies the 16 most-significant bits. - /// + /// /// @see gtc_packing - /// @see vecType<float, P> unpackHalf(vecType<uint16, P> const & p) + /// @see vec<L, float, Q> unpackHalf(vec<L, uint16, Q> const& p) /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<uint16, P> packHalf(vecType<float, P> const & v); + template<length_t L, qualifier Q> + GLM_FUNC_DECL vec<L, uint16, Q> packHalf(vec<L, float, Q> const& v); /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. /// The first component of the vector is obtained from the 16 least-significant bits of v; /// the forth component is obtained from the 16 most-significant bits of v. - /// + /// /// @see gtc_packing - /// @see vecType<uint16, P> packHalf(vecType<float, P> const & v) + /// @see vec<L, uint16, Q> packHalf(vec<L, float, Q> const& v) /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<float, P> unpackHalf(vecType<uint16, P> const & p); + template<length_t L, qualifier Q> + GLM_FUNC_DECL vec<L, float, Q> unpackHalf(vec<L, uint16, Q> const& p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing - /// @see vecType<floatType, P> unpackUnorm(vecType<intType, P> const & p); - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<uintType, P> packUnorm(vecType<floatType, P> const & v); + /// @see vec<L, floatType, Q> unpackUnorm(vec<L, intType, Q> const& p); + template<typename uintType, length_t L, typename floatType, qualifier Q> + GLM_FUNC_DECL vec<L, uintType, Q> packUnorm(vec<L, floatType, Q> const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see vecType<intType, P> packUnorm(vecType<floatType, P> const & v) - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v); + /// @see vec<L, intType, Q> packUnorm(vec<L, floatType, Q> const& v) + template<typename floatType, length_t L, typename uintType, qualifier Q> + GLM_FUNC_DECL vec<L, floatType, Q> unpackUnorm(vec<L, uintType, Q> const& v); /// Convert each component of the normalized floating-point vector into signed integer values. /// /// @see gtc_packing - /// @see vecType<floatType, P> unpackSnorm(vecType<intType, P> const & p); - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<intType, P> packSnorm(vecType<floatType, P> const & v); + /// @see vec<L, floatType, Q> unpackSnorm(vec<L, intType, Q> const& p); + template<typename intType, length_t L, typename floatType, qualifier Q> + GLM_FUNC_DECL vec<L, intType, Q> packSnorm(vec<L, floatType, Q> const& v); - /// Convert each signed integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see vecType<intType, P> packSnorm(vecType<floatType, P> const & v) - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v); + /// @see vec<L, intType, Q> packSnorm(vec<L, floatType, Q> const& v) + template<typename floatType, length_t L, typename intType, qualifier Q> + GLM_FUNC_DECL vec<L, floatType, Q> unpackSnorm(vec<L, intType, Q> const& v); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec2 unpackUnorm2x4(uint8 p) - GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v); + GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint8 packUnorm2x4(vec2 const & v) + /// @see uint8 packUnorm2x4(vec2 const& v) GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec4 unpackUnorm4x4(uint16 p) - GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v); + GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint16 packUnorm4x4(vec4 const & v) + /// @see uint16 packUnorm4x4(vec4 const& v) GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p) - GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v); + GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v) + /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const& v) GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec4 unpackUnorm3x5_1x1(uint16 p) - GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v); + GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint16 packUnorm3x5_1x1(vec4 const & v) + /// @see uint16 packUnorm3x5_1x1(vec4 const& v) GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec3 unpackUnorm2x3_1x2(uint8 p) - GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v); + GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint8 packUnorm2x3_1x2(vec3 const & v) + /// @see uint8 packUnorm2x3_1x2(vec3 const& v) GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p); + + + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i8vec2 unpackInt2x8(int16 p) + GLM_FUNC_DECL int16 packInt2x8(i8vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int16 packInt2x8(i8vec2 const& v) + GLM_FUNC_DECL i8vec2 unpackInt2x8(int16 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u8vec2 unpackInt2x8(uint16 p) + GLM_FUNC_DECL uint16 packUint2x8(u8vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint16 packInt2x8(u8vec2 const& v) + GLM_FUNC_DECL u8vec2 unpackUint2x8(uint16 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i8vec4 unpackInt4x8(int32 p) + GLM_FUNC_DECL int32 packInt4x8(i8vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int32 packInt2x8(i8vec4 const& v) + GLM_FUNC_DECL i8vec4 unpackInt4x8(int32 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u8vec4 unpackUint4x8(uint32 p) + GLM_FUNC_DECL uint32 packUint4x8(u8vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint32 packUint4x8(u8vec2 const& v) + GLM_FUNC_DECL u8vec4 unpackUint4x8(uint32 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i16vec2 unpackInt2x16(int p) + GLM_FUNC_DECL int packInt2x16(i16vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packInt2x16(i16vec2 const& v) + GLM_FUNC_DECL i16vec2 unpackInt2x16(int p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i16vec4 unpackInt4x16(int64 p) + GLM_FUNC_DECL int64 packInt4x16(i16vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int64 packInt4x16(i16vec4 const& v) + GLM_FUNC_DECL i16vec4 unpackInt4x16(int64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u16vec2 unpackUint2x16(uint p) + GLM_FUNC_DECL uint packUint2x16(u16vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint packUint2x16(u16vec2 const& v) + GLM_FUNC_DECL u16vec2 unpackUint2x16(uint p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u16vec4 unpackUint4x16(uint64 p) + GLM_FUNC_DECL uint64 packUint4x16(u16vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint64 packUint4x16(u16vec4 const& v) + GLM_FUNC_DECL u16vec4 unpackUint4x16(uint64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i32vec2 unpackInt2x32(int p) + GLM_FUNC_DECL int64 packInt2x32(i32vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packInt2x16(i32vec2 const& v) + GLM_FUNC_DECL i32vec2 unpackInt2x32(int64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u32vec2 unpackUint2x32(int p) + GLM_FUNC_DECL uint64 packUint2x32(u32vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packUint2x16(u32vec2 const& v) + GLM_FUNC_DECL u32vec2 unpackUint2x32(uint64 p); + + /// @} }// namespace glm diff --git a/external/include/glm/gtc/packing.inl b/external/include/glm/gtc/packing.inl index 618fb9e..c12c140 100644 --- a/external/include/glm/gtc/packing.inl +++ b/external/include/glm/gtc/packing.inl @@ -2,6 +2,7 @@ /// @file glm/gtc/packing.inl #include "../common.hpp" +#include "../vector_relational.hpp" #include "../vec2.hpp" #include "../vec3.hpp" #include "../vec4.hpp" @@ -270,83 +271,83 @@ namespace detail uint32 pack; }; - template <precision P, template <typename, precision> class vecType> + template<length_t L, qualifier Q> struct compute_half {}; - template <precision P> - struct compute_half<P, tvec1> + template<qualifier Q> + struct compute_half<1, Q> { - GLM_FUNC_QUALIFIER static tvec1<uint16, P> pack(tvec1<float, P> const & v) + GLM_FUNC_QUALIFIER static vec<1, uint16, Q> pack(vec<1, float, Q> const& v) { int16 const Unpack(detail::toFloat16(v.x)); - u16vec1 Packed(uninitialize); + u16vec1 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec1<float, P> unpack(tvec1<uint16, P> const & v) + GLM_FUNC_QUALIFIER static vec<1, float, Q> unpack(vec<1, uint16, Q> const& v) { - i16vec1 Unpack(uninitialize); + i16vec1 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec1<float, P>(detail::toFloat32(v.x)); + return vec<1, float, Q>(detail::toFloat32(v.x)); } }; - template <precision P> - struct compute_half<P, tvec2> + template<qualifier Q> + struct compute_half<2, Q> { - GLM_FUNC_QUALIFIER static tvec2<uint16, P> pack(tvec2<float, P> const & v) + GLM_FUNC_QUALIFIER static vec<2, uint16, Q> pack(vec<2, float, Q> const& v) { - tvec2<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); - u16vec2 Packed(uninitialize); + vec<2, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); + u16vec2 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec2<float, P> unpack(tvec2<uint16, P> const & v) + GLM_FUNC_QUALIFIER static vec<2, float, Q> unpack(vec<2, uint16, Q> const& v) { - i16vec2 Unpack(uninitialize); + i16vec2 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec2<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y)); + return vec<2, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y)); } }; - template <precision P> - struct compute_half<P, tvec3> + template<qualifier Q> + struct compute_half<3, Q> { - GLM_FUNC_QUALIFIER static tvec3<uint16, P> pack(tvec3<float, P> const & v) + GLM_FUNC_QUALIFIER static vec<3, uint16, Q> pack(vec<3, float, Q> const& v) { - tvec3<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); - u16vec3 Packed(uninitialize); + vec<3, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); + u16vec3 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec3<float, P> unpack(tvec3<uint16, P> const & v) + GLM_FUNC_QUALIFIER static vec<3, float, Q> unpack(vec<3, uint16, Q> const& v) { - i16vec3 Unpack(uninitialize); + i16vec3 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec3<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); + return vec<3, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); } }; - template <precision P> - struct compute_half<P, tvec4> + template<qualifier Q> + struct compute_half<4, Q> { - GLM_FUNC_QUALIFIER static tvec4<uint16, P> pack(tvec4<float, P> const & v) + GLM_FUNC_QUALIFIER static vec<4, uint16, Q> pack(vec<4, float, Q> const& v) { - tvec4<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); - u16vec4 Packed(uninitialize); + vec<4, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); + u16vec4 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec4<float, P> unpack(tvec4<uint16, P> const & v) + GLM_FUNC_QUALIFIER static vec<4, float, Q> unpack(vec<4, uint16, Q> const& v) { - i16vec4 Unpack(uninitialize); + i16vec4 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec4<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); + return vec<4, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); } }; }//namespace detail @@ -355,14 +356,14 @@ namespace detail { return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f)); } - + GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) { float const Unpack(p); return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255 } - - GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v) + + GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const& v) { u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); @@ -370,10 +371,10 @@ namespace detail memcpy(&Unpack, &Topack, sizeof(Unpack)); return Unpack; } - + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) { - u8vec2 Unpack(uninitialize); + u8vec2 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255 } @@ -385,7 +386,7 @@ namespace detail memcpy(&Packed, &Topack, sizeof(Packed)); return Packed; } - + GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) { int8 Unpack = 0; @@ -394,18 +395,18 @@ namespace detail static_cast<float>(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f -1.0f, 1.0f); } - - GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v) + + GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const& v) { i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f)); uint16 Packed = 0; memcpy(&Packed, &Topack, sizeof(Packed)); return Packed; } - + GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) { - i8vec2 Unpack(uninitialize); + i8vec2 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return clamp( vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f @@ -423,7 +424,7 @@ namespace detail return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 } - GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v) + GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const& v) { u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); uint64 Packed = 0; @@ -433,7 +434,7 @@ namespace detail GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) { - u16vec4 Unpack(uninitialize); + u16vec4 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 } @@ -451,11 +452,11 @@ namespace detail int16 Unpack = 0; memcpy(&Unpack, &p, sizeof(Unpack)); return clamp( - static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, + static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, -1.0f, 1.0f); } - GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v) + GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const& v) { i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); uint64 Packed = 0; @@ -465,7 +466,7 @@ namespace detail GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) { - i16vec4 Unpack(uninitialize); + i16vec4 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return clamp( vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, @@ -487,7 +488,7 @@ namespace detail return detail::toFloat32(Unpack); } - GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v) + GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const& v) { i16vec4 const Unpack( detail::toFloat16(v.x), @@ -501,7 +502,7 @@ namespace detail GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) { - i16vec4 Unpack(uninitialize); + i16vec4 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); return vec4( detail::toFloat32(Unpack.x), @@ -510,14 +511,14 @@ namespace detail detail::toFloat32(Unpack.w)); } - GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v) + GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const& v) { detail::i10i10i10i2 Result; Result.data.x = v.x; Result.data.y = v.y; Result.data.z = v.z; Result.data.w = v.w; - return Result.pack; + return Result.pack; } GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) @@ -531,14 +532,14 @@ namespace detail Unpack.data.w); } - GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v) + GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const& v) { detail::u10u10u10u2 Result; Result.data.x = v.x; Result.data.y = v.y; Result.data.z = v.z; Result.data.w = v.w; - return Result.pack; + return Result.pack; } GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) @@ -552,13 +553,15 @@ namespace detail Unpack.data.w); } - GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v) + GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const& v) { + ivec4 const Pack(round(clamp(v,-1.0f, 1.0f) * vec4(511.f, 511.f, 511.f, 1.f))); + detail::i10i10i10i2 Result; - Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f)); - Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f)); - Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f)); - Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f)); + Result.data.x = Pack.x; + Result.data.y = Pack.y; + Result.data.z = Pack.z; + Result.data.w = Pack.w; return Result.pack; } @@ -566,15 +569,13 @@ namespace detail { detail::i10i10i10i2 Unpack; Unpack.pack = v; - vec4 Result; - Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f); - Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f); - Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f); - Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f); - return Result; + + vec4 const Result(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w); + + return clamp(Result * vec4(1.f / 511.f, 1.f / 511.f, 1.f / 511.f, 1.f), -1.0f, 1.0f); } - GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v) + GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const& v) { uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f))); @@ -595,7 +596,7 @@ namespace detail return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors; } - GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v) + GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const& v) { return ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) | @@ -611,15 +612,15 @@ namespace detail detail::packed10bitToFloat(v >> 22)); } - GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v) + GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const& v) { float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f); vec3 const Color = clamp(v, 0.0f, SharedExpMax); float const MaxColor = max(Color.x, max(Color.y, Color.z)); float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f; - float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 16.f - 9.f)) + 0.5f); - float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP; + float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 15.f - 9.f)) + 0.5f); + float const ExpShared = detail::compute_equal<float>::call(MaxShared, pow(2.0f, 9.0f)) ? ExpSharedP + 1.0f : ExpSharedP; uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f)); @@ -639,55 +640,71 @@ namespace detail return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f); } - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uint16, P> packHalf(vecType<float, P> const & v) + // Based on Brian Karis http://graphicrants.blogspot.fr/2009/04/rgbm-color-encoding.html + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, T, Q> packRGBM(vec<3, T, Q> const& rgb) { - return detail::compute_half<P, vecType>::pack(v); + vec<3, T, Q> const Color(rgb * static_cast<T>(1.0 / 6.0)); + T Alpha = clamp(max(max(Color.x, Color.y), max(Color.z, static_cast<T>(1e-6))), static_cast<T>(0), static_cast<T>(1)); + Alpha = ceil(Alpha * static_cast<T>(255.0)) / static_cast<T>(255.0); + return vec<4, T, Q>(Color / Alpha, Alpha); } - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<float, P> unpackHalf(vecType<uint16, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& rgbm) { - return detail::compute_half<P, vecType>::unpack(v); + return vec<3, T, Q>(rgbm.x, rgbm.y, rgbm.z) * rgbm.w * static_cast<T>(6); } - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uintType, P> packUnorm(vecType<floatType, P> const & v) + template<length_t L, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, uint16, Q> packHalf(vec<L, float, Q> const& v) + { + return detail::compute_half<L, Q>::pack(v); + } + + template<length_t L, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, float, Q> unpackHalf(vec<L, uint16, Q> const& v) + { + return detail::compute_half<L, Q>::unpack(v); + } + + template<typename uintType, length_t L, typename floatType, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, uintType, Q> packUnorm(vec<L, floatType, Q> const& v) { GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - return vecType<uintType, P>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max()))); + return vec<L, uintType, Q>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max()))); } - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v) + template<typename floatType, length_t L, typename uintType, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, floatType, Q> unpackUnorm(vec<L, uintType, Q> const& v) { GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - return vecType<float, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max())); + return vec<L, float, Q>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max())); } - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<intType, P> packSnorm(vecType<floatType, P> const & v) + template<typename intType, length_t L, typename floatType, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, intType, Q> packSnorm(vec<L, floatType, Q> const& v) { GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - return vecType<intType, P>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max()))); + return vec<L, intType, Q>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max()))); } - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v) + template<typename floatType, length_t L, typename intType, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, floatType, Q> unpackSnorm(vec<L, intType, Q> const& v) { GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - return clamp(vecType<floatType, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1)); + return clamp(vec<L, floatType, Q>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1)); } - GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v) + GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const& v) { u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); detail::u4u4 Result; @@ -704,7 +721,7 @@ namespace detail return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v) + GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const& v) { u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); detail::u4u4u4u4 Result; @@ -723,7 +740,7 @@ namespace detail return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v) + GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const& v) { u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f))); detail::u5u6u5 Result; @@ -741,7 +758,7 @@ namespace detail return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v) + GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const& v) { u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f))); detail::u5u5u5u1 Result; @@ -760,7 +777,7 @@ namespace detail return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v) + GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const& v) { u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f))); detail::u3u3u2 Result; @@ -777,5 +794,145 @@ namespace detail Unpack.pack = v; return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; } + + GLM_FUNC_QUALIFIER int16 packInt2x8(i8vec2 const& v) + { + int16 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i8vec2 unpackInt2x8(int16 p) + { + i8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint16 packUint2x8(u8vec2 const& v) + { + uint16 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u8vec2 unpackUint2x8(uint16 p) + { + u8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int32 packInt4x8(i8vec4 const& v) + { + int32 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i8vec4 unpackInt4x8(int32 p) + { + i8vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint32 packUint4x8(u8vec4 const& v) + { + uint32 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u8vec4 unpackUint4x8(uint32 p) + { + u8vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int packInt2x16(i16vec2 const& v) + { + int Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i16vec2 unpackInt2x16(int p) + { + i16vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int64 packInt4x16(i16vec4 const& v) + { + int64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i16vec4 unpackInt4x16(int64 p) + { + i16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint packUint2x16(u16vec2 const& v) + { + uint Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u16vec2 unpackUint2x16(uint p) + { + u16vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint64 packUint4x16(u16vec4 const& v) + { + uint64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u16vec4 unpackUint4x16(uint64 p) + { + u16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int64 packInt2x32(i32vec2 const& v) + { + int64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i32vec2 unpackInt2x32(int64 p) + { + i32vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint64 packUint2x32(u32vec2 const& v) + { + uint64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u32vec2 unpackUint2x32(uint64 p) + { + u32vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } }//namespace glm diff --git a/external/include/glm/gtc/quaternion.hpp b/external/include/glm/gtc/quaternion.hpp index 8af1c8b..25f741c 100644 --- a/external/include/glm/gtc/quaternion.hpp +++ b/external/include/glm/gtc/quaternion.hpp @@ -2,15 +2,14 @@ /// @file glm/gtc/quaternion.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtc_constants (dependence) /// /// @defgroup gtc_quaternion GLM_GTC_quaternion /// @ingroup gtc /// -/// @brief Defines a templated quaternion type and several quaternion operations. +/// Include <glm/gtc/quaternion.hpp> to use the features of this extension. /// -/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities. +/// Defines a templated quaternion type and several quaternion operations. #pragma once @@ -30,12 +29,12 @@ namespace glm /// @addtogroup gtc_quaternion /// @{ - template <typename T, precision P = defaultp> + template<typename T, qualifier Q = defaultp> struct tquat { // -- Implementation detail -- - typedef tquat<T, P> type; + typedef tquat<T, Q> type; typedef T value_type; // -- Data -- @@ -50,13 +49,13 @@ namespace glm # pragma clang diagnostic ignored "-Wgnu-anonymous-struct" # pragma clang diagnostic ignored "-Wnested-anon-types" # endif - + union { struct { T x, y, z, w;}; - typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data; + typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<Q>::value>::type data; }; - + # if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop # endif @@ -71,33 +70,32 @@ namespace glm typedef length_t length_type; /// Return the count of components of a quaternion - GLM_FUNC_DECL static length_type length(){return 4;} + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 4;} GLM_FUNC_DECL T & operator[](length_type i); - GLM_FUNC_DECL T const & operator[](length_type i) const; + GLM_FUNC_DECL T const& operator[](length_type i) const; // -- Implicit basic constructors -- GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; - GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT; - template <precision Q> - GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const& q) GLM_DEFAULT; + template<qualifier P> + GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const& q); // -- Explicit basic constructors -- - GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); - GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v); - GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(T s, vec<3, T, Q> const& v); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(T w, T x, T y, T z); // -- Conversion constructors -- - template <typename U, precision Q> - GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q); + template<typename U, qualifier P> + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, P> const& q); /// Explicit conversion operators # if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - GLM_FUNC_DECL explicit operator tmat3x3<T, P>(); - GLM_FUNC_DECL explicit operator tmat4x4<T, P>(); + GLM_FUNC_DECL explicit operator mat<3, 3, T, Q>(); + GLM_FUNC_DECL explicit operator mat<4, 4, T, Q>(); # endif /// Create a quaternion from two normalized axis @@ -106,290 +104,332 @@ namespace glm /// @param v A second normalized axis /// @see gtc_quaternion /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors - GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v); + GLM_FUNC_DECL tquat(vec<3, T, Q> const& u, vec<3, T, Q> const& v); /// Build a quaternion from euler angles (pitch, yaw, roll), in radians. - GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles); - GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m); - GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m); + GLM_FUNC_DECL GLM_EXPLICIT tquat(vec<3, T, Q> const& eulerAngles); + GLM_FUNC_DECL GLM_EXPLICIT tquat(mat<3, 3, T, Q> const& q); + GLM_FUNC_DECL GLM_EXPLICIT tquat(mat<4, 4, T, Q> const& q); // -- Unary arithmetic operators -- - GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT; - - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator*=(U s); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator/=(U s); + GLM_FUNC_DECL tquat<T, Q> & operator=(tquat<T, Q> const& q) GLM_DEFAULT; + + template<typename U> + GLM_FUNC_DECL tquat<T, Q> & operator=(tquat<U, Q> const& q); + template<typename U> + GLM_FUNC_DECL tquat<T, Q> & operator+=(tquat<U, Q> const& q); + template<typename U> + GLM_FUNC_DECL tquat<T, Q> & operator-=(tquat<U, Q> const& q); + template<typename U> + GLM_FUNC_DECL tquat<T, Q> & operator*=(tquat<U, Q> const& q); + template<typename U> + GLM_FUNC_DECL tquat<T, Q> & operator*=(U s); + template<typename U> + GLM_FUNC_DECL tquat<T, Q> & operator/=(U s); }; // -- Unary bit operators -- - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator+(tquat<T, Q> const& q); - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator-(tquat<T, Q> const& q); // -- Binary operators -- - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator+(tquat<T, Q> const& q, tquat<T, Q> const& p); - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator-(tquat<T, Q> const& q, tquat<T, Q> const& p); - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator*(tquat<T, Q> const& q, tquat<T, Q> const& p); - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> operator*(tquat<T, Q> const& q, vec<3, T, Q> const& v); - template <typename T, precision P> - GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> operator*(vec<3, T, Q> const& v, tquat<T, Q> const& q); - template <typename T, precision P> - GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> operator*(tquat<T, Q> const& q, vec<4, T, Q> const& v); - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> operator*(vec<4, T, Q> const& v, tquat<T, Q> const& q); - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator*(tquat<T, Q> const& q, T const& s); - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator*(T const& s, tquat<T, Q> const& q); + + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> operator/(tquat<T, Q> const& q, T const& s); // -- Boolean operators -- - template <typename T, precision P> - GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2); + template<typename T, qualifier Q> + GLM_FUNC_DECL bool operator==(tquat<T, Q> const& q1, tquat<T, Q> const& q2); - template <typename T, precision P> - GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2); + template<typename T, qualifier Q> + GLM_FUNC_DECL bool operator!=(tquat<T, Q> const& q1, tquat<T, Q> const& q2); /// Returns the length of the quaternion. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T length(tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL T length(tquat<T, Q> const& q); /// Returns the normalized quaternion. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q); - + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> normalize(tquat<T, Q> const& q); + /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P, template <typename, precision> class quatType> - GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL T dot(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Spherical linear interpolation of two quaternions. /// The interpolation is oriented and the rotation is performed at constant speed. /// For short path spherical linear interpolation, use the slerp function. - /// + /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @tparam T Floating-point scalar types. + /// + /// @see - slerp(tquat<T, Q> const& x, tquat<T, Q> const& y, T const& a) /// @see gtc_quaternion - /// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> mix(tquat<T, Q> const& x, tquat<T, Q> const& y, T a); /// Linear interpolation of two quaternions. /// The interpolation is oriented. - /// + /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> lerp(tquat<T, Q> const& x, tquat<T, Q> const& y, T a); /// Spherical linear interpolation of two quaternions. /// The interpolation always take the short path and the rotation is performed at constant speed. - /// + /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> slerp(tquat<T, Q> const& x, tquat<T, Q> const& y, T a); /// Returns the q conjugate. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> conjugate(tquat<T, Q> const& q); /// Returns the q inverse. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> inverse(tquat<T, Q> const& q); /// Rotates a quaternion from a vector of 3 components axis and an angle. - /// + /// /// @param q Source orientation /// @param angle Angle expressed in radians. /// @param axis Axis of the rotation - /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> rotate(tquat<T, Q> const& q, T const& angle, vec<3, T, Q> const& axis); /// Returns euler angles, pitch as x, yaw as y, roll as z. - /// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. - /// + /// The result is expressed in radians. + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> eulerAngles(tquat<T, Q> const& x); /// Returns roll value of euler angles expressed in radians. /// - /// @see gtx_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T roll(tquat<T, P> const & x); + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template<typename T, qualifier Q> + GLM_FUNC_DECL T roll(tquat<T, Q> const& x); /// Returns pitch value of euler angles expressed in radians. /// - /// @see gtx_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T pitch(tquat<T, P> const & x); + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template<typename T, qualifier Q> + GLM_FUNC_DECL T pitch(tquat<T, Q> const& x); /// Returns yaw value of euler angles expressed in radians. /// - /// @see gtx_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T yaw(tquat<T, P> const & x); + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template<typename T, qualifier Q> + GLM_FUNC_DECL T yaw(tquat<T, Q> const& x); /// Converts a quaternion to a 3 * 3 matrix. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<3, 3, T, Q> mat3_cast(tquat<T, Q> const& x); /// Converts a quaternion to a 4 * 4 matrix. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL mat<4, 4, T, Q> mat4_cast(tquat<T, Q> const& x); - /// Converts a 3 * 3 matrix to a quaternion. - /// + /// Converts a pure rotation 3 * 3 matrix to a quaternion. + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> quat_cast(mat<3, 3, T, Q> const& x); - /// Converts a 4 * 4 matrix to a quaternion. - /// + /// Converts a pure rotation 4 * 4 matrix to a quaternion. + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> quat_cast(mat<4, 4, T, Q> const& x); /// Returns the quaternion rotation angle. /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T angle(tquat<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL T angle(tquat<T, Q> const& x); /// Returns the q rotation axis. /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> axis(tquat<T, Q> const& x); /// Build a quaternion from an angle and a normalized axis. /// /// @param angle Angle expressed in radians. /// @param axis Axis of the quaternion, must be normalized. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis); + template<typename T, qualifier Q> + GLM_FUNC_DECL tquat<T, Q> angleAxis(T const& angle, vec<3, T, Q> const& axis); /// Returns the component-wise comparison result of x < y. - /// - /// @tparam quatType Floating-point quaternion types. + /// + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> lessThan(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Returns the component-wise comparison of result x <= y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> lessThanEqual(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Returns the component-wise comparison of result x > y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> greaterThan(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Returns the component-wise comparison of result x >= y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> greaterThanEqual(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Returns the component-wise comparison of result x == y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> equal(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Returns the component-wise comparison of result x != y. - /// - /// @tparam quatType Floating-point quaternion types. + /// + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y); + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> notEqual(tquat<T, Q> const& x, tquat<T, Q> const& y); /// Returns true if x holds a NaN (not a number) /// representation in the underlying implementation's set of /// floating point representations. Returns false otherwise, /// including for implementations with no NaN /// representations. - /// + /// /// /!\ When using compiler fast math, this function may fail. - /// - /// @tparam genType Floating-point scalar or vector types. - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x); + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> isnan(tquat<T, Q> const& x); /// Returns true if x holds a positive infinity or negative /// infinity representation in the underlying implementation's /// set of floating point representations. Returns false /// otherwise, including for implementations with no infinity /// representations. - /// - /// @tparam genType Floating-point scalar or vector types. - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x); + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<4, bool, Q> isinf(tquat<T, Q> const& x); /// @} } //namespace glm diff --git a/external/include/glm/gtc/quaternion.inl b/external/include/glm/gtc/quaternion.inl index c9b2af7..df4a5f7 100644 --- a/external/include/glm/gtc/quaternion.inl +++ b/external/include/glm/gtc/quaternion.inl @@ -4,78 +4,80 @@ #include "../trigonometric.hpp" #include "../geometric.hpp" #include "../exponential.hpp" +#include "../detail/compute_vector_relational.hpp" +#include "epsilon.hpp" #include <limits> namespace glm{ namespace detail { - template <typename T, precision P, bool Aligned> - struct compute_dot<tquat, T, P, Aligned> + template<typename T, qualifier Q, bool Aligned> + struct compute_dot<tquat<T, Q>, T, Aligned> { - static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y) + static GLM_FUNC_QUALIFIER T call(tquat<T, Q> const& a, tquat<T, Q> const& b) { - tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); + vec<4, T, Q> tmp(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); return (tmp.x + tmp.y) + (tmp.z + tmp.w); } }; - template <typename T, precision P, bool Aligned> + template<typename T, qualifier Q, bool Aligned> struct compute_quat_add { - static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) + static tquat<T, Q> call(tquat<T, Q> const& q, tquat<T, Q> const& p) { - return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); + return tquat<T, Q>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); } }; - template <typename T, precision P, bool Aligned> + template<typename T, qualifier Q, bool Aligned> struct compute_quat_sub { - static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) + static tquat<T, Q> call(tquat<T, Q> const& q, tquat<T, Q> const& p) { - return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); + return tquat<T, Q>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); } }; - template <typename T, precision P, bool Aligned> + template<typename T, qualifier Q, bool Aligned> struct compute_quat_mul_scalar { - static tquat<T, P> call(tquat<T, P> const& q, T s) + static tquat<T, Q> call(tquat<T, Q> const& q, T s) { - return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s); + return tquat<T, Q>(q.w * s, q.x * s, q.y * s, q.z * s); } }; - template <typename T, precision P, bool Aligned> + template<typename T, qualifier Q, bool Aligned> struct compute_quat_div_scalar { - static tquat<T, P> call(tquat<T, P> const& q, T s) + static tquat<T, Q> call(tquat<T, Q> const& q, T s) { - return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s); + return tquat<T, Q>(q.w / s, q.x / s, q.y / s, q.z / s); } }; - template <typename T, precision P, bool Aligned> + template<typename T, qualifier Q, bool Aligned> struct compute_quat_mul_vec4 { - static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v) + static vec<4, T, Q> call(tquat<T, Q> const& q, vec<4, T, Q> const& v) { - return tvec4<T, P>(q * tvec3<T, P>(v), v.w); + return vec<4, T, Q>(q * vec<3, T, Q>(v), v.w); } }; }//namespace detail // -- Component accesses -- - template <typename T, precision P> - GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T & tquat<T, Q>::operator[](typename tquat<T, Q>::length_type i) { assert(i >= 0 && i < this->length()); return (&x)[i]; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const& tquat<T, Q>::operator[](typename tquat<T, Q>::length_type i) const { assert(i >= 0 && i < this->length()); return (&x)[i]; @@ -83,129 +85,139 @@ namespace detail // -- Implicit basic constructors -- -# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat() -# ifndef GLM_FORCE_NO_CTOR_INIT - : x(0), y(0), z(0), w(1) +# if !GLM_HAS_DEFAULTED_FUNCTIONS || defined(GLM_FORCE_CTOR_INIT) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, Q>::tquat() +# ifdef GLM_FORCE_CTOR_INIT + : x(0), y(0), z(0), w(1) # endif {} # endif # if !GLM_HAS_DEFAULTED_FUNCTIONS - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, Q>::tquat(tquat<T, Q> const& q) : x(q.x), y(q.y), z(q.z), w(q.w) {} # endif//!GLM_HAS_DEFAULTED_FUNCTIONS - template <typename T, precision P> - template <precision Q> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q) + template<typename T, qualifier Q> + template<qualifier P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, Q>::tquat(tquat<T, P> const& q) : x(q.x), y(q.y), z(q.z), w(q.w) {} // -- Explicit basic constructors -- - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor) - {} - - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, Q>::tquat(T s, vec<3, T, Q> const& v) : x(v.x), y(v.y), z(v.z), w(s) {} - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z) - : x(x), y(y), z(z), w(w) + template <typename T, qualifier Q> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, Q>::tquat(T _w, T _x, T _y, T _z) + : x(_x), y(_y), z(_z), w(_w) {} // -- Conversion constructors -- - template <typename T, precision P> - template <typename U, precision Q> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q) + template<typename T, qualifier Q> + template<typename U, qualifier P> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, Q>::tquat(tquat<U, P> const& q) : x(static_cast<T>(q.x)) , y(static_cast<T>(q.y)) , z(static_cast<T>(q.z)) , w(static_cast<T>(q.w)) {} - //template <typename valType> + //template<typename valType> //GLM_FUNC_QUALIFIER tquat<valType>::tquat //( - // valType const & pitch, - // valType const & yaw, - // valType const & roll + // valType const& pitch, + // valType const& yaw, + // valType const& roll //) //{ - // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); - // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); - // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); - // + // vec<3, valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); + // vec<3, valType> c = glm::cos(eulerAngle * valType(0.5)); + // vec<3, valType> s = glm::sin(eulerAngle * valType(0.5)); + // // this->w = c.x * c.y * c.z + s.x * s.y * s.z; // this->x = s.x * c.y * c.z - c.x * s.y * s.z; // this->y = c.x * s.y * c.z + s.x * c.y * s.z; // this->z = c.x * c.y * s.z - s.x * s.y * c.z; //} - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q>::tquat(vec<3, T, Q> const& u, vec<3, T, Q> const& v) { - tvec3<T, P> const LocalW(cross(u, v)); - T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v); - tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); + T norm_u_norm_v = sqrt(dot(u, u) * dot(v, v)); + T real_part = norm_u_norm_v + dot(u, v); + vec<3, T, Q> t; + + if(real_part < static_cast<T>(1.e-6f) * norm_u_norm_v) + { + // If u and v are exactly opposite, rotate 180 degrees + // around an arbitrary orthogonal axis. Axis normalisation + // can happen later, when we normalise the quaternion. + real_part = static_cast<T>(0); + t = abs(u.x) > abs(u.z) ? vec<3, T, Q>(-u.y, u.x, static_cast<T>(0)) : vec<3, T, Q>(static_cast<T>(0), -u.z, u.y); + } + else + { + // Otherwise, build quaternion the standard way. + t = cross(u, v); + } - *this = normalize(q); + *this = normalize(tquat<T, Q>(real_part, t.x, t.y, t.z)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q>::tquat(vec<3, T, Q> const& eulerAngle) { - tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); - tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); - + vec<3, T, Q> c = glm::cos(eulerAngle * T(0.5)); + vec<3, T, Q> s = glm::sin(eulerAngle * T(0.5)); + this->w = c.x * c.y * c.z + s.x * s.y * s.z; this->x = s.x * c.y * c.z - c.x * s.y * s.z; this->y = c.x * s.y * c.z + s.x * c.y * s.z; this->z = c.x * c.y * s.z - s.x * s.y * c.z; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q>::tquat(mat<3, 3, T, Q> const& m) { *this = quat_cast(m); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q>::tquat(mat<4, 4, T, Q> const& m) { *this = quat_cast(m); } # if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>() + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q>::operator mat<3, 3, T, Q>() { return mat3_cast(*this); } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>() + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q>::operator mat<4, 4, T, Q>() { return mat4_cast(*this); } # endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> conjugate(tquat<T, Q> const& q) { - return tquat<T, P>(q.w, -q.x, -q.y, -q.z); + return tquat<T, Q>(q.w, -q.x, -q.y, -q.z); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> inverse(tquat<T, Q> const& q) { return conjugate(q) / dot(q, q); } @@ -213,8 +225,8 @@ namespace detail // -- Unary arithmetic operators -- # if !GLM_HAS_DEFAULTED_FUNCTIONS - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator=(tquat<T, Q> const& q) { this->w = q.w; this->x = q.x; @@ -224,9 +236,9 @@ namespace detail } # endif//!GLM_HAS_DEFAULTED_FUNCTIONS - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q) + template<typename T, qualifier Q> + template<typename U> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator=(tquat<U, Q> const& q) { this->w = static_cast<T>(q.w); this->x = static_cast<T>(q.x); @@ -235,26 +247,26 @@ namespace detail return *this; } - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q) + template<typename T, qualifier Q> + template<typename U> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator+=(tquat<U, Q> const& q) { - return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); + return (*this = detail::compute_quat_add<T, Q, detail::is_aligned<Q>::value>::call(*this, tquat<T, Q>(q))); } - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q) + template<typename T, qualifier Q> + template<typename U> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator-=(tquat<U, Q> const& q) { - return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); + return (*this = detail::compute_quat_sub<T, Q, detail::is_aligned<Q>::value>::call(*this, tquat<T, Q>(q))); } - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r) + template<typename T, qualifier Q> + template<typename U> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator*=(tquat<U, Q> const& r) { - tquat<T, P> const p(*this); - tquat<T, P> const q(r); + tquat<T, Q> const p(*this); + tquat<T, Q> const q(r); this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; @@ -263,132 +275,145 @@ namespace detail return *this; } - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s) + template<typename T, qualifier Q> + template<typename U> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator*=(U s) { - return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); + return (*this = detail::compute_quat_mul_scalar<T, Q, detail::is_aligned<Q>::value>::call(*this, static_cast<U>(s))); } - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s) + template<typename T, qualifier Q> + template<typename U> + GLM_FUNC_QUALIFIER tquat<T, Q> & tquat<T, Q>::operator/=(U s) { - return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); + return (*this = detail::compute_quat_div_scalar<T, Q, detail::is_aligned<Q>::value>::call(*this, static_cast<U>(s))); } // -- Unary bit operators -- - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator+(tquat<T, Q> const& q) { return q; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator-(tquat<T, Q> const& q) { - return tquat<T, P>(-q.w, -q.x, -q.y, -q.z); + return tquat<T, Q>(-q.w, -q.x, -q.y, -q.z); } // -- Binary operators -- - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator+(tquat<T, Q> const& q, tquat<T, Q> const& p) { - return tquat<T, P>(q) += p; + return tquat<T, Q>(q) += p; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator-(tquat<T, Q> const& q, tquat<T, Q> const& p) { - return tquat<T, P>(q) *= p; + return tquat<T, Q>(q) -= p; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator*(tquat<T, Q> const& q, tquat<T, Q> const& p) { - tvec3<T, P> const QuatVector(q.x, q.y, q.z); - tvec3<T, P> const uv(glm::cross(QuatVector, v)); - tvec3<T, P> const uuv(glm::cross(QuatVector, uv)); + return tquat<T, Q>(q) *= p; + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> operator*(tquat<T, Q> const& q, vec<3, T, Q> const& v) + { + vec<3, T, Q> const QuatVector(q.x, q.y, q.z); + vec<3, T, Q> const uv(glm::cross(QuatVector, v)); + vec<3, T, Q> const uuv(glm::cross(QuatVector, uv)); return v + ((uv * q.w) + uuv) * static_cast<T>(2); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> operator*(vec<3, T, Q> const& v, tquat<T, Q> const& q) { return glm::inverse(q) * v; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, T, Q> operator*(tquat<T, Q> const& q, vec<4, T, Q> const& v) { - return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v); + return detail::compute_quat_mul_vec4<T, Q, detail::is_aligned<Q>::value>::call(q, v); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, T, Q> operator*(vec<4, T, Q> const& v, tquat<T, Q> const& q) { return glm::inverse(q) * v; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator*(tquat<T, Q> const& q, T const& s) { - return tquat<T, P>( + return tquat<T, Q>( q.w * s, q.x * s, q.y * s, q.z * s); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator*(T const& s, tquat<T, Q> const& q) { return q * s; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> operator/(tquat<T, Q> const& q, T const& s) { - return tquat<T, P>( + return tquat<T, Q>( q.w / s, q.x / s, q.y / s, q.z / s); } // -- Boolean operators -- - template <typename T, precision P> - GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER bool operator==(tquat<T, Q> const& q1, tquat<T, Q> const& q2) { - return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); + return all(epsilonEqual(q1, q2, epsilon<T>())); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER bool operator!=(tquat<T, Q> const& q1, tquat<T, Q> const& q2) { - return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); + return any(epsilonNotEqual(q1, q2, epsilon<T>())); } // -- Operations -- - template <typename T, precision P> - GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T dot(tquat<T, Q> const& x, tquat<T, Q> const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' accepts only floating-point inputs"); + return detail::compute_dot<tquat<T, Q>, T, detail::is_aligned<Q>::value>::call(x, y); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T length(tquat<T, Q> const& q) { return glm::sqrt(dot(q, q)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> normalize(tquat<T, Q> const& q) { T len = length(q); if(len <= T(0)) // Problem - return tquat<T, P>(1, 0, 0, 0); + return tquat<T, Q>(static_cast<T>(1), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0)); T oneOverLen = T(1) / len; - return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); + return tquat<T, Q>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> cross(tquat<T, Q> const& q1, tquat<T, Q> const& q2) { - return tquat<T, P>( + return tquat<T, Q>( q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, @@ -396,14 +421,14 @@ namespace detail } /* // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> mix(tquat<T, Q> const& x, tquat<T, Q> const& y, T const& a) { if(a <= T(0)) return x; if(a >= T(1)) return y; float fCos = dot(x, y); - tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; + tquat<T, Q> y2(y); //BUG!!! tquat<T, Q> y2; if(fCos < T(0)) { y2 = -y; @@ -426,19 +451,19 @@ namespace detail k1 = sin((T(0) + a) * fAngle) * fOneOverSin; } - return tquat<T, P>( + return tquat<T, Q>( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> mix2 + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> mix2 ( - tquat<T, P> const & x, - tquat<T, P> const & y, - T const & a + tquat<T, Q> const& x, + tquat<T, Q> const& y, + T const& a ) { bool flip = false; @@ -466,13 +491,13 @@ namespace detail if(flip) alpha = -alpha; - + return normalize(beta * x + alpha * y); } */ - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> mix(tquat<T, Q> const& x, tquat<T, Q> const& y, T a) { T cosTheta = dot(x, y); @@ -480,7 +505,7 @@ namespace detail if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation - return tquat<T, P>( + return tquat<T, Q>( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), @@ -494,8 +519,8 @@ namespace detail } } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> lerp(tquat<T, Q> const& x, tquat<T, Q> const& y, T a) { // Lerp is only defined in [0, 1] assert(a >= static_cast<T>(0)); @@ -504,14 +529,14 @@ namespace detail return x * (T(1) - a) + (y * a); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> slerp(tquat<T, Q> const& x, tquat<T, Q> const& y, T a) { - tquat<T, P> z = y; + tquat<T, Q> z = y; T cosTheta = dot(x, y); - // If cosTheta < 0, the interpolation will take the long way around the sphere. + // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if (cosTheta < T(0)) { @@ -523,7 +548,7 @@ namespace detail if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation - return tquat<T, P>( + return tquat<T, Q>( mix(x.w, z.w, a), mix(x.x, z.x, a), mix(x.y, z.y, a), @@ -537,10 +562,10 @@ namespace detail } } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> rotate(tquat<T, Q> const& q, T const& angle, vec<3, T, Q> const& v) { - tvec3<T, P> Tmp = v; + vec<3, T, Q> Tmp = v; // Axis of rotation must be normalised T len = glm::length(Tmp); @@ -555,38 +580,45 @@ namespace detail T const AngleRad(angle); T const Sin = sin(AngleRad * T(0.5)); - return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); - //return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); + return q * tquat<T, Q>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); + //return gtc::quaternion::cross(q, tquat<T, Q>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> eulerAngles(tquat<T, Q> const& x) { - return tvec3<T, P>(pitch(x), yaw(x), roll(x)); + return vec<3, T, Q>(pitch(x), yaw(x), roll(x)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T roll(tquat<T, Q> const& q) { - return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); + return static_cast<T>(atan(static_cast<T>(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T pitch(tquat<T, Q> const& q) { - return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); + //return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); + const T y = static_cast<T>(2) * (q.y * q.z + q.w * q.x); + const T x = q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z; + + if(detail::compute_equal<T>::call(y, static_cast<T>(0)) && detail::compute_equal<T>::call(x, static_cast<T>(0))) //avoid atan2(0,0) - handle singularity - Matiis + return static_cast<T>(static_cast<T>(2) * atan(q.x,q.w)); + + return static_cast<T>(atan(y,x)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T yaw(tquat<T, Q> const& q) { - return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); + return asin(clamp(static_cast<T>(-2) * (q.x * q.z - q.w * q.y), static_cast<T>(-1), static_cast<T>(1))); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> mat3_cast(tquat<T, Q> const& q) { - tmat3x3<T, P> Result(T(1)); + mat<3, 3, T, Q> Result(T(1)); T qxx(q.x * q.x); T qyy(q.y * q.y); T qzz(q.z * q.z); @@ -611,14 +643,14 @@ namespace detail return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> mat4_cast(tquat<T, Q> const& q) { - return tmat4x4<T, P>(mat3_cast(q)); + return mat<4, 4, T, Q>(mat3_cast(q)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> quat_cast(mat<3, 3, T, Q> const& m) { T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; @@ -643,70 +675,51 @@ namespace detail biggestIndex = 3; } - T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); + T biggestVal = sqrt(fourBiggestSquaredMinus1 + static_cast<T>(1)) * static_cast<T>(0.5); T mult = static_cast<T>(0.25) / biggestVal; - tquat<T, P> Result(uninitialize); switch(biggestIndex) { case 0: - Result.w = biggestVal; - Result.x = (m[1][2] - m[2][1]) * mult; - Result.y = (m[2][0] - m[0][2]) * mult; - Result.z = (m[0][1] - m[1][0]) * mult; - break; + return tquat<T, Q>(biggestVal, (m[1][2] - m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, (m[0][1] - m[1][0]) * mult); case 1: - Result.w = (m[1][2] - m[2][1]) * mult; - Result.x = biggestVal; - Result.y = (m[0][1] + m[1][0]) * mult; - Result.z = (m[2][0] + m[0][2]) * mult; - break; + return tquat<T, Q>((m[1][2] - m[2][1]) * mult, biggestVal, (m[0][1] + m[1][0]) * mult, (m[2][0] + m[0][2]) * mult); case 2: - Result.w = (m[2][0] - m[0][2]) * mult; - Result.x = (m[0][1] + m[1][0]) * mult; - Result.y = biggestVal; - Result.z = (m[1][2] + m[2][1]) * mult; - break; + return tquat<T, Q>((m[2][0] - m[0][2]) * mult, (m[0][1] + m[1][0]) * mult, biggestVal, (m[1][2] + m[2][1]) * mult); case 3: - Result.w = (m[0][1] - m[1][0]) * mult; - Result.x = (m[2][0] + m[0][2]) * mult; - Result.y = (m[1][2] + m[2][1]) * mult; - Result.z = biggestVal; - break; - - default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. + return tquat<T, Q>((m[0][1] - m[1][0]) * mult, (m[2][0] + m[0][2]) * mult, (m[1][2] + m[2][1]) * mult, biggestVal); + default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. assert(false); - break; + return tquat<T, Q>(1, 0, 0, 0); } - return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> quat_cast(mat<4, 4, T, Q> const& m4) { - return quat_cast(tmat3x3<T, P>(m4)); + return quat_cast(mat<3, 3, T, Q>(m4)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T angle(tquat<T, Q> const& x) { - return acos(x.w) * T(2); + return acos(x.w) * static_cast<T>(2); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<3, T, Q> axis(tquat<T, Q> const& x) { T tmp1 = static_cast<T>(1) - x.w * x.w; if(tmp1 <= static_cast<T>(0)) - return tvec3<T, P>(0, 0, 1); + return vec<3, T, Q>(0, 0, 1); T tmp2 = static_cast<T>(1) / sqrt(tmp1); - return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); + return vec<3, T, Q>(x.x * tmp2, x.y * tmp2, x.z * tmp2); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER tquat<T, Q> angleAxis(T const& angle, vec<3, T, Q> const& v) { - tquat<T, P> Result(uninitialize); + tquat<T, Q> Result; T const a(angle); T const s = glm::sin(a * static_cast<T>(0.5)); @@ -718,74 +731,74 @@ namespace detail return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> lessThan(tquat<T, Q> const& x, tquat<T, Q> const& y) { - tvec4<bool, P> Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] < y[i]; return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> lessThanEqual(tquat<T, Q> const& x, tquat<T, Q> const& y) { - tvec4<bool, P> Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] <= y[i]; return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> greaterThan(tquat<T, Q> const& x, tquat<T, Q> const& y) { - tvec4<bool, P> Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] > y[i]; return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> greaterThanEqual(tquat<T, Q> const& x, tquat<T, Q> const& y) { - tvec4<bool, P> Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] >= y[i]; return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> equal(tquat<T, Q> const& x, tquat<T, Q> const& y) { - tvec4<bool, P> Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] == y[i]; + Result[i] = detail::compute_equal<T>::call(x[i], y[i]); return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> notEqual(tquat<T, Q> const& x, tquat<T, Q> const& y) { - tvec4<bool, P> Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] != y[i]; + Result[i] = !detail::compute_equal<T>::call(x[i], y[i]); return Result; } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> isnan(tquat<T, Q> const& q) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs"); - return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); + return vec<4, bool, Q>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); } - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<4, bool, Q> isinf(tquat<T, Q> const& q) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs"); - return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); + return vec<4, bool, Q>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); } }//namespace glm diff --git a/external/include/glm/gtc/quaternion_simd.inl b/external/include/glm/gtc/quaternion_simd.inl index cca874b..06ca7b7 100644 --- a/external/include/glm/gtc/quaternion_simd.inl +++ b/external/include/glm/gtc/quaternion_simd.inl @@ -7,10 +7,10 @@ namespace glm{ namespace detail { /* - template <precision P> - struct compute_quat_mul<float, P, true> + template<qualifier Q> + struct compute_quat_mul<float, Q, true> { - static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2) + static tquat<float, Q> call(tquat<float, Q> const& q1, tquat<float, Q> const& q2) { // SSE2 STATS: 11 shuffle, 8 mul, 8 add // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps @@ -51,7 +51,7 @@ namespace detail // //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); - tquat<float, P> Result(uninitialize); + tquat<float, Q> Result; _mm_store_ss(&Result.x, add4); _mm_store_ss(&Result.y, add5); _mm_store_ss(&Result.z, add6); @@ -61,122 +61,122 @@ namespace detail }; */ - template <precision P> - struct compute_dot<tquat, float, P, true> + template<qualifier Q> + struct compute_dot<tquat<float, Q>, float, true> { - static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y) + static GLM_FUNC_QUALIFIER float call(tquat<float, Q> const& x, tquat<float, Q> const& y) { return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); } }; - template <precision P> - struct compute_quat_add<float, P, true> + template<qualifier Q> + struct compute_quat_add<float, Q, true> { - static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) + static tquat<float, Q> call(tquat<float, Q> const& q, tquat<float, Q> const& p) { - tquat<float, P> Result(uninitialize); + tquat<float, Q> Result; Result.data = _mm_add_ps(q.data, p.data); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_add<double, P, true> + template<qualifier Q> + struct compute_quat_add<double, Q, true> { - static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) + static tquat<double, Q> call(tquat<double, Q> const& a, tquat<double, Q> const& b) { - tquat<double, P> Result(uninitialize); + tquat<double, Q> Result; Result.data = _mm256_add_pd(a.data, b.data); return Result; } }; # endif - template <precision P> - struct compute_quat_sub<float, P, true> + template<qualifier Q> + struct compute_quat_sub<float, Q, true> { - static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) + static tquat<float, Q> call(tquat<float, Q> const& q, tquat<float, Q> const& p) { - tvec4<float, P> Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_sub_ps(q.data, p.data); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_sub<double, P, true> + template<qualifier Q> + struct compute_quat_sub<double, Q, true> { - static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) + static tquat<double, Q> call(tquat<double, Q> const& a, tquat<double, Q> const& b) { - tquat<double, P> Result(uninitialize); + tquat<double, Q> Result; Result.data = _mm256_sub_pd(a.data, b.data); return Result; } }; # endif - template <precision P> - struct compute_quat_mul_scalar<float, P, true> + template<qualifier Q> + struct compute_quat_mul_scalar<float, Q, true> { - static tquat<float, P> call(tquat<float, P> const& q, float s) + static tquat<float, Q> call(tquat<float, Q> const& q, float s) { - tvec4<float, P> Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_mul_scalar<double, P, true> + template<qualifier Q> + struct compute_quat_mul_scalar<double, Q, true> { - static tquat<double, P> call(tquat<double, P> const& q, double s) + static tquat<double, Q> call(tquat<double, Q> const& q, double s) { - tquat<double, P> Result(uninitialize); + tquat<double, Q> Result; Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); return Result; } }; # endif - template <precision P> - struct compute_quat_div_scalar<float, P, true> + template<qualifier Q> + struct compute_quat_div_scalar<float, Q, true> { - static tquat<float, P> call(tquat<float, P> const& q, float s) + static tquat<float, Q> call(tquat<float, Q> const& q, float s) { - tvec4<float, P> Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_div_scalar<double, P, true> + template<qualifier Q> + struct compute_quat_div_scalar<double, Q, true> { - static tquat<double, P> call(tquat<double, P> const& q, double s) + static tquat<double, Q> call(tquat<double, Q> const& q, double s) { - tquat<double, P> Result(uninitialize); + tquat<double, Q> Result; Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); return Result; } }; # endif - template <precision P> - struct compute_quat_mul_vec4<float, P, true> + template<qualifier Q> + struct compute_quat_mul_vec4<float, Q, true> { - static tvec4<float, P> call(tquat<float, P> const& q, tvec4<float, P> const& v) + static vec<4, float, Q> call(tquat<float, Q> const& q, vec<4, float, Q> const& v) { __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); - + __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); @@ -186,7 +186,7 @@ namespace detail uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); uuv = _mm_mul_ps(uuv, two); - tvec4<float, P> Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv)); return Result; } diff --git a/external/include/glm/gtc/random.hpp b/external/include/glm/gtc/random.hpp index fa3956e..9156e43 100644 --- a/external/include/glm/gtc/random.hpp +++ b/external/include/glm/gtc/random.hpp @@ -2,15 +2,14 @@ /// @file glm/gtc/random.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtx_random (extended) /// /// @defgroup gtc_random GLM_GTC_random /// @ingroup gtc /// -/// @brief Generate random number from various distribution methods. +/// Include <glm/gtc/random.hpp> to use the features of this extension. /// -/// <glm/gtc/random.hpp> need to be included to use these functionalities. +/// Generate random number from various distribution methods. #pragma once @@ -26,72 +25,56 @@ namespace glm { /// @addtogroup gtc_random /// @{ - - /// Generate random numbers in the interval [Min, Max], according a linear distribution - /// - /// @param Min - /// @param Max + + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min Minimum value included in the sampling + /// @param Max Maximum value included in the sampling /// @tparam genType Value type. Currently supported: float or double scalars. /// @see gtc_random - template <typename genTYpe> - GLM_FUNC_DECL genTYpe linearRand( - genTYpe Min, - genTYpe Max); + template<typename genType> + GLM_FUNC_DECL genType linearRand(genType Min, genType Max); - /// Generate random numbers in the interval [Min, Max], according a linear distribution - /// - /// @param Min - /// @param Max + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min Minimum value included in the sampling + /// @param Max Maximum value included in the sampling /// @tparam T Value type. Currently supported: float or double. - /// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible + /// /// @see gtc_random - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> linearRand( - vecType<T, P> const & Min, - vecType<T, P> const & Max); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> linearRand(vec<L, T, Q> const& Min, vec<L, T, Q> const& Max); - /// Generate random numbers in the interval [Min, Max], according a gaussian distribution - /// - /// @param Mean - /// @param Deviation + /// Generate random numbers in the interval [Min, Max], according a gaussian distribution + /// /// @see gtc_random - template <typename genType> - GLM_FUNC_DECL genType gaussRand( - genType Mean, - genType Deviation); - + template<typename genType> + GLM_FUNC_DECL genType gaussRand(genType Mean, genType Deviation); + /// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec2<T, defaultp> circularRand( - T Radius); - + template<typename T> + GLM_FUNC_DECL vec<2, T, defaultp> circularRand(T Radius); + /// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec3<T, defaultp> sphericalRand( - T Radius); - + template<typename T> + GLM_FUNC_DECL vec<3, T, defaultp> sphericalRand(T Radius); + /// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec2<T, defaultp> diskRand( - T Radius); - + template<typename T> + GLM_FUNC_DECL vec<2, T, defaultp> diskRand(T Radius); + /// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec3<T, defaultp> ballRand( - T Radius); - + template<typename T> + GLM_FUNC_DECL vec<3, T, defaultp> ballRand(T Radius); + /// @} }//namespace glm diff --git a/external/include/glm/gtc/random.inl b/external/include/glm/gtc/random.inl index ad5926e..5301c59 100644 --- a/external/include/glm/gtc/random.inl +++ b/external/include/glm/gtc/random.inl @@ -3,58 +3,61 @@ #include "../geometric.hpp" #include "../exponential.hpp" +#include "../trigonometric.hpp" +#include "../ext/vec1.hpp" #include <cstdlib> #include <ctime> #include <cassert> +#include <cmath> namespace glm{ namespace detail { - template <typename T, precision P, template <class, precision> class vecType> + template <length_t L, typename T, qualifier Q> struct compute_rand { - GLM_FUNC_QUALIFIER static vecType<T, P> call(); + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(); }; - template <precision P> - struct compute_rand<uint8, P, tvec1> + template <qualifier P> + struct compute_rand<1, uint8, P> { - GLM_FUNC_QUALIFIER static tvec1<uint8, P> call() + GLM_FUNC_QUALIFIER static vec<1, uint8, P> call() { - return tvec1<uint8, P>( + return vec<1, uint8, P>( std::rand() % std::numeric_limits<uint8>::max()); } }; - template <precision P> - struct compute_rand<uint8, P, tvec2> + template <qualifier P> + struct compute_rand<2, uint8, P> { - GLM_FUNC_QUALIFIER static tvec2<uint8, P> call() + GLM_FUNC_QUALIFIER static vec<2, uint8, P> call() { - return tvec2<uint8, P>( + return vec<2, uint8, P>( std::rand() % std::numeric_limits<uint8>::max(), std::rand() % std::numeric_limits<uint8>::max()); } }; - template <precision P> - struct compute_rand<uint8, P, tvec3> + template <qualifier P> + struct compute_rand<3, uint8, P> { - GLM_FUNC_QUALIFIER static tvec3<uint8, P> call() + GLM_FUNC_QUALIFIER static vec<3, uint8, P> call() { - return tvec3<uint8, P>( + return vec<3, uint8, P>( std::rand() % std::numeric_limits<uint8>::max(), std::rand() % std::numeric_limits<uint8>::max(), std::rand() % std::numeric_limits<uint8>::max()); } }; - template <precision P> - struct compute_rand<uint8, P, tvec4> + template <qualifier P> + struct compute_rand<4, uint8, P> { - GLM_FUNC_QUALIFIER static tvec4<uint8, P> call() + GLM_FUNC_QUALIFIER static vec<4, uint8, P> call() { - return tvec4<uint8, P>( + return vec<4, uint8, P>( std::rand() % std::numeric_limits<uint8>::max(), std::rand() % std::numeric_limits<uint8>::max(), std::rand() % std::numeric_limits<uint8>::max(), @@ -62,289 +65,234 @@ namespace detail } }; - template <precision P, template <class, precision> class vecType> - struct compute_rand<uint16, P, vecType> + template <length_t L, qualifier Q> + struct compute_rand<L, uint16, Q> { - GLM_FUNC_QUALIFIER static vecType<uint16, P> call() + GLM_FUNC_QUALIFIER static vec<L, uint16, Q> call() { return - (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(8)) | - (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(0)); + (vec<L, uint16, Q>(compute_rand<L, uint8, Q>::call()) << static_cast<uint16>(8)) | + (vec<L, uint16, Q>(compute_rand<L, uint8, Q>::call()) << static_cast<uint16>(0)); } }; - template <precision P, template <class, precision> class vecType> - struct compute_rand<uint32, P, vecType> + template <length_t L, qualifier Q> + struct compute_rand<L, uint32, Q> { - GLM_FUNC_QUALIFIER static vecType<uint32, P> call() + GLM_FUNC_QUALIFIER static vec<L, uint32, Q> call() { return - (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(16)) | - (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(0)); + (vec<L, uint32, Q>(compute_rand<L, uint16, Q>::call()) << static_cast<uint32>(16)) | + (vec<L, uint32, Q>(compute_rand<L, uint16, Q>::call()) << static_cast<uint32>(0)); } }; - template <precision P, template <class, precision> class vecType> - struct compute_rand<uint64, P, vecType> + template <length_t L, qualifier Q> + struct compute_rand<L, uint64, Q> { - GLM_FUNC_QUALIFIER static vecType<uint64, P> call() + GLM_FUNC_QUALIFIER static vec<L, uint64, Q> call() { return - (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(32)) | - (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(0)); + (vec<L, uint64, Q>(compute_rand<L, uint32, Q>::call()) << static_cast<uint64>(32)) | + (vec<L, uint64, Q>(compute_rand<L, uint32, Q>::call()) << static_cast<uint64>(0)); } }; - template <typename T, precision P, template <class, precision> class vecType> + template <length_t L, typename T, qualifier Q> struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & Min, vecType<T, P> const & Max); + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& Min, vec<L, T, Q> const& Max); }; - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int8, P, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, int8, Q> { - GLM_FUNC_QUALIFIER static vecType<int8, P> call(vecType<int8, P> const & Min, vecType<int8, P> const & Max) + GLM_FUNC_QUALIFIER static vec<L, int8, Q> call(vec<L, int8, Q> const& Min, vec<L, int8, Q> const& Max) { - return (vecType<int8, P>(compute_rand<uint8, P, vecType>::call() % vecType<uint8, P>(Max + static_cast<int8>(1) - Min))) + Min; + return (vec<L, int8, Q>(compute_rand<L, uint8, Q>::call() % vec<L, uint8, Q>(Max + static_cast<int8>(1) - Min))) + Min; } }; - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint8, P, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, uint8, Q> { - GLM_FUNC_QUALIFIER static vecType<uint8, P> call(vecType<uint8, P> const & Min, vecType<uint8, P> const & Max) + GLM_FUNC_QUALIFIER static vec<L, uint8, Q> call(vec<L, uint8, Q> const& Min, vec<L, uint8, Q> const& Max) { - return (compute_rand<uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min; + return (compute_rand<L, uint8, Q>::call() % (Max + static_cast<uint8>(1) - Min)) + Min; } }; - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int16, P, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, int16, Q> { - GLM_FUNC_QUALIFIER static vecType<int16, P> call(vecType<int16, P> const & Min, vecType<int16, P> const & Max) + GLM_FUNC_QUALIFIER static vec<L, int16, Q> call(vec<L, int16, Q> const& Min, vec<L, int16, Q> const& Max) { - return (vecType<int16, P>(compute_rand<uint16, P, vecType>::call() % vecType<uint16, P>(Max + static_cast<int16>(1) - Min))) + Min; + return (vec<L, int16, Q>(compute_rand<L, uint16, Q>::call() % vec<L, uint16, Q>(Max + static_cast<int16>(1) - Min))) + Min; } }; - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint16, P, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, uint16, Q> { - GLM_FUNC_QUALIFIER static vecType<uint16, P> call(vecType<uint16, P> const & Min, vecType<uint16, P> const & Max) + GLM_FUNC_QUALIFIER static vec<L, uint16, Q> call(vec<L, uint16, Q> const& Min, vec<L, uint16, Q> const& Max) { - return (compute_rand<uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min; + return (compute_rand<L, uint16, Q>::call() % (Max + static_cast<uint16>(1) - Min)) + Min; } }; - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int32, P, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, int32, Q> { - GLM_FUNC_QUALIFIER static vecType<int32, P> call(vecType<int32, P> const & Min, vecType<int32, P> const & Max) + GLM_FUNC_QUALIFIER static vec<L, int32, Q> call(vec<L, int32, Q> const& Min, vec<L, int32, Q> const& Max) { - return (vecType<int32, P>(compute_rand<uint32, P, vecType>::call() % vecType<uint32, P>(Max + static_cast<int32>(1) - Min))) + Min; + return (vec<L, int32, Q>(compute_rand<L, uint32, Q>::call() % vec<L, uint32, Q>(Max + static_cast<int32>(1) - Min))) + Min; } }; - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint32, P, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, uint32, Q> { - GLM_FUNC_QUALIFIER static vecType<uint32, P> call(vecType<uint32, P> const & Min, vecType<uint32, P> const & Max) + GLM_FUNC_QUALIFIER static vec<L, uint32, Q> call(vec<L, uint32, Q> const& Min, vec<L, uint32, Q> const& Max) { - return (compute_rand<uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int64, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<int64, P> call(vecType<int64, P> const & Min, vecType<int64, P> const & Max) - { - return (vecType<int64, P>(compute_rand<uint64, P, vecType>::call() % vecType<uint64, P>(Max + static_cast<int64>(1) - Min))) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint64, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint64, P> call(vecType<uint64, P> const & Min, vecType<uint64, P> const & Max) - { - return (compute_rand<uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<float, lowp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & Min, vecType<float, lowp> const & Max) - { - return vecType<float, lowp>(compute_rand<uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min; + return (compute_rand<L, uint32, Q>::call() % (Max + static_cast<uint32>(1) - Min)) + Min; } }; - template <template <class, precision> class vecType> - struct compute_linearRand<float, mediump, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, int64, Q> { - GLM_FUNC_QUALIFIER static vecType<float, mediump> call(vecType<float, mediump> const & Min, vecType<float, mediump> const & Max) + GLM_FUNC_QUALIFIER static vec<L, int64, Q> call(vec<L, int64, Q> const& Min, vec<L, int64, Q> const& Max) { - return vecType<float, mediump>(compute_rand<uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; + return (vec<L, int64, Q>(compute_rand<L, uint64, Q>::call() % vec<L, uint64, Q>(Max + static_cast<int64>(1) - Min))) + Min; } }; - template <template <class, precision> class vecType> - struct compute_linearRand<float, highp, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, uint64, Q> { - GLM_FUNC_QUALIFIER static vecType<float, highp> call(vecType<float, highp> const & Min, vecType<float, highp> const & Max) + GLM_FUNC_QUALIFIER static vec<L, uint64, Q> call(vec<L, uint64, Q> const& Min, vec<L, uint64, Q> const& Max) { - return vecType<float, highp>(compute_rand<uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; + return (compute_rand<L, uint64, Q>::call() % (Max + static_cast<uint64>(1) - Min)) + Min; } }; - template <template <class, precision> class vecType> - struct compute_linearRand<double, lowp, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, float, Q> { - GLM_FUNC_QUALIFIER static vecType<double, lowp> call(vecType<double, lowp> const & Min, vecType<double, lowp> const & Max) + GLM_FUNC_QUALIFIER static vec<L, float, Q> call(vec<L, float, Q> const& Min, vec<L, float, Q> const& Max) { - return vecType<double, lowp>(compute_rand<uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; + return vec<L, float, Q>(compute_rand<L, uint32, Q>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; } }; - template <template <class, precision> class vecType> - struct compute_linearRand<double, mediump, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, double, Q> { - GLM_FUNC_QUALIFIER static vecType<double, mediump> call(vecType<double, mediump> const & Min, vecType<double, mediump> const & Max) + GLM_FUNC_QUALIFIER static vec<L, double, Q> call(vec<L, double, Q> const& Min, vec<L, double, Q> const& Max) { - return vecType<double, mediump>(compute_rand<uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; + return vec<L, double, Q>(compute_rand<L, uint64, Q>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; } }; - template <template <class, precision> class vecType> - struct compute_linearRand<double, highp, vecType> + template<length_t L, qualifier Q> + struct compute_linearRand<L, long double, Q> { - GLM_FUNC_QUALIFIER static vecType<double, highp> call(vecType<double, highp> const & Min, vecType<double, highp> const & Max) + GLM_FUNC_QUALIFIER static vec<L, long double, Q> call(vec<L, long double, Q> const& Min, vec<L, long double, Q> const& Max) { - return vecType<double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<long double, lowp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<long double, lowp> call(vecType<long double, lowp> const & Min, vecType<long double, lowp> const & Max) - { - return vecType<long double, lowp>(compute_rand<uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<long double, mediump, vecType> - { - GLM_FUNC_QUALIFIER static vecType<long double, mediump> call(vecType<long double, mediump> const & Min, vecType<long double, mediump> const & Max) - { - return vecType<long double, mediump>(compute_rand<uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<long double, highp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<long double, highp> call(vecType<long double, highp> const & Min, vecType<long double, highp> const & Max) - { - return vecType<long double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; + return vec<L, long double, Q>(compute_rand<L, uint64, Q>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; } }; }//namespace detail - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max) { - return detail::compute_linearRand<genType, highp, tvec1>::call( - tvec1<genType, highp>(Min), - tvec1<genType, highp>(Max)).x; + return detail::compute_linearRand<1, genType, highp>::call( + vec<1, genType, highp>(Min), + vec<1, genType, highp>(Max)).x; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> linearRand(vecType<T, P> const & Min, vecType<T, P> const & Max) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> linearRand(vec<L, T, Q> const& Min, vec<L, T, Q> const& Max) { - return detail::compute_linearRand<T, P, vecType>::call(Min, Max); + return detail::compute_linearRand<L, T, Q>::call(Min, Max); } - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation) { genType w, x1, x2; - + do { x1 = linearRand(genType(-1), genType(1)); x2 = linearRand(genType(-1), genType(1)); - + w = x1 * x1 + x2 * x2; } while(w > genType(1)); - + return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> gaussRand(vecType<T, P> const & Mean, vecType<T, P> const & Deviation) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> gaussRand(vec<L, T, Q> const& Mean, vec<L, T, Q> const& Deviation) { - return detail::functor2<T, P, vecType>::call(gaussRand, Mean, Deviation); + return detail::functor2<L, T, Q>::call(gaussRand, Mean, Deviation); } - template <typename T> - GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius) - { - tvec2<T, defaultp> Result(T(0)); + template<typename T> + GLM_FUNC_QUALIFIER vec<2, T, defaultp> diskRand(T Radius) + { + vec<2, T, defaultp> Result(T(0)); T LenRadius(T(0)); - + do { Result = linearRand( - tvec2<T, defaultp>(-Radius), - tvec2<T, defaultp>(Radius)); + vec<2, T, defaultp>(-Radius), + vec<2, T, defaultp>(Radius)); LenRadius = length(Result); } while(LenRadius > Radius); - + return Result; } - - template <typename T> - GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius) - { - tvec3<T, defaultp> Result(T(0)); + + template<typename T> + GLM_FUNC_QUALIFIER vec<3, T, defaultp> ballRand(T Radius) + { + vec<3, T, defaultp> Result(T(0)); T LenRadius(T(0)); - + do { Result = linearRand( - tvec3<T, defaultp>(-Radius), - tvec3<T, defaultp>(Radius)); + vec<3, T, defaultp>(-Radius), + vec<3, T, defaultp>(Radius)); LenRadius = length(Result); } while(LenRadius > Radius); - + return Result; } - - template <typename T> - GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius) + + template<typename T> + GLM_FUNC_QUALIFIER vec<2, T, defaultp> circularRand(T Radius) { - T a = linearRand(T(0), T(6.283185307179586476925286766559f)); - return tvec2<T, defaultp>(cos(a), sin(a)) * Radius; + T a = linearRand(T(0), static_cast<T>(6.283185307179586476925286766559)); + return vec<2, T, defaultp>(glm::cos(a), glm::sin(a)) * Radius; } - - template <typename T> - GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius) + + template<typename T> + GLM_FUNC_QUALIFIER vec<3, T, defaultp> sphericalRand(T Radius) { - T z = linearRand(T(-1), T(1)); - T a = linearRand(T(0), T(6.283185307179586476925286766559f)); - - T r = sqrt(T(1) - z * z); - - T x = r * cos(a); - T y = r * sin(a); - - return tvec3<T, defaultp>(x, y, z) * Radius; + T theta = linearRand(T(0), T(6.283185307179586476925286766559f)); + T phi = std::acos(linearRand(T(-1.0f), T(1.0f))); + + T x = std::sin(phi) * std::cos(theta); + T y = std::sin(phi) * std::sin(theta); + T z = std::cos(phi); + + return vec<3, T, defaultp>(x, y, z) * Radius; } }//namespace glm diff --git a/external/include/glm/gtc/reciprocal.hpp b/external/include/glm/gtc/reciprocal.hpp index c14a4fe..1a2e516 100644 --- a/external/include/glm/gtc/reciprocal.hpp +++ b/external/include/glm/gtc/reciprocal.hpp @@ -6,9 +6,9 @@ /// @defgroup gtc_reciprocal GLM_GTC_reciprocal /// @ingroup gtc /// -/// @brief Define secant, cosecant and cotangent functions. +/// Include <glm/gtc/reciprocal.hpp> to use the features of this extension. /// -/// <glm/gtc/reciprocal.hpp> need to be included to use these features. +/// Define secant, cosecant and cotangent functions. #pragma once @@ -26,107 +26,107 @@ namespace glm /// Secant function. /// hypotenuse / adjacent or 1 / cos(x) - /// + /// /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType sec(genType angle); /// Cosecant function. /// hypotenuse / opposite or 1 / sin(x) - /// + /// /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType csc(genType angle); - + /// Cotangent function. /// adjacent / opposite or 1 / tan(x) - /// + /// /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType cot(genType angle); /// Inverse secant function. - /// + /// /// @return Return an angle expressed in radians. /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType asec(genType x); /// Inverse cosecant function. - /// + /// /// @return Return an angle expressed in radians. /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType acsc(genType x); - + /// Inverse cotangent function. - /// + /// /// @return Return an angle expressed in radians. /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType acot(genType x); /// Secant hyperbolic function. - /// + /// /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType sech(genType angle); /// Cosecant hyperbolic function. - /// + /// /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType csch(genType angle); - + /// Cotangent hyperbolic function. - /// + /// /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType coth(genType angle); /// Inverse secant hyperbolic function. - /// + /// /// @return Return an angle expressed in radians. /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType asech(genType x); /// Inverse cosecant hyperbolic function. - /// + /// /// @return Return an angle expressed in radians. /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType acsch(genType x); - + /// Inverse cotangent hyperbolic function. - /// + /// /// @return Return an angle expressed in radians. /// @tparam genType Floating-point scalar or vector types. - /// + /// /// @see gtc_reciprocal - template <typename genType> + template<typename genType> GLM_FUNC_DECL genType acoth(genType x); /// @} diff --git a/external/include/glm/gtc/reciprocal.inl b/external/include/glm/gtc/reciprocal.inl index c625ac9..b0a8a7d 100644 --- a/external/include/glm/gtc/reciprocal.inl +++ b/external/include/glm/gtc/reciprocal.inl @@ -7,84 +7,84 @@ namespace glm { // sec - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType sec(genType angle) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values"); return genType(1) / glm::cos(angle); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> sec(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> sec(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(sec, x); + return detail::functor1<L, T, T, Q>::call(sec, x); } // csc - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType csc(genType angle) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values"); return genType(1) / glm::sin(angle); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> csc(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> csc(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(csc, x); + return detail::functor1<L, T, T, Q>::call(csc, x); } // cot - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType cot(genType angle) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values"); - + genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); return glm::tan(pi_over_2 - angle); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> cot(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> cot(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(cot, x); + return detail::functor1<L, T, T, Q>::call(cot, x); } // asec - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType asec(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values"); return acos(genType(1) / x); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> asec(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> asec(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(asec, x); + return detail::functor1<L, T, T, Q>::call(asec, x); } // acsc - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType acsc(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values"); return asin(genType(1) / x); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acsc(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> acsc(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acsc, x); + return detail::functor1<L, T, T, Q>::call(acsc, x); } // acot - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType acot(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values"); @@ -93,100 +93,100 @@ namespace glm return pi_over_2 - atan(x); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acot(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> acot(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acot, x); + return detail::functor1<L, T, T, Q>::call(acot, x); } // sech - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType sech(genType angle) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values"); return genType(1) / glm::cosh(angle); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> sech(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> sech(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(sech, x); + return detail::functor1<L, T, T, Q>::call(sech, x); } // csch - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType csch(genType angle) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values"); return genType(1) / glm::sinh(angle); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> csch(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> csch(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(csch, x); + return detail::functor1<L, T, T, Q>::call(csch, x); } // coth - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType coth(genType angle) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values"); return glm::cosh(angle) / glm::sinh(angle); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> coth(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> coth(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(coth, x); + return detail::functor1<L, T, T, Q>::call(coth, x); } // asech - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType asech(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values"); return acosh(genType(1) / x); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> asech(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> asech(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(asech, x); + return detail::functor1<L, T, T, Q>::call(asech, x); } // acsch - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType acsch(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values"); - return acsch(genType(1) / x); + return asinh(genType(1) / x); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acsch(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> acsch(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acsch, x); + return detail::functor1<L, T, T, Q>::call(acsch, x); } // acoth - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType acoth(genType x) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values"); return atanh(genType(1) / x); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acoth(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> acoth(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acoth, x); + return detail::functor1<L, T, T, Q>::call(acoth, x); } }//namespace glm diff --git a/external/include/glm/gtc/round.hpp b/external/include/glm/gtc/round.hpp index a583592..d8d04c3 100644 --- a/external/include/glm/gtc/round.hpp +++ b/external/include/glm/gtc/round.hpp @@ -7,15 +7,15 @@ /// @defgroup gtc_round GLM_GTC_round /// @ingroup gtc /// -/// @brief rounding value to specific boundings +/// Include <glm/gtc/round.hpp> to use the features of this extension. /// -/// <glm/gtc/round.hpp> need to be included to use these functionalities. +/// Rounding value to specific boundings #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../detail/_vectorize.hpp" #include "../vector_relational.hpp" #include "../common.hpp" @@ -33,140 +33,168 @@ namespace glm /// Return true if the value is a power of two number. /// /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value); + template<typename genIUType> + GLM_FUNC_DECL bool isPowerOfTwo(genIUType v); /// Return true if the value is a power of two number. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> isPowerOfTwo(vecType<T, P> const & value); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, bool, Q> isPowerOfTwo(vec<L, T, Q> const& v); /// Return the power of two number which value is just higher the input value, /// round up to a power of two. /// /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value); + template<typename genIUType> + GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType v); /// Return the power of two number which value is just higher the input value, /// round up to a power of two. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & value); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> ceilPowerOfTwo(vec<L, T, Q> const& v); /// Return the power of two number which value is just lower the input value, /// round down to a power of two. /// /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value); + template<typename genIUType> + GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType v); /// Return the power of two number which value is just lower the input value, /// round down to a power of two. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> floorPowerOfTwo(vecType<T, P> const & value); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> floorPowerOfTwo(vec<L, T, Q> const& v); /// Return the power of two number which value is the closet to the input value. /// /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value); + template<typename genIUType> + GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType v); /// Return the power of two number which value is the closet to the input value. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> roundPowerOfTwo(vecType<T, P> const & value); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> roundPowerOfTwo(vec<L, T, Q> const& v); /// Return true if the 'Value' is a multiple of 'Multiple'. /// /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple); + template<typename genIUType> + GLM_FUNC_DECL bool isMultiple(genIUType v, genIUType Multiple); /// Return true if the 'Value' is a multiple of 'Multiple'. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, bool, Q> isMultiple(vec<L, T, Q> const& v, T Multiple); /// Return true if the 'Value' is a multiple of 'Multiple'. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, bool, Q> isMultiple(vec<L, T, Q> const& v, vec<L, T, Q> const& Multiple); /// Higher multiple number of Source. /// /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source + /// + /// @param v Source value to which is applied the function /// @param Multiple Must be a null or positive value /// /// @see gtc_round - template <typename genType> - GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple); + template<typename genType> + GLM_FUNC_DECL genType ceilMultiple(genType v, genType Multiple); /// Higher multiple number of Source. /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function /// @param Multiple Must be a null or positive value /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> ceilMultiple(vec<L, T, Q> const& v, vec<L, T, Q> const& Multiple); /// Lower multiple number of Source. /// /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source + /// + /// @param v Source value to which is applied the function /// @param Multiple Must be a null or positive value /// /// @see gtc_round - template <typename genType> - GLM_FUNC_DECL genType floorMultiple( - genType Source, - genType Multiple); + template<typename genType> + GLM_FUNC_DECL genType floorMultiple(genType v, genType Multiple); /// Lower multiple number of Source. /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function /// @param Multiple Must be a null or positive value /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> floorMultiple( - vecType<T, P> const & Source, - vecType<T, P> const & Multiple); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> floorMultiple(vec<L, T, Q> const& v, vec<L, T, Q> const& Multiple); /// Lower multiple number of Source. /// /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source + /// + /// @param v Source value to which is applied the function /// @param Multiple Must be a null or positive value /// /// @see gtc_round - template <typename genType> - GLM_FUNC_DECL genType roundMultiple( - genType Source, - genType Multiple); + template<typename genType> + GLM_FUNC_DECL genType roundMultiple(genType v, genType Multiple); /// Lower multiple number of Source. /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function /// @param Multiple Must be a null or positive value /// /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> roundMultiple( - vecType<T, P> const & Source, - vecType<T, P> const & Multiple); + template<length_t L, typename T, qualifier Q> + GLM_FUNC_DECL vec<L, T, Q> roundMultiple(vec<L, T, Q> const& v, vec<L, T, Q> const& Multiple); /// @} } //namespace glm diff --git a/external/include/glm/gtc/round.inl b/external/include/glm/gtc/round.inl index f583c40..d4e9392 100644 --- a/external/include/glm/gtc/round.inl +++ b/external/include/glm/gtc/round.inl @@ -1,78 +1,78 @@ /// @ref gtc_round /// @file glm/gtc/round.inl -#include "../detail/func_integer.hpp" +#include "../integer.hpp" namespace glm{ namespace detail { - template <typename T, precision P, template <typename, precision> class vecType, bool compute = false> + template<length_t L, typename T, qualifier Q, bool compute = false> struct compute_ceilShift { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v, T) { return v; } }; - template <typename T, precision P, template <typename, precision> class vecType> - struct compute_ceilShift<T, P, vecType, true> + template<length_t L, typename T, qualifier Q> + struct compute_ceilShift<L, T, Q, true> { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v, T Shift) { return v | (v >> Shift); } }; - template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true> + template<length_t L, typename T, qualifier Q, bool isSigned = true> struct compute_ceilPowerOfTwo { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); - vecType<T, P> const Sign(sign(x)); + vec<L, T, Q> const Sign(sign(x)); - vecType<T, P> v(abs(x)); + vec<L, T, Q> v(abs(x)); v = v - static_cast<T>(1); v = v | (v >> static_cast<T>(1)); v = v | (v >> static_cast<T>(2)); v = v | (v >> static_cast<T>(4)); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); + v = compute_ceilShift<L, T, Q, sizeof(T) >= 2>::call(v, 8); + v = compute_ceilShift<L, T, Q, sizeof(T) >= 4>::call(v, 16); + v = compute_ceilShift<L, T, Q, sizeof(T) >= 8>::call(v, 32); return (v + static_cast<T>(1)) * Sign; } }; - template <typename T, precision P, template <typename, precision> class vecType> - struct compute_ceilPowerOfTwo<T, P, vecType, false> + template<length_t L, typename T, qualifier Q> + struct compute_ceilPowerOfTwo<L, T, Q, false> { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) + GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& x) { GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); - vecType<T, P> v(x); + vec<L, T, Q> v(x); v = v - static_cast<T>(1); v = v | (v >> static_cast<T>(1)); v = v | (v >> static_cast<T>(2)); v = v | (v >> static_cast<T>(4)); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); + v = compute_ceilShift<L, T, Q, sizeof(T) >= 2>::call(v, 8); + v = compute_ceilShift<L, T, Q, sizeof(T) >= 4>::call(v, 16); + v = compute_ceilShift<L, T, Q, sizeof(T) >= 8>::call(v, 32); return v + static_cast<T>(1); } }; - template <bool is_float, bool is_signed> + template<bool is_float, bool is_signed> struct compute_ceilMultiple{}; - template <> + template<> struct compute_ceilMultiple<true, true> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source > genType(0)) @@ -82,10 +82,10 @@ namespace detail } }; - template <> + template<> struct compute_ceilMultiple<false, false> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { genType Tmp = Source - genType(1); @@ -93,10 +93,10 @@ namespace detail } }; - template <> + template<> struct compute_ceilMultiple<false, true> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source > genType(0)) @@ -109,13 +109,13 @@ namespace detail } }; - template <bool is_float, bool is_signed> + template<bool is_float, bool is_signed> struct compute_floorMultiple{}; - template <> + template<> struct compute_floorMultiple<true, true> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) @@ -125,10 +125,10 @@ namespace detail } }; - template <> + template<> struct compute_floorMultiple<false, false> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) @@ -141,10 +141,10 @@ namespace detail } }; - template <> + template<> struct compute_floorMultiple<false, true> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) @@ -157,13 +157,13 @@ namespace detail } }; - template <bool is_float, bool is_signed> + template<bool is_float, bool is_signed> struct compute_roundMultiple{}; - template <> + template<> struct compute_roundMultiple<true, true> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) @@ -176,10 +176,10 @@ namespace detail } }; - template <> + template<> struct compute_roundMultiple<false, false> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) @@ -192,10 +192,10 @@ namespace detail } }; - template <> + template<> struct compute_roundMultiple<false, true> { - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) @@ -212,54 +212,54 @@ namespace detail //////////////// // isPowerOfTwo - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value) { genType const Result = glm::abs(Value); return !(Result & (Result - 1)); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> isPowerOfTwo(vec<L, T, Q> const& Value) { - vecType<T, P> const Result(abs(Value)); - return equal(Result & (Result - 1), vecType<T, P>(0)); + vec<L, T, Q> const Result(abs(Value)); + return equal(Result & (Result - 1), vec<L, T, Q>(0)); } ////////////////// // ceilPowerOfTwo - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value) { - return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x; + return detail::compute_ceilPowerOfTwo<1, genType, defaultp, std::numeric_limits<genType>::is_signed>::call(vec<1, genType, defaultp>(value)).x; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> ceilPowerOfTwo(vec<L, T, Q> const& v) { - return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v); + return detail::compute_ceilPowerOfTwo<L, T, Q, std::numeric_limits<T>::is_signed>::call(v); } /////////////////// // floorPowerOfTwo - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value) { return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> floorPowerOfTwo(vec<L, T, Q> const& v) { - return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v); + return detail::functor1<L, T, T, Q>::call(floorPowerOfTwo, v); } /////////////////// // roundPowerOfTwo - template <typename genIUType> + template<typename genIUType> GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value) { if(isPowerOfTwo(value)) @@ -270,75 +270,75 @@ namespace detail return (next - value) < (value - prev) ? next : prev; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> roundPowerOfTwo(vec<L, T, Q> const& v) { - return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v); + return detail::functor1<L, T, T, Q>::call(roundPowerOfTwo, v); } //////////////// // isMultiple - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple) { - return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x; + return isMultiple(vec<1, genType>(Value), vec<1, genType>(Multiple)).x; } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> isMultiple(vec<L, T, Q> const& Value, T Multiple) { - return (Value % Multiple) == vecType<T, P>(0); + return (Value % Multiple) == vec<L, T, Q>(0); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, bool, Q> isMultiple(vec<L, T, Q> const& Value, vec<L, T, Q> const& Multiple) { - return (Value % Multiple) == vecType<T, P>(0); + return (Value % Multiple) == vec<L, T, Q>(0); } ////////////////////// // ceilMultiple - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple) { return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> ceilMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple) { - return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple); + return detail::functor2<L, T, Q>::call(ceilMultiple, Source, Multiple); } ////////////////////// // floorMultiple - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple) { return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> floorMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple) { - return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple); + return detail::functor2<L, T, Q>::call(floorMultiple, Source, Multiple); } ////////////////////// // roundMultiple - template <typename genType> + template<typename genType> GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple) { return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); } - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> roundMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple) { - return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple); + return detail::functor2<L, T, Q>::call(roundMultiple, Source, Multiple); } }//namespace glm diff --git a/external/include/glm/gtc/type_aligned.hpp b/external/include/glm/gtc/type_aligned.hpp index 2e4503c..7e51ce1 100644 --- a/external/include/glm/gtc/type_aligned.hpp +++ b/external/include/glm/gtc/type_aligned.hpp @@ -6,8 +6,9 @@ /// @defgroup gtc_type_aligned GLM_GTC_type_aligned /// @ingroup gtc /// -/// @brief Aligned types. -/// <glm/gtc/type_aligned.hpp> need to be included to use these features. +/// Include <glm/gtc/type_aligned.hpp> to use the features of this extension. +/// +/// Aligned types allowing SIMD optimizations of vectors and matrices types #pragma once @@ -25,214 +26,376 @@ namespace glm { - template <typename T, precision P> struct tvec1; - template <typename T, precision P> struct tvec2; - template <typename T, precision P> struct tvec3; - template <typename T, precision P> struct tvec4; /// @addtogroup gtc_type_aligned /// @{ // -- *vec1 -- - typedef tvec1<float, aligned_highp> aligned_highp_vec1; - typedef tvec1<float, aligned_mediump> aligned_mediump_vec1; - typedef tvec1<float, aligned_lowp> aligned_lowp_vec1; - typedef tvec1<double, aligned_highp> aligned_highp_dvec1; - typedef tvec1<double, aligned_mediump> aligned_mediump_dvec1; - typedef tvec1<double, aligned_lowp> aligned_lowp_dvec1; - typedef tvec1<int, aligned_highp> aligned_highp_ivec1; - typedef tvec1<int, aligned_mediump> aligned_mediump_ivec1; - typedef tvec1<int, aligned_lowp> aligned_lowp_ivec1; - typedef tvec1<uint, aligned_highp> aligned_highp_uvec1; - typedef tvec1<uint, aligned_mediump> aligned_mediump_uvec1; - typedef tvec1<uint, aligned_lowp> aligned_lowp_uvec1; - typedef tvec1<bool, aligned_highp> aligned_highp_bvec1; - typedef tvec1<bool, aligned_mediump> aligned_mediump_bvec1; - typedef tvec1<bool, aligned_lowp> aligned_lowp_bvec1; - - typedef tvec1<float, packed_highp> packed_highp_vec1; - typedef tvec1<float, packed_mediump> packed_mediump_vec1; - typedef tvec1<float, packed_lowp> packed_lowp_vec1; - typedef tvec1<double, packed_highp> packed_highp_dvec1; - typedef tvec1<double, packed_mediump> packed_mediump_dvec1; - typedef tvec1<double, packed_lowp> packed_lowp_dvec1; - typedef tvec1<int, packed_highp> packed_highp_ivec1; - typedef tvec1<int, packed_mediump> packed_mediump_ivec1; - typedef tvec1<int, packed_lowp> packed_lowp_ivec1; - typedef tvec1<uint, packed_highp> packed_highp_uvec1; - typedef tvec1<uint, packed_mediump> packed_mediump_uvec1; - typedef tvec1<uint, packed_lowp> packed_lowp_uvec1; - typedef tvec1<bool, packed_highp> packed_highp_bvec1; - typedef tvec1<bool, packed_mediump> packed_mediump_bvec1; - typedef tvec1<bool, packed_lowp> packed_lowp_bvec1; + /// 1 component vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, float, aligned_highp> aligned_highp_vec1; + + /// 1 component vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, float, aligned_mediump> aligned_mediump_vec1; + + /// 1 component vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, float, aligned_lowp> aligned_lowp_vec1; + + /// 1 component vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, double, aligned_highp> aligned_highp_dvec1; + + /// 1 component vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, double, aligned_mediump> aligned_mediump_dvec1; + + /// 1 component vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, double, aligned_lowp> aligned_lowp_dvec1; + + /// 1 component vector aligned in memory of signed integer numbers. + typedef vec<1, int, aligned_highp> aligned_highp_ivec1; + + /// 1 component vector aligned in memory of signed integer numbers. + typedef vec<1, int, aligned_mediump> aligned_mediump_ivec1; + + /// 1 component vector aligned in memory of signed integer numbers. + typedef vec<1, int, aligned_lowp> aligned_lowp_ivec1; + + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef vec<1, uint, aligned_highp> aligned_highp_uvec1; + + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef vec<1, uint, aligned_mediump> aligned_mediump_uvec1; + + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef vec<1, uint, aligned_lowp> aligned_lowp_uvec1; + + /// 1 component vector aligned in memory of bool values. + typedef vec<1, bool, aligned_highp> aligned_highp_bvec1; + + /// 1 component vector aligned in memory of bool values. + typedef vec<1, bool, aligned_mediump> aligned_mediump_bvec1; + + /// 1 component vector aligned in memory of bool values. + typedef vec<1, bool, aligned_lowp> aligned_lowp_bvec1; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, float, packed_highp> packed_highp_vec1; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, float, packed_mediump> packed_mediump_vec1; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, float, packed_lowp> packed_lowp_vec1; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, double, packed_highp> packed_highp_dvec1; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, double, packed_mediump> packed_mediump_dvec1; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, double, packed_lowp> packed_lowp_dvec1; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef vec<1, int, packed_highp> packed_highp_ivec1; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef vec<1, int, packed_mediump> packed_mediump_ivec1; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef vec<1, int, packed_lowp> packed_lowp_ivec1; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef vec<1, uint, packed_highp> packed_highp_uvec1; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef vec<1, uint, packed_mediump> packed_mediump_uvec1; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef vec<1, uint, packed_lowp> packed_lowp_uvec1; + + /// 1 component vector tightly packed in memory of bool values. + typedef vec<1, bool, packed_highp> packed_highp_bvec1; + + /// 1 component vector tightly packed in memory of bool values. + typedef vec<1, bool, packed_mediump> packed_mediump_bvec1; + + /// 1 component vector tightly packed in memory of bool values. + typedef vec<1, bool, packed_lowp> packed_lowp_bvec1; // -- *vec2 -- - /// 2 components vector of high single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<float, aligned_highp> aligned_highp_vec2; + /// 2 components vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, float, aligned_highp> aligned_highp_vec2; + + /// 2 components vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, float, aligned_mediump> aligned_mediump_vec2; + + /// 2 components vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, float, aligned_lowp> aligned_lowp_vec2; + + /// 2 components vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, double, aligned_highp> aligned_highp_dvec2; + + /// 2 components vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, double, aligned_mediump> aligned_mediump_dvec2; + + /// 2 components vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, double, aligned_lowp> aligned_lowp_dvec2; + + /// 2 components vector aligned in memory of signed integer numbers. + typedef vec<2, int, aligned_highp> aligned_highp_ivec2; - /// 2 components vector of medium single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<float, aligned_mediump> aligned_mediump_vec2; + /// 2 components vector aligned in memory of signed integer numbers. + typedef vec<2, int, aligned_mediump> aligned_mediump_ivec2; - /// 2 components vector of low single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<float, aligned_lowp> aligned_lowp_vec2; + /// 2 components vector aligned in memory of signed integer numbers. + typedef vec<2, int, aligned_lowp> aligned_lowp_ivec2; - /// 2 components vector of high double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<double, aligned_highp> aligned_highp_dvec2; + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef vec<2, uint, aligned_highp> aligned_highp_uvec2; - /// 2 components vector of medium double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<double, aligned_mediump> aligned_mediump_dvec2; + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef vec<2, uint, aligned_mediump> aligned_mediump_uvec2; - /// 2 components vector of low double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<double, aligned_lowp> aligned_lowp_dvec2; + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef vec<2, uint, aligned_lowp> aligned_lowp_uvec2; - /// 2 components vector of high precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<int, aligned_highp> aligned_highp_ivec2; + /// 2 components vector aligned in memory of bool values. + typedef vec<2, bool, aligned_highp> aligned_highp_bvec2; - /// 2 components vector of medium precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<int, aligned_mediump> aligned_mediump_ivec2; + /// 2 components vector aligned in memory of bool values. + typedef vec<2, bool, aligned_mediump> aligned_mediump_bvec2; - /// 2 components vector of low precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<int, aligned_lowp> aligned_lowp_ivec2; + /// 2 components vector aligned in memory of bool values. + typedef vec<2, bool, aligned_lowp> aligned_lowp_bvec2; - /// 2 components vector of high precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<uint, aligned_highp> aligned_highp_uvec2; + /// 2 components vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, float, packed_highp> packed_highp_vec2; - /// 2 components vector of medium precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<uint, aligned_mediump> aligned_mediump_uvec2; + /// 2 components vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, float, packed_mediump> packed_mediump_vec2; - /// 2 components vector of low precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<uint, aligned_lowp> aligned_lowp_uvec2; + /// 2 components vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, float, packed_lowp> packed_lowp_vec2; - /// 2 components vector of high precision bool numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<bool, aligned_highp> aligned_highp_bvec2; + /// 2 components vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, double, packed_highp> packed_highp_dvec2; - /// 2 components vector of medium precision bool numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<bool, aligned_mediump> aligned_mediump_bvec2; + /// 2 components vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, double, packed_mediump> packed_mediump_dvec2; - /// 2 components vector of low precision bool numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<bool, aligned_lowp> aligned_lowp_bvec2; + /// 2 components vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, double, packed_lowp> packed_lowp_dvec2; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef vec<2, int, packed_highp> packed_highp_ivec2; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef vec<2, int, packed_mediump> packed_mediump_ivec2; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef vec<2, int, packed_lowp> packed_lowp_ivec2; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<2, uint, packed_highp> packed_highp_uvec2; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<2, uint, packed_mediump> packed_mediump_uvec2; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<2, uint, packed_lowp> packed_lowp_uvec2; + + /// 2 components vector tightly packed in memory of bool values. + typedef vec<2, bool, packed_highp> packed_highp_bvec2; + + /// 2 components vector tightly packed in memory of bool values. + typedef vec<2, bool, packed_mediump> packed_mediump_bvec2; + + /// 2 components vector tightly packed in memory of bool values. + typedef vec<2, bool, packed_lowp> packed_lowp_bvec2; // -- *vec3 -- - /// 3 components vector of high single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<float, aligned_highp> aligned_highp_vec3; + /// 3 components vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, float, aligned_highp> aligned_highp_vec3; + + /// 3 components vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, float, aligned_mediump> aligned_mediump_vec3; + + /// 3 components vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, float, aligned_lowp> aligned_lowp_vec3; + + /// 3 components vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, double, aligned_highp> aligned_highp_dvec3; - /// 3 components vector of medium single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<float, aligned_mediump> aligned_mediump_vec3; + /// 3 components vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, double, aligned_mediump> aligned_mediump_dvec3; - /// 3 components vector of low single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<float, aligned_lowp> aligned_lowp_vec3; + /// 3 components vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, double, aligned_lowp> aligned_lowp_dvec3; - /// 3 components vector of high double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<double, aligned_highp> aligned_highp_dvec3; + /// 3 components vector aligned in memory of signed integer numbers. + typedef vec<3, int, aligned_highp> aligned_highp_ivec3; - /// 3 components vector of medium double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<double, aligned_mediump> aligned_mediump_dvec3; + /// 3 components vector aligned in memory of signed integer numbers. + typedef vec<3, int, aligned_mediump> aligned_mediump_ivec3; - /// 3 components vector of low double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<double, aligned_lowp> aligned_lowp_dvec3; + /// 3 components vector aligned in memory of signed integer numbers. + typedef vec<3, int, aligned_lowp> aligned_lowp_ivec3; - /// 3 components vector of high precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<int, aligned_highp> aligned_highp_ivec3; + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef vec<3, uint, aligned_highp> aligned_highp_uvec3; - /// 3 components vector of medium precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<int, aligned_mediump> aligned_mediump_ivec3; + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef vec<3, uint, aligned_mediump> aligned_mediump_uvec3; - /// 3 components vector of low precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<int, aligned_lowp> aligned_lowp_ivec3; + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef vec<3, uint, aligned_lowp> aligned_lowp_uvec3; - /// 3 components vector of high precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<uint, aligned_highp> aligned_highp_uvec3; + /// 3 components vector aligned in memory of bool values. + typedef vec<3, bool, aligned_highp> aligned_highp_bvec3; - /// 3 components vector of medium precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<uint, aligned_mediump> aligned_mediump_uvec3; + /// 3 components vector aligned in memory of bool values. + typedef vec<3, bool, aligned_mediump> aligned_mediump_bvec3; - /// 3 components vector of low precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<uint, aligned_lowp> aligned_lowp_uvec3; + /// 3 components vector aligned in memory of bool values. + typedef vec<3, bool, aligned_lowp> aligned_lowp_bvec3; - /// 3 components vector of high precision bool numbers. - typedef tvec3<bool, aligned_highp> aligned_highp_bvec3; + /// 3 components vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, float, packed_highp> packed_highp_vec3; - /// 3 components vector of medium precision bool numbers. - typedef tvec3<bool, aligned_mediump> aligned_mediump_bvec3; + /// 3 components vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, float, packed_mediump> packed_mediump_vec3; - /// 3 components vector of low precision bool numbers. - typedef tvec3<bool, aligned_lowp> aligned_lowp_bvec3; + /// 3 components vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, float, packed_lowp> packed_lowp_vec3; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, double, packed_highp> packed_highp_dvec3; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, double, packed_mediump> packed_mediump_dvec3; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, double, packed_lowp> packed_lowp_dvec3; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef vec<3, int, packed_highp> packed_highp_ivec3; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef vec<3, int, packed_mediump> packed_mediump_ivec3; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef vec<3, int, packed_lowp> packed_lowp_ivec3; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<3, uint, packed_highp> packed_highp_uvec3; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<3, uint, packed_mediump> packed_mediump_uvec3; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<3, uint, packed_lowp> packed_lowp_uvec3; + + /// 3 components vector tightly packed in memory of bool values. + typedef vec<3, bool, packed_highp> packed_highp_bvec3; + + /// 3 components vector tightly packed in memory of bool values. + typedef vec<3, bool, packed_mediump> packed_mediump_bvec3; + + /// 3 components vector tightly packed in memory of bool values. + typedef vec<3, bool, packed_lowp> packed_lowp_bvec3; // -- *vec4 -- - /// 4 components vector of high single-precision floating-point numbers. - typedef tvec4<float, aligned_highp> aligned_highp_vec4; + /// 4 components vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, float, aligned_highp> aligned_highp_vec4; + + /// 4 components vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, float, aligned_mediump> aligned_mediump_vec4; + + /// 4 components vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, float, aligned_lowp> aligned_lowp_vec4; + + /// 4 components vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, double, aligned_highp> aligned_highp_dvec4; + + /// 4 components vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, double, aligned_mediump> aligned_mediump_dvec4; + + /// 4 components vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, double, aligned_lowp> aligned_lowp_dvec4; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef vec<4, int, aligned_highp> aligned_highp_ivec4; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef vec<4, int, aligned_mediump> aligned_mediump_ivec4; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef vec<4, int, aligned_lowp> aligned_lowp_ivec4; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef vec<4, uint, aligned_highp> aligned_highp_uvec4; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef vec<4, uint, aligned_mediump> aligned_mediump_uvec4; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef vec<4, uint, aligned_lowp> aligned_lowp_uvec4; + + /// 4 components vector aligned in memory of bool values. + typedef vec<4, bool, aligned_highp> aligned_highp_bvec4; - /// 4 components vector of medium single-precision floating-point numbers. - typedef tvec4<float, aligned_mediump> aligned_mediump_vec4; + /// 4 components vector aligned in memory of bool values. + typedef vec<4, bool, aligned_mediump> aligned_mediump_bvec4; - /// 4 components vector of low single-precision floating-point numbers. - typedef tvec4<float, aligned_lowp> aligned_lowp_vec4; + /// 4 components vector aligned in memory of bool values. + typedef vec<4, bool, aligned_lowp> aligned_lowp_bvec4; - /// 4 components vector of high double-precision floating-point numbers. - typedef tvec4<double, aligned_highp> aligned_highp_dvec4; + /// 4 components vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, float, packed_highp> packed_highp_vec4; - /// 4 components vector of medium double-precision floating-point numbers. - typedef tvec4<double, aligned_mediump> aligned_mediump_dvec4; + /// 4 components vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, float, packed_mediump> packed_mediump_vec4; - /// 4 components vector of low double-precision floating-point numbers. - typedef tvec4<double, aligned_lowp> aligned_lowp_dvec4; + /// 4 components vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, float, packed_lowp> packed_lowp_vec4; - /// 4 components vector of high precision signed integer numbers. - typedef tvec4<int, aligned_highp> aligned_highp_ivec4; + /// 4 components vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, double, packed_highp> packed_highp_dvec4; - /// 4 components vector of medium precision signed integer numbers. - typedef tvec4<int, aligned_mediump> aligned_mediump_ivec4; + /// 4 components vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, double, packed_mediump> packed_mediump_dvec4; - /// 4 components vector of low precision signed integer numbers. - typedef tvec4<int, aligned_lowp> aligned_lowp_ivec4; + /// 4 components vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, double, packed_lowp> packed_lowp_dvec4; - /// 4 components vector of high precision unsigned integer numbers. - typedef tvec4<uint, aligned_highp> aligned_highp_uvec4; + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef vec<4, int, packed_highp> packed_highp_ivec4; - /// 4 components vector of medium precision unsigned integer numbers. - typedef tvec4<uint, aligned_mediump> aligned_mediump_uvec4; + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef vec<4, int, packed_mediump> packed_mediump_ivec4; - /// 4 components vector of low precision unsigned integer numbers. - typedef tvec4<uint, aligned_lowp> aligned_lowp_uvec4; + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef vec<4, int, packed_lowp> packed_lowp_ivec4; - /// 4 components vector of high precision bool numbers. - typedef tvec4<bool, aligned_highp> aligned_highp_bvec4; + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<4, uint, packed_highp> packed_highp_uvec4; - /// 4 components vector of medium precision bool numbers. - typedef tvec4<bool, aligned_mediump> aligned_mediump_bvec4; + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<4, uint, packed_mediump> packed_mediump_uvec4; - /// 4 components vector of low precision bool numbers. - typedef tvec4<bool, aligned_lowp> aligned_lowp_bvec4; + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<4, uint, packed_lowp> packed_lowp_uvec4; + + /// 4 components vector tightly packed in memory of bool values. + typedef vec<4, bool, packed_highp> packed_highp_bvec4; + + /// 4 components vector tightly packed in memory of bool values. + typedef vec<4, bool, packed_mediump> packed_mediump_bvec4; + + /// 4 components vector tightly packed in memory of bool values. + typedef vec<4, bool, packed_lowp> packed_lowp_bvec4; // -- default -- @@ -241,23 +404,43 @@ namespace glm typedef aligned_lowp_vec2 aligned_vec2; typedef aligned_lowp_vec3 aligned_vec3; typedef aligned_lowp_vec4 aligned_vec4; + typedef packed_lowp_vec1 packed_vec1; + typedef packed_lowp_vec2 packed_vec2; + typedef packed_lowp_vec3 packed_vec3; + typedef packed_lowp_vec4 packed_vec4; #elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) typedef aligned_mediump_vec1 aligned_vec1; typedef aligned_mediump_vec2 aligned_vec2; typedef aligned_mediump_vec3 aligned_vec3; typedef aligned_mediump_vec4 aligned_vec4; + typedef packed_mediump_vec1 packed_vec1; + typedef packed_mediump_vec2 packed_vec2; + typedef packed_mediump_vec3 packed_vec3; + typedef packed_mediump_vec4 packed_vec4; #else //defined(GLM_PRECISION_HIGHP_FLOAT) - /// 1 component vector of floating-point numbers. + /// 1 component vector aligned in memory of single-precision floating-point numbers. typedef aligned_highp_vec1 aligned_vec1; - /// 2 components vector of floating-point numbers. + /// 2 components vector aligned in memory of single-precision floating-point numbers. typedef aligned_highp_vec2 aligned_vec2; - /// 3 components vector of floating-point numbers. + /// 3 components vector aligned in memory of single-precision floating-point numbers. typedef aligned_highp_vec3 aligned_vec3; - /// 4 components vector of floating-point numbers. + /// 4 components vector aligned in memory of single-precision floating-point numbers. typedef aligned_highp_vec4 aligned_vec4; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec1 packed_vec1; + + /// 2 components vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec2 packed_vec2; + + /// 3 components vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec3 packed_vec3; + + /// 4 components vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec4 packed_vec4; #endif//GLM_PRECISION #if(defined(GLM_PRECISION_LOWP_DOUBLE)) @@ -265,23 +448,43 @@ namespace glm typedef aligned_lowp_dvec2 aligned_dvec2; typedef aligned_lowp_dvec3 aligned_dvec3; typedef aligned_lowp_dvec4 aligned_dvec4; + typedef packed_lowp_dvec1 packed_dvec1; + typedef packed_lowp_dvec2 packed_dvec2; + typedef packed_lowp_dvec3 packed_dvec3; + typedef packed_lowp_dvec4 packed_dvec4; #elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) typedef aligned_mediump_dvec1 aligned_dvec1; typedef aligned_mediump_dvec2 aligned_dvec2; typedef aligned_mediump_dvec3 aligned_dvec3; typedef aligned_mediump_dvec4 aligned_dvec4; + typedef packed_mediump_dvec1 packed_dvec1; + typedef packed_mediump_dvec2 packed_dvec2; + typedef packed_mediump_dvec3 packed_dvec3; + typedef packed_mediump_dvec4 packed_dvec4; #else //defined(GLM_PRECISION_HIGHP_DOUBLE) - /// 1 component vector of double-precision floating-point numbers. + /// 1 component vector aligned in memory of double-precision floating-point numbers. typedef aligned_highp_dvec1 aligned_dvec1; - /// 2 components vector of double-precision floating-point numbers. + /// 2 components vector aligned in memory of double-precision floating-point numbers. typedef aligned_highp_dvec2 aligned_dvec2; - /// 3 components vector of double-precision floating-point numbers. + /// 3 components vector aligned in memory of double-precision floating-point numbers. typedef aligned_highp_dvec3 aligned_dvec3; - /// 4 components vector of double-precision floating-point numbers. + /// 4 components vector aligned in memory of double-precision floating-point numbers. typedef aligned_highp_dvec4 aligned_dvec4; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec1 packed_dvec1; + + /// 2 components vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec2 packed_dvec2; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec3 packed_dvec3; + + /// 4 components vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec4 packed_dvec4; #endif//GLM_PRECISION #if(defined(GLM_PRECISION_LOWP_INT)) @@ -295,17 +498,30 @@ namespace glm typedef aligned_mediump_ivec3 aligned_ivec3; typedef aligned_mediump_ivec4 aligned_ivec4; #else //defined(GLM_PRECISION_HIGHP_INT) - /// 1 component vector of signed integer numbers. + /// 1 component vector aligned in memory of signed integer numbers. typedef aligned_highp_ivec1 aligned_ivec1; - /// 2 components vector of signed integer numbers. + /// 2 components vector aligned in memory of signed integer numbers. typedef aligned_highp_ivec2 aligned_ivec2; - /// 3 components vector of signed integer numbers. + /// 3 components vector aligned in memory of signed integer numbers. typedef aligned_highp_ivec3 aligned_ivec3; - /// 4 components vector of signed integer numbers. + /// 4 components vector aligned in memory of signed integer numbers. typedef aligned_highp_ivec4 aligned_ivec4; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec1 packed_ivec1; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec2 packed_ivec2; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec3 packed_ivec3; + + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec4 packed_ivec4; + #endif//GLM_PRECISION // -- Unsigned integer definition -- @@ -321,17 +537,29 @@ namespace glm typedef aligned_mediump_uvec3 aligned_uvec3; typedef aligned_mediump_uvec4 aligned_uvec4; #else //defined(GLM_PRECISION_HIGHP_UINT) - /// 1 component vector of unsigned integer numbers. + /// 1 component vector aligned in memory of unsigned integer numbers. typedef aligned_highp_uvec1 aligned_uvec1; - /// 2 components vector of unsigned integer numbers. + /// 2 components vector aligned in memory of unsigned integer numbers. typedef aligned_highp_uvec2 aligned_uvec2; - /// 3 components vector of unsigned integer numbers. + /// 3 components vector aligned in memory of unsigned integer numbers. typedef aligned_highp_uvec3 aligned_uvec3; - /// 4 components vector of unsigned integer numbers. + /// 4 components vector aligned in memory of unsigned integer numbers. typedef aligned_highp_uvec4 aligned_uvec4; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec1 packed_uvec1; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec2 packed_uvec2; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec3 packed_uvec3; + + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec4 packed_uvec4; #endif//GLM_PRECISION #if(defined(GLM_PRECISION_LOWP_BOOL)) @@ -345,17 +573,29 @@ namespace glm typedef aligned_mediump_bvec3 aligned_bvec3; typedef aligned_mediump_bvec4 aligned_bvec4; #else //defined(GLM_PRECISION_HIGHP_BOOL) - /// 1 component vector of boolean. + /// 1 component vector aligned in memory of bool values. typedef aligned_highp_bvec1 aligned_bvec1; - /// 2 components vector of boolean. + /// 2 components vector aligned in memory of bool values. typedef aligned_highp_bvec2 aligned_bvec2; - /// 3 components vector of boolean. + /// 3 components vector aligned in memory of bool values. typedef aligned_highp_bvec3 aligned_bvec3; - /// 4 components vector of boolean. + /// 4 components vector aligned in memory of bool values. typedef aligned_highp_bvec4 aligned_bvec4; + + /// 1 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec1 packed_bvec1; + + /// 2 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec2 packed_bvec2; + + /// 3 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec3 packed_bvec3; + + /// 4 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec4 packed_bvec4; #endif//GLM_PRECISION /// @} diff --git a/external/include/glm/gtc/type_precision.hpp b/external/include/glm/gtc/type_precision.hpp index a2dbb66..a4524fe 100644 --- a/external/include/glm/gtc/type_precision.hpp +++ b/external/include/glm/gtc/type_precision.hpp @@ -2,18 +2,17 @@ /// @file glm/gtc/type_precision.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtc_quaternion (dependence) /// /// @defgroup gtc_type_precision GLM_GTC_type_precision /// @ingroup gtc /// -/// @brief Defines specific C++-based precision types. -/// -/// @ref core_precision defines types based on GLSL's precision qualifiers. This -/// extension defines types based on explicitly-sized C++ data types. +/// Include <glm/gtc/type_precision.hpp> to use the features of this extension. +/// +/// Defines specific C++-based qualifier types. /// -/// <glm/gtc/type_precision.hpp> need to be included to use these functionalities. +/// @ref core_precision defines types based on GLSL's qualifier qualifiers. This +/// extension defines types based on explicitly-sized C++ data types. #pragma once @@ -40,128 +39,128 @@ namespace glm { /////////////////////////// - // Signed int vector types + // Signed int vector types /// @addtogroup gtc_type_precision /// @{ - /// Low precision 8 bit signed integer type. + /// Low qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 lowp_int8; - - /// Low precision 16 bit signed integer type. + + /// Low qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 lowp_int16; - /// Low precision 32 bit signed integer type. + /// Low qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 lowp_int32; - /// Low precision 64 bit signed integer type. + /// Low qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 lowp_int64; - /// Low precision 8 bit signed integer type. + /// Low qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 lowp_int8_t; - - /// Low precision 16 bit signed integer type. + + /// Low qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 lowp_int16_t; - /// Low precision 32 bit signed integer type. + /// Low qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 lowp_int32_t; - /// Low precision 64 bit signed integer type. + /// Low qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 lowp_int64_t; - /// Low precision 8 bit signed integer type. + /// Low qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 lowp_i8; - - /// Low precision 16 bit signed integer type. + + /// Low qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 lowp_i16; - /// Low precision 32 bit signed integer type. + /// Low qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 lowp_i32; - /// Low precision 64 bit signed integer type. + /// Low qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 lowp_i64; - /// Medium precision 8 bit signed integer type. + /// Medium qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 mediump_int8; - - /// Medium precision 16 bit signed integer type. + + /// Medium qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 mediump_int16; - /// Medium precision 32 bit signed integer type. + /// Medium qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 mediump_int32; - /// Medium precision 64 bit signed integer type. + /// Medium qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 mediump_int64; - /// Medium precision 8 bit signed integer type. + /// Medium qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 mediump_int8_t; - - /// Medium precision 16 bit signed integer type. + + /// Medium qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 mediump_int16_t; - /// Medium precision 32 bit signed integer type. + /// Medium qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 mediump_int32_t; - /// Medium precision 64 bit signed integer type. + /// Medium qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 mediump_int64_t; - /// Medium precision 8 bit signed integer type. + /// Medium qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 mediump_i8; - - /// Medium precision 16 bit signed integer type. + + /// Medium qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 mediump_i16; - /// Medium precision 32 bit signed integer type. + /// Medium qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 mediump_i32; - /// Medium precision 64 bit signed integer type. + /// Medium qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 mediump_i64; - /// High precision 8 bit signed integer type. + /// High qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 highp_int8; - - /// High precision 16 bit signed integer type. + + /// High qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 highp_int16; - /// High precision 32 bit signed integer type. + /// High qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 highp_int32; - /// High precision 64 bit signed integer type. + /// High qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 highp_int64; - /// High precision 8 bit signed integer type. + /// High qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 highp_int8_t; - - /// High precision 16 bit signed integer type. + + /// High qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 highp_int16_t; @@ -169,31 +168,31 @@ namespace glm /// @see gtc_type_precision typedef detail::int32 highp_int32_t; - /// High precision 64 bit signed integer type. + /// High qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 highp_int64_t; - /// High precision 8 bit signed integer type. + /// High qualifier 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 highp_i8; - - /// High precision 16 bit signed integer type. + + /// High qualifier 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 highp_i16; - /// High precision 32 bit signed integer type. + /// High qualifier 32 bit signed integer type. /// @see gtc_type_precision typedef detail::int32 highp_i32; - /// High precision 64 bit signed integer type. + /// High qualifier 64 bit signed integer type. /// @see gtc_type_precision typedef detail::int64 highp_i64; - + /// 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 int8; - + /// 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 int16; @@ -215,7 +214,7 @@ namespace glm /// 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 int8_t; - + /// 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 int16_t; @@ -232,7 +231,7 @@ namespace glm /// 8 bit signed integer type. /// @see gtc_type_precision typedef detail::int8 i8; - + /// 16 bit signed integer type. /// @see gtc_type_precision typedef detail::int16 i16; @@ -248,232 +247,232 @@ namespace glm /// 8 bit signed integer scalar type. /// @see gtc_type_precision - typedef tvec1<i8, defaultp> i8vec1; - + typedef vec<1, i8, defaultp> i8vec1; + /// 8 bit signed integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<i8, defaultp> i8vec2; + typedef vec<2, i8, defaultp> i8vec2; /// 8 bit signed integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<i8, defaultp> i8vec3; + typedef vec<3, i8, defaultp> i8vec3; /// 8 bit signed integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<i8, defaultp> i8vec4; + typedef vec<4, i8, defaultp> i8vec4; /// 16 bit signed integer scalar type. /// @see gtc_type_precision - typedef tvec1<i16, defaultp> i16vec1; - + typedef vec<1, i16, defaultp> i16vec1; + /// 16 bit signed integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<i16, defaultp> i16vec2; + typedef vec<2, i16, defaultp> i16vec2; /// 16 bit signed integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<i16, defaultp> i16vec3; + typedef vec<3, i16, defaultp> i16vec3; /// 16 bit signed integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<i16, defaultp> i16vec4; + typedef vec<4, i16, defaultp> i16vec4; /// 32 bit signed integer scalar type. /// @see gtc_type_precision - typedef tvec1<i32, defaultp> i32vec1; - + typedef vec<1, i32, defaultp> i32vec1; + /// 32 bit signed integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<i32, defaultp> i32vec2; + typedef vec<2, i32, defaultp> i32vec2; /// 32 bit signed integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<i32, defaultp> i32vec3; + typedef vec<3, i32, defaultp> i32vec3; /// 32 bit signed integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<i32, defaultp> i32vec4; + typedef vec<4, i32, defaultp> i32vec4; /// 64 bit signed integer scalar type. /// @see gtc_type_precision - typedef tvec1<i64, defaultp> i64vec1; - + typedef vec<1, i64, defaultp> i64vec1; + /// 64 bit signed integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<i64, defaultp> i64vec2; + typedef vec<2, i64, defaultp> i64vec2; /// 64 bit signed integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<i64, defaultp> i64vec3; + typedef vec<3, i64, defaultp> i64vec3; /// 64 bit signed integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<i64, defaultp> i64vec4; + typedef vec<4, i64, defaultp> i64vec4; ///////////////////////////// // Unsigned int vector types - /// Low precision 8 bit unsigned integer type. + /// Low qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 lowp_uint8; - - /// Low precision 16 bit unsigned integer type. + + /// Low qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 lowp_uint16; - /// Low precision 32 bit unsigned integer type. + /// Low qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 lowp_uint32; - /// Low precision 64 bit unsigned integer type. + /// Low qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 lowp_uint64; - /// Low precision 8 bit unsigned integer type. + /// Low qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 lowp_uint8_t; - - /// Low precision 16 bit unsigned integer type. + + /// Low qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 lowp_uint16_t; - /// Low precision 32 bit unsigned integer type. + /// Low qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 lowp_uint32_t; - /// Low precision 64 bit unsigned integer type. + /// Low qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 lowp_uint64_t; - /// Low precision 8 bit unsigned integer type. + /// Low qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 lowp_u8; - - /// Low precision 16 bit unsigned integer type. + + /// Low qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 lowp_u16; - /// Low precision 32 bit unsigned integer type. + /// Low qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 lowp_u32; - /// Low precision 64 bit unsigned integer type. + /// Low qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 lowp_u64; - - /// Medium precision 8 bit unsigned integer type. + + /// Medium qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 mediump_uint8; - - /// Medium precision 16 bit unsigned integer type. + + /// Medium qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 mediump_uint16; - /// Medium precision 32 bit unsigned integer type. + /// Medium qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 mediump_uint32; - /// Medium precision 64 bit unsigned integer type. + /// Medium qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 mediump_uint64; - /// Medium precision 8 bit unsigned integer type. + /// Medium qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 mediump_uint8_t; - - /// Medium precision 16 bit unsigned integer type. + + /// Medium qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 mediump_uint16_t; - /// Medium precision 32 bit unsigned integer type. + /// Medium qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 mediump_uint32_t; - /// Medium precision 64 bit unsigned integer type. + /// Medium qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 mediump_uint64_t; - /// Medium precision 8 bit unsigned integer type. + /// Medium qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 mediump_u8; - - /// Medium precision 16 bit unsigned integer type. + + /// Medium qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 mediump_u16; - /// Medium precision 32 bit unsigned integer type. + /// Medium qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 mediump_u32; - /// Medium precision 64 bit unsigned integer type. + /// Medium qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 mediump_u64; - - /// High precision 8 bit unsigned integer type. + + /// High qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 highp_uint8; - - /// High precision 16 bit unsigned integer type. + + /// High qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 highp_uint16; - /// High precision 32 bit unsigned integer type. + /// High qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 highp_uint32; - /// High precision 64 bit unsigned integer type. + /// High qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 highp_uint64; - /// High precision 8 bit unsigned integer type. + /// High qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 highp_uint8_t; - - /// High precision 16 bit unsigned integer type. + + /// High qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 highp_uint16_t; - /// High precision 32 bit unsigned integer type. + /// High qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 highp_uint32_t; - /// High precision 64 bit unsigned integer type. + /// High qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 highp_uint64_t; - /// High precision 8 bit unsigned integer type. + /// High qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 highp_u8; - - /// High precision 16 bit unsigned integer type. + + /// High qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 highp_u16; - /// High precision 32 bit unsigned integer type. + /// High qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 highp_u32; - /// High precision 64 bit unsigned integer type. + /// High qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 highp_u64; - /// Default precision 8 bit unsigned integer type. + /// Default qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 uint8; - - /// Default precision 16 bit unsigned integer type. + + /// Default qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 uint16; - /// Default precision 32 bit unsigned integer type. + /// Default qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 uint32; - /// Default precision 64 bit unsigned integer type. + /// Default qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 uint64; @@ -483,378 +482,385 @@ namespace glm using std::uint32_t; using std::uint64_t; #else - /// Default precision 8 bit unsigned integer type. + /// Default qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 uint8_t; - - /// Default precision 16 bit unsigned integer type. + + /// Default qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 uint16_t; - /// Default precision 32 bit unsigned integer type. + /// Default qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 uint32_t; - /// Default precision 64 bit unsigned integer type. + /// Default qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 uint64_t; #endif - /// Default precision 8 bit unsigned integer type. + /// Default qualifier 8 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint8 u8; - - /// Default precision 16 bit unsigned integer type. + + /// Default qualifier 16 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint16 u16; - /// Default precision 32 bit unsigned integer type. + /// Default qualifier 32 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint32 u32; - /// Default precision 64 bit unsigned integer type. + /// Default qualifier 64 bit unsigned integer type. /// @see gtc_type_precision typedef detail::uint64 u64; - /// Default precision 8 bit unsigned integer scalar type. + /// Default qualifier 8 bit unsigned integer scalar type. /// @see gtc_type_precision - typedef tvec1<u8, defaultp> u8vec1; - - /// Default precision 8 bit unsigned integer vector of 2 components type. + typedef vec<1, u8, defaultp> u8vec1; + + /// Default qualifier 8 bit unsigned integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<u8, defaultp> u8vec2; + typedef vec<2, u8, defaultp> u8vec2; - /// Default precision 8 bit unsigned integer vector of 3 components type. + /// Default qualifier 8 bit unsigned integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<u8, defaultp> u8vec3; + typedef vec<3, u8, defaultp> u8vec3; - /// Default precision 8 bit unsigned integer vector of 4 components type. + /// Default qualifier 8 bit unsigned integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<u8, defaultp> u8vec4; + typedef vec<4, u8, defaultp> u8vec4; - /// Default precision 16 bit unsigned integer scalar type. + /// Default qualifier 16 bit unsigned integer scalar type. /// @see gtc_type_precision - typedef tvec1<u16, defaultp> u16vec1; - - /// Default precision 16 bit unsigned integer vector of 2 components type. + typedef vec<1, u16, defaultp> u16vec1; + + /// Default qualifier 16 bit unsigned integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<u16, defaultp> u16vec2; + typedef vec<2, u16, defaultp> u16vec2; - /// Default precision 16 bit unsigned integer vector of 3 components type. + /// Default qualifier 16 bit unsigned integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<u16, defaultp> u16vec3; + typedef vec<3, u16, defaultp> u16vec3; - /// Default precision 16 bit unsigned integer vector of 4 components type. + /// Default qualifier 16 bit unsigned integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<u16, defaultp> u16vec4; + typedef vec<4, u16, defaultp> u16vec4; - /// Default precision 32 bit unsigned integer scalar type. + /// Default qualifier 32 bit unsigned integer scalar type. /// @see gtc_type_precision - typedef tvec1<u32, defaultp> u32vec1; - - /// Default precision 32 bit unsigned integer vector of 2 components type. + typedef vec<1, u32, defaultp> u32vec1; + + /// Default qualifier 32 bit unsigned integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<u32, defaultp> u32vec2; + typedef vec<2, u32, defaultp> u32vec2; - /// Default precision 32 bit unsigned integer vector of 3 components type. + /// Default qualifier 32 bit unsigned integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<u32, defaultp> u32vec3; + typedef vec<3, u32, defaultp> u32vec3; - /// Default precision 32 bit unsigned integer vector of 4 components type. + /// Default qualifier 32 bit unsigned integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<u32, defaultp> u32vec4; + typedef vec<4, u32, defaultp> u32vec4; - /// Default precision 64 bit unsigned integer scalar type. + /// Default qualifier 64 bit unsigned integer scalar type. /// @see gtc_type_precision - typedef tvec1<u64, defaultp> u64vec1; - - /// Default precision 64 bit unsigned integer vector of 2 components type. + typedef vec<1, u64, defaultp> u64vec1; + + /// Default qualifier 64 bit unsigned integer vector of 2 components type. /// @see gtc_type_precision - typedef tvec2<u64, defaultp> u64vec2; + typedef vec<2, u64, defaultp> u64vec2; - /// Default precision 64 bit unsigned integer vector of 3 components type. + /// Default qualifier 64 bit unsigned integer vector of 3 components type. /// @see gtc_type_precision - typedef tvec3<u64, defaultp> u64vec3; + typedef vec<3, u64, defaultp> u64vec3; - /// Default precision 64 bit unsigned integer vector of 4 components type. + /// Default qualifier 64 bit unsigned integer vector of 4 components type. /// @see gtc_type_precision - typedef tvec4<u64, defaultp> u64vec4; + typedef vec<4, u64, defaultp> u64vec4; ////////////////////// // Float vector types - /// 32 bit single-precision floating-point scalar. + /// 32 bit single-qualifier floating-point scalar. /// @see gtc_type_precision typedef detail::float32 float32; - /// 64 bit double-precision floating-point scalar. - /// @see gtc_type_precision - typedef detail::float64 float64; - - - /// 32 bit single-precision floating-point scalar. + /// 32 bit single-qualifier floating-point scalar. /// @see gtc_type_precision typedef detail::float32 float32_t; - /// 64 bit double-precision floating-point scalar. - /// @see gtc_type_precision - typedef detail::float64 float64_t; - - - /// 32 bit single-precision floating-point scalar. + /// 32 bit single-qualifier floating-point scalar. /// @see gtc_type_precision typedef float32 f32; - /// 64 bit double-precision floating-point scalar. - /// @see gtc_type_precision - typedef float64 f64; +# ifndef GLM_FORCE_SINGLE_ONLY + /// 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef detail::float64 float64; + /// 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef detail::float64 float64_t; - /// Single-precision floating-point vector of 1 component. - /// @see gtc_type_precision - typedef tvec1<float, defaultp> fvec1; + /// 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 f64; +# endif//GLM_FORCE_SINGLE_ONLY - /// Single-precision floating-point vector of 2 components. + /// Single-qualifier floating-point vector of 1 component. /// @see gtc_type_precision - typedef tvec2<float, defaultp> fvec2; + typedef vec<1, float, defaultp> fvec1; - /// Single-precision floating-point vector of 3 components. + /// Single-qualifier floating-point vector of 2 components. /// @see gtc_type_precision - typedef tvec3<float, defaultp> fvec3; + typedef vec<2, float, defaultp> fvec2; - /// Single-precision floating-point vector of 4 components. + /// Single-qualifier floating-point vector of 3 components. /// @see gtc_type_precision - typedef tvec4<float, defaultp> fvec4; + typedef vec<3, float, defaultp> fvec3; - - /// Single-precision floating-point vector of 1 component. + /// Single-qualifier floating-point vector of 4 components. /// @see gtc_type_precision - typedef tvec1<f32, defaultp> f32vec1; + typedef vec<4, float, defaultp> fvec4; - /// Single-precision floating-point vector of 2 components. - /// @see gtc_type_precision - typedef tvec2<f32, defaultp> f32vec2; - /// Single-precision floating-point vector of 3 components. + /// Single-qualifier floating-point vector of 1 component. /// @see gtc_type_precision - typedef tvec3<f32, defaultp> f32vec3; + typedef vec<1, f32, defaultp> f32vec1; - /// Single-precision floating-point vector of 4 components. + /// Single-qualifier floating-point vector of 2 components. /// @see gtc_type_precision - typedef tvec4<f32, defaultp> f32vec4; - + typedef vec<2, f32, defaultp> f32vec2; - /// Double-precision floating-point vector of 1 component. + /// Single-qualifier floating-point vector of 3 components. /// @see gtc_type_precision - typedef tvec1<f64, defaultp> f64vec1; + typedef vec<3, f32, defaultp> f32vec3; - /// Double-precision floating-point vector of 2 components. + /// Single-qualifier floating-point vector of 4 components. /// @see gtc_type_precision - typedef tvec2<f64, defaultp> f64vec2; + typedef vec<4, f32, defaultp> f32vec4; - /// Double-precision floating-point vector of 3 components. - /// @see gtc_type_precision - typedef tvec3<f64, defaultp> f64vec3; +# ifndef GLM_FORCE_SINGLE_ONLY + /// Double-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f64, defaultp> f64vec1; - /// Double-precision floating-point vector of 4 components. - /// @see gtc_type_precision - typedef tvec4<f64, defaultp> f64vec4; + /// Double-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f64, defaultp> f64vec2; + + /// Double-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f64, defaultp> f64vec3; + + /// Double-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f64, defaultp> f64vec4; +# endif//GLM_FORCE_SINGLE_ONLY ////////////////////// - // Float matrix types + // Float matrix types - /// Single-precision floating-point 1x1 matrix. + /// Single-qualifier floating-point 1x1 matrix. /// @see gtc_type_precision //typedef detail::tmat1x1<f32> fmat1; - /// Single-precision floating-point 2x2 matrix. + /// Single-qualifier floating-point 2x2 matrix. /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> fmat2; + typedef mat<2, 2, f32, defaultp> fmat2; - /// Single-precision floating-point 3x3 matrix. + /// Single-qualifier floating-point 3x3 matrix. /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> fmat3; + typedef mat<3, 3, f32, defaultp> fmat3; - /// Single-precision floating-point 4x4 matrix. + /// Single-qualifier floating-point 4x4 matrix. /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> fmat4; + typedef mat<4, 4, f32, defaultp> fmat4; - /// Single-precision floating-point 1x1 matrix. + /// Single-qualifier floating-point 1x1 matrix. /// @see gtc_type_precision //typedef f32 fmat1x1; - /// Single-precision floating-point 2x2 matrix. + /// Single-qualifier floating-point 2x2 matrix. /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> fmat2x2; + typedef mat<2, 2, f32, defaultp> fmat2x2; - /// Single-precision floating-point 2x3 matrix. + /// Single-qualifier floating-point 2x3 matrix. /// @see gtc_type_precision - typedef tmat2x3<f32, defaultp> fmat2x3; + typedef mat<2, 3, f32, defaultp> fmat2x3; - /// Single-precision floating-point 2x4 matrix. + /// Single-qualifier floating-point 2x4 matrix. /// @see gtc_type_precision - typedef tmat2x4<f32, defaultp> fmat2x4; + typedef mat<2, 4, f32, defaultp> fmat2x4; - /// Single-precision floating-point 3x2 matrix. + /// Single-qualifier floating-point 3x2 matrix. /// @see gtc_type_precision - typedef tmat3x2<f32, defaultp> fmat3x2; + typedef mat<3, 2, f32, defaultp> fmat3x2; - /// Single-precision floating-point 3x3 matrix. + /// Single-qualifier floating-point 3x3 matrix. /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> fmat3x3; + typedef mat<3, 3, f32, defaultp> fmat3x3; - /// Single-precision floating-point 3x4 matrix. + /// Single-qualifier floating-point 3x4 matrix. /// @see gtc_type_precision - typedef tmat3x4<f32, defaultp> fmat3x4; + typedef mat<3, 4, f32, defaultp> fmat3x4; - /// Single-precision floating-point 4x2 matrix. + /// Single-qualifier floating-point 4x2 matrix. /// @see gtc_type_precision - typedef tmat4x2<f32, defaultp> fmat4x2; + typedef mat<4, 2, f32, defaultp> fmat4x2; - /// Single-precision floating-point 4x3 matrix. + /// Single-qualifier floating-point 4x3 matrix. /// @see gtc_type_precision - typedef tmat4x3<f32, defaultp> fmat4x3; + typedef mat<4, 3, f32, defaultp> fmat4x3; - /// Single-precision floating-point 4x4 matrix. + /// Single-qualifier floating-point 4x4 matrix. /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> fmat4x4; + typedef mat<4, 4, f32, defaultp> fmat4x4; - /// Single-precision floating-point 1x1 matrix. + /// Single-qualifier floating-point 1x1 matrix. /// @see gtc_type_precision //typedef detail::tmat1x1<f32, defaultp> f32mat1; - /// Single-precision floating-point 2x2 matrix. + /// Single-qualifier floating-point 2x2 matrix. /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> f32mat2; + typedef mat<2, 2, f32, defaultp> f32mat2; - /// Single-precision floating-point 3x3 matrix. + /// Single-qualifier floating-point 3x3 matrix. /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> f32mat3; + typedef mat<3, 3, f32, defaultp> f32mat3; - /// Single-precision floating-point 4x4 matrix. + /// Single-qualifier floating-point 4x4 matrix. /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> f32mat4; + typedef mat<4, 4, f32, defaultp> f32mat4; - /// Single-precision floating-point 1x1 matrix. + /// Single-qualifier floating-point 1x1 matrix. /// @see gtc_type_precision //typedef f32 f32mat1x1; - /// Single-precision floating-point 2x2 matrix. + /// Single-qualifier floating-point 2x2 matrix. /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> f32mat2x2; + typedef mat<2, 2, f32, defaultp> f32mat2x2; - /// Single-precision floating-point 2x3 matrix. + /// Single-qualifier floating-point 2x3 matrix. /// @see gtc_type_precision - typedef tmat2x3<f32, defaultp> f32mat2x3; + typedef mat<2, 3, f32, defaultp> f32mat2x3; - /// Single-precision floating-point 2x4 matrix. + /// Single-qualifier floating-point 2x4 matrix. /// @see gtc_type_precision - typedef tmat2x4<f32, defaultp> f32mat2x4; + typedef mat<2, 4, f32, defaultp> f32mat2x4; - /// Single-precision floating-point 3x2 matrix. + /// Single-qualifier floating-point 3x2 matrix. /// @see gtc_type_precision - typedef tmat3x2<f32, defaultp> f32mat3x2; + typedef mat<3, 2, f32, defaultp> f32mat3x2; - /// Single-precision floating-point 3x3 matrix. + /// Single-qualifier floating-point 3x3 matrix. /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> f32mat3x3; + typedef mat<3, 3, f32, defaultp> f32mat3x3; - /// Single-precision floating-point 3x4 matrix. + /// Single-qualifier floating-point 3x4 matrix. /// @see gtc_type_precision - typedef tmat3x4<f32, defaultp> f32mat3x4; + typedef mat<3, 4, f32, defaultp> f32mat3x4; - /// Single-precision floating-point 4x2 matrix. + /// Single-qualifier floating-point 4x2 matrix. /// @see gtc_type_precision - typedef tmat4x2<f32, defaultp> f32mat4x2; + typedef mat<4, 2, f32, defaultp> f32mat4x2; - /// Single-precision floating-point 4x3 matrix. + /// Single-qualifier floating-point 4x3 matrix. /// @see gtc_type_precision - typedef tmat4x3<f32, defaultp> f32mat4x3; + typedef mat<4, 3, f32, defaultp> f32mat4x3; - /// Single-precision floating-point 4x4 matrix. + /// Single-qualifier floating-point 4x4 matrix. /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> f32mat4x4; + typedef mat<4, 4, f32, defaultp> f32mat4x4; - /// Double-precision floating-point 1x1 matrix. +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Double-qualifier floating-point 1x1 matrix. /// @see gtc_type_precision //typedef detail::tmat1x1<f64, defaultp> f64mat1; - /// Double-precision floating-point 2x2 matrix. + /// Double-qualifier floating-point 2x2 matrix. /// @see gtc_type_precision - typedef tmat2x2<f64, defaultp> f64mat2; + typedef mat<2, 2, f64, defaultp> f64mat2; - /// Double-precision floating-point 3x3 matrix. + /// Double-qualifier floating-point 3x3 matrix. /// @see gtc_type_precision - typedef tmat3x3<f64, defaultp> f64mat3; + typedef mat<3, 3, f64, defaultp> f64mat3; - /// Double-precision floating-point 4x4 matrix. + /// Double-qualifier floating-point 4x4 matrix. /// @see gtc_type_precision - typedef tmat4x4<f64, defaultp> f64mat4; + typedef mat<4, 4, f64, defaultp> f64mat4; - /// Double-precision floating-point 1x1 matrix. + /// Double-qualifier floating-point 1x1 matrix. /// @see gtc_type_precision //typedef f64 f64mat1x1; - /// Double-precision floating-point 2x2 matrix. + /// Double-qualifier floating-point 2x2 matrix. /// @see gtc_type_precision - typedef tmat2x2<f64, defaultp> f64mat2x2; + typedef mat<2, 2, f64, defaultp> f64mat2x2; - /// Double-precision floating-point 2x3 matrix. + /// Double-qualifier floating-point 2x3 matrix. /// @see gtc_type_precision - typedef tmat2x3<f64, defaultp> f64mat2x3; + typedef mat<2, 3, f64, defaultp> f64mat2x3; - /// Double-precision floating-point 2x4 matrix. + /// Double-qualifier floating-point 2x4 matrix. /// @see gtc_type_precision - typedef tmat2x4<f64, defaultp> f64mat2x4; + typedef mat<2, 4, f64, defaultp> f64mat2x4; - /// Double-precision floating-point 3x2 matrix. + /// Double-qualifier floating-point 3x2 matrix. /// @see gtc_type_precision - typedef tmat3x2<f64, defaultp> f64mat3x2; + typedef mat<3, 2, f64, defaultp> f64mat3x2; - /// Double-precision floating-point 3x3 matrix. + /// Double-qualifier floating-point 3x3 matrix. /// @see gtc_type_precision - typedef tmat3x3<f64, defaultp> f64mat3x3; + typedef mat<3, 3, f64, defaultp> f64mat3x3; - /// Double-precision floating-point 3x4 matrix. + /// Double-qualifier floating-point 3x4 matrix. /// @see gtc_type_precision - typedef tmat3x4<f64, defaultp> f64mat3x4; + typedef mat<3, 4, f64, defaultp> f64mat3x4; - /// Double-precision floating-point 4x2 matrix. + /// Double-qualifier floating-point 4x2 matrix. /// @see gtc_type_precision - typedef tmat4x2<f64, defaultp> f64mat4x2; + typedef mat<4, 2, f64, defaultp> f64mat4x2; - /// Double-precision floating-point 4x3 matrix. + /// Double-qualifier floating-point 4x3 matrix. /// @see gtc_type_precision - typedef tmat4x3<f64, defaultp> f64mat4x3; + typedef mat<4, 3, f64, defaultp> f64mat4x3; - /// Double-precision floating-point 4x4 matrix. + /// Double-qualifier floating-point 4x4 matrix. /// @see gtc_type_precision - typedef tmat4x4<f64, defaultp> f64mat4x4; + typedef mat<4, 4, f64, defaultp> f64mat4x4; +# endif//GLM_FORCE_SINGLE_ONLY ////////////////////////// // Quaternion types - /// Single-precision floating-point quaternion. + /// Single-qualifier floating-point quaternion. /// @see gtc_type_precision typedef tquat<f32, defaultp> f32quat; - /// Double-precision floating-point quaternion. +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Double-qualifier floating-point quaternion. /// @see gtc_type_precision typedef tquat<f64, defaultp> f64quat; +# endif//GLM_FORCE_SINGLE_ONLY + /// @} }//namespace glm diff --git a/external/include/glm/gtc/type_ptr.hpp b/external/include/glm/gtc/type_ptr.hpp index 008665e..5c15cc4 100644 --- a/external/include/glm/gtc/type_ptr.hpp +++ b/external/include/glm/gtc/type_ptr.hpp @@ -2,19 +2,20 @@ /// @file glm/gtc/type_ptr.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtc_quaternion (dependence) /// /// @defgroup gtc_type_ptr GLM_GTC_type_ptr /// @ingroup gtc /// -/// @brief Handles the interaction between pointers and vector, matrix types. +/// Include <glm/gtc/type_ptr.hpp> to use the features of this extension. +/// +/// Handles the interaction between pointers and vector, matrix types. /// /// This extension defines an overloaded function, glm::value_ptr, which /// takes any of the \ref core_template "core template types". It returns /// a pointer to the memory layout of the object. Matrix types store their values /// in column-major order. -/// +/// /// This is useful for uploading data to matrices or copying data to buffer objects. /// /// Example: @@ -29,12 +30,13 @@ /// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix)); /// @endcode /// -/// <glm/gtc/type_ptr.hpp> need to be included to use these functionalities. +/// <glm/gtc/type_ptr.hpp> need to be included to use the features of this extension. #pragma once // Dependency: #include "../gtc/quaternion.hpp" +#include "../gtc/vec1.hpp" #include "../vec2.hpp" #include "../vec3.hpp" #include "../vec4.hpp" @@ -61,82 +63,162 @@ namespace glm /// Return the constant address to the data of the input parameter. /// @see gtc_type_ptr template<typename genType> - GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const & vec); + GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template <typename T, qualifier Q> + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<4, T, Q> const& v); /// Build a vector from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tvec2<T, defaultp> make_vec2(T const * const ptr); + GLM_FUNC_DECL vec<2, T, defaultp> make_vec2(T const * const ptr); /// Build a vector from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tvec3<T, defaultp> make_vec3(T const * const ptr); + GLM_FUNC_DECL vec<3, T, defaultp> make_vec3(T const * const ptr); /// Build a vector from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tvec4<T, defaultp> make_vec4(T const * const ptr); + GLM_FUNC_DECL vec<4, T, defaultp> make_vec4(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2x2(T const * const ptr); + GLM_FUNC_DECL mat<2, 2, T, defaultp> make_mat2x2(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat2x3<T, defaultp> make_mat2x3(T const * const ptr); + GLM_FUNC_DECL mat<2, 3, T, defaultp> make_mat2x3(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat2x4<T, defaultp> make_mat2x4(T const * const ptr); + GLM_FUNC_DECL mat<2, 4, T, defaultp> make_mat2x4(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat3x2<T, defaultp> make_mat3x2(T const * const ptr); + GLM_FUNC_DECL mat<3, 2, T, defaultp> make_mat3x2(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3x3(T const * const ptr); + GLM_FUNC_DECL mat<3, 3, T, defaultp> make_mat3x3(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat3x4<T, defaultp> make_mat3x4(T const * const ptr); + GLM_FUNC_DECL mat<3, 4, T, defaultp> make_mat3x4(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat4x2<T, defaultp> make_mat4x2(T const * const ptr); + GLM_FUNC_DECL mat<4, 2, T, defaultp> make_mat4x2(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat4x3<T, defaultp> make_mat4x3(T const * const ptr); + GLM_FUNC_DECL mat<4, 3, T, defaultp> make_mat4x3(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4x4(T const * const ptr); - + GLM_FUNC_DECL mat<4, 4, T, defaultp> make_mat4x4(T const * const ptr); + /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2(T const * const ptr); + GLM_FUNC_DECL mat<2, 2, T, defaultp> make_mat2(T const * const ptr); /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3(T const * const ptr); - + GLM_FUNC_DECL mat<3, 3, T, defaultp> make_mat3(T const * const ptr); + /// Build a matrix from a pointer. /// @see gtc_type_ptr template<typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4(T const * const ptr); + GLM_FUNC_DECL mat<4, 4, T, defaultp> make_mat4(T const * const ptr); /// Build a quaternion from a pointer. /// @see gtc_type_ptr diff --git a/external/include/glm/gtc/type_ptr.inl b/external/include/glm/gtc/type_ptr.inl index 3aa6ae6..7a9e21e 100644 --- a/external/include/glm/gtc/type_ptr.inl +++ b/external/include/glm/gtc/type_ptr.inl @@ -8,437 +8,374 @@ namespace glm /// @addtogroup gtc_type_ptr /// @{ - /// Return the constant address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tvec2<T, P> const & vec - ) - { - return &(vec.x); + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(vec<2, T, Q> const& v) + { + return &(v.x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(vec<2, T, Q>& v) + { + return &(v.x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const * value_ptr(vec<3, T, Q> const& v) + { + return &(v.x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(vec<3, T, Q>& v) + { + return &(v.x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(vec<4, T, Q> const& v) + { + return &(v.x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(vec<4, T, Q>& v) + { + return &(v.x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 2, T, Q> const& m) + { + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 2, T, Q>& m) + { + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 3, T, Q> const& m) + { + return &(m[0].x); } - //! Return the address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tvec2<T, P> & vec - ) - { - return &(vec.x); + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 3, T, Q>& m) + { + return &(m[0].x); } - /// Return the constant address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tvec3<T, P> const & vec - ) - { - return &(vec.x); + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 4, T, Q> const& m) + { + return &(m[0].x); } - //! Return the address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tvec3<T, P> & vec - ) - { - return &(vec.x); + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<4, 4, T, Q>& m) + { + return &(m[0].x); } - - /// Return the constant address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tvec4<T, P> const & vec - ) - { - return &(vec.x); + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 3, T, Q> const& m) + { + return &(m[0].x); } - //! Return the address to the data of the vector input. - //! From GLM_GTC_type_ptr extension. - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tvec4<T, P> & vec - ) - { - return &(vec.x); + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 3, T, Q>& m) + { + return &(m[0].x); } - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat2x2<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat2x2<T, P> & mat - ) - { - return &(mat[0].x); + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 2, T, Q> const& m) + { + return &(m[0].x); } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat3x3<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat3x3<T, P> & mat - ) - { - return &(mat[0].x); + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 2, T, Q>& m) + { + return &(m[0].x); } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat4x4<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - //! From GLM_GTC_type_ptr extension. - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat4x4<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat2x3<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat2x3<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat3x2<T, P> const & mat - ) + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 4, T, Q> const& m) { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat3x2<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat2x4<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat2x4<T, P> & mat - ) + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 4, T, Q>& m) { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat4x2<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat4x2<T, P> & mat - ) + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 2, T, Q> const& m) + { + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<4, 2, T, Q>& m) + { + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 4, T, Q> const& m) + { + return &(m[0].x); + } + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 4, T, Q>& m) { - return &(mat[0].x); + return &(m[0].x); } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat3x4<T, P> const & mat - ) + + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 3, T, Q> const& m) { - return &(mat[0].x); - } + return &(m[0].x); + } - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat3x4<T, P> & mat - ) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T * value_ptr(mat<4, 3, T, Q>& m) { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat4x3<T, P> const & mat - ) - { - return &(mat[0].x); - } - - /// Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr(tmat4x3<T, P> & mat) - { - return &(mat[0].x); + return &(m[0].x); } - /// Return the constant address to the data of the input parameter. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tquat<T, P> const & q - ) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T const * value_ptr(tquat<T, Q> const& q) { return &(q[0]); } - /// Return the address to the data of the quaternion input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tquat<T, P> & q - ) + template<typename T, qualifier Q> + GLM_FUNC_QUALIFIER T* value_ptr(tquat<T, Q>& q) { return &(q[0]); } - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tvec2<T, defaultp> make_vec2(T const * const ptr) + template <typename T, qualifier Q> + inline vec<1, T, Q> make_vec1(vec<1, T, Q> const& v) { - tvec2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tvec2<T, defaultp>)); + return v; + } + + template <typename T, qualifier Q> + inline vec<1, T, Q> make_vec1(vec<2, T, Q> const& v) + { + return vec<1, T, Q>(v); + } + + template <typename T, qualifier Q> + inline vec<1, T, Q> make_vec1(vec<3, T, Q> const& v) + { + return vec<1, T, Q>(v); + } + + template <typename T, qualifier Q> + inline vec<1, T, Q> make_vec1(vec<4, T, Q> const& v) + { + return vec<1, T, Q>(v); + } + + template <typename T, qualifier Q> + inline vec<2, T, Q> make_vec2(vec<1, T, Q> const& v) + { + return vec<2, T, Q>(v.x, static_cast<T>(0)); + } + + template <typename T, qualifier Q> + inline vec<2, T, Q> make_vec2(vec<2, T, Q> const& v) + { + return v; + } + + template <typename T, qualifier Q> + inline vec<2, T, Q> make_vec2(vec<3, T, Q> const& v) + { + return vec<2, T, Q>(v); + } + + template <typename T, qualifier Q> + inline vec<2, T, Q> make_vec2(vec<4, T, Q> const& v) + { + return vec<2, T, Q>(v); + } + + template <typename T, qualifier Q> + inline vec<3, T, Q> make_vec3(vec<1, T, Q> const& v) + { + return vec<3, T, Q>(v.x, static_cast<T>(0), static_cast<T>(0)); + } + + template <typename T, qualifier Q> + inline vec<3, T, Q> make_vec3(vec<2, T, Q> const& v) + { + return vec<3, T, Q>(v.x, v.y, static_cast<T>(0)); + } + + template <typename T, qualifier Q> + inline vec<3, T, Q> make_vec3(vec<3, T, Q> const& v) + { + return v; + } + + template <typename T, qualifier Q> + inline vec<3, T, Q> make_vec3(vec<4, T, Q> const& v) + { + return vec<3, T, Q>(v); + } + + template <typename T, qualifier Q> + inline vec<4, T, Q> make_vec4(vec<1, T, Q> const& v) + { + return vec<4, T, Q>(v.x, static_cast<T>(0), static_cast<T>(0), static_cast<T>(1)); + } + + template <typename T, qualifier Q> + inline vec<4, T, Q> make_vec4(vec<2, T, Q> const& v) + { + return vec<4, T, Q>(v.x, v.y, static_cast<T>(0), static_cast<T>(1)); + } + + template <typename T, qualifier Q> + inline vec<4, T, Q> make_vec4(vec<3, T, Q> const& v) + { + return vec<4, T, Q>(v.x, v.y, v.z, static_cast<T>(1)); + } + + template <typename T, qualifier Q> + inline vec<4, T, Q> make_vec4(vec<4, T, Q> const& v) + { + return v; + } + + template<typename T> + GLM_FUNC_QUALIFIER vec<2, T, defaultp> make_vec2(T const *const ptr) + { + vec<2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(vec<2, T, defaultp>)); return Result; } - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tvec3<T, defaultp> make_vec3(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER vec<3, T, defaultp> make_vec3(T const *const ptr) { - tvec3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tvec3<T, defaultp>)); + vec<3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(vec<3, T, defaultp>)); return Result; } - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tvec4<T, defaultp> make_vec4(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER vec<4, T, defaultp> make_vec4(T const *const ptr) { - tvec4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tvec4<T, defaultp>)); + vec<4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(vec<4, T, defaultp>)); return Result; } - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2x2(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> make_mat2x2(T const *const ptr) { - tmat2x2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat2x2<T, defaultp>)); + mat<2, 2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<2, 2, T, defaultp>)); return Result; } - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x3<T, defaultp> make_mat2x3(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<2, 3, T, defaultp> make_mat2x3(T const *const ptr) { - tmat2x3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat2x3<T, defaultp>)); + mat<2, 3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<2, 3, T, defaultp>)); return Result; } - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x4<T, defaultp> make_mat2x4(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<2, 4, T, defaultp> make_mat2x4(T const *const ptr) { - tmat2x4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat2x4<T, defaultp>)); + mat<2, 4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<2, 4, T, defaultp>)); return Result; } - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x2<T, defaultp> make_mat3x2(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<3, 2, T, defaultp> make_mat3x2(T const *const ptr) { - tmat3x2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat3x2<T, defaultp>)); + mat<3, 2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<3, 2, T, defaultp>)); return Result; } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3x3(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> make_mat3x3(T const *const ptr) { - tmat3x3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat3x3<T, defaultp>)); + mat<3, 3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<3, 3, T, defaultp>)); return Result; } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x4<T, defaultp> make_mat3x4(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<3, 4, T, defaultp> make_mat3x4(T const *const ptr) { - tmat3x4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat3x4<T, defaultp>)); + mat<3, 4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<3, 4, T, defaultp>)); return Result; } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x2<T, defaultp> make_mat4x2(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 2, T, defaultp> make_mat4x2(T const *const ptr) { - tmat4x2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat4x2<T, defaultp>)); + mat<4, 2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<4, 2, T, defaultp>)); return Result; } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x3<T, defaultp> make_mat4x3(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 3, T, defaultp> make_mat4x3(T const *const ptr) { - tmat4x3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat4x3<T, defaultp>)); + mat<4, 3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<4, 3, T, defaultp>)); return Result; } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4x4(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> make_mat4x4(T const *const ptr) { - tmat4x4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat4x4<T, defaultp>)); + mat<4, 4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<4, 4, T, defaultp>)); return Result; } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> make_mat2(T const *const ptr) { return make_mat2x2(ptr); } - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> make_mat3(T const *const ptr) { return make_mat3x3(ptr); } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4(T const * const ptr) + + template<typename T> + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> make_mat4(T const *const ptr) { return make_mat4x4(ptr); } - //! Build a quaternion from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const * const ptr) + template<typename T> + GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const *const ptr) { tquat<T, defaultp> Result; memcpy(value_ptr(Result), ptr, sizeof(tquat<T, defaultp>)); diff --git a/external/include/glm/gtc/ulp.hpp b/external/include/glm/gtc/ulp.hpp index a82fa4e..4ed48d5 100644 --- a/external/include/glm/gtc/ulp.hpp +++ b/external/include/glm/gtc/ulp.hpp @@ -6,17 +6,19 @@ /// @defgroup gtc_ulp GLM_GTC_ulp /// @ingroup gtc /// -/// @brief Allow the measurement of the accuracy of a function against a reference -/// implementation. This extension works on floating-point data and provide results +/// Include <glm/gtc/ulp.hpp> to use the features of this extension. +/// +/// Allow the measurement of the accuracy of a function against a reference +/// implementation. This extension works on floating-point data and provide results /// in ULP. -/// <glm/gtc/ulp.hpp> need to be included to use these features. #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../detail/type_int.hpp" +#include "../detail/compute_vector_relational.hpp" #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTC_ulp extension included") @@ -29,34 +31,34 @@ namespace glm /// Return the next ULP value(s) after the input value(s). /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType next_float(genType const & x); + template<typename genType> + GLM_FUNC_DECL genType next_float(genType const& x); /// Return the previous ULP value(s) before the input value(s). /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType prev_float(genType const & x); + template<typename genType> + GLM_FUNC_DECL genType prev_float(genType const& x); /// Return the value(s) ULP distance after the input value(s). /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType next_float(genType const & x, uint const & Distance); + template<typename genType> + GLM_FUNC_DECL genType next_float(genType const& x, uint const& Distance); /// Return the value(s) ULP distance before the input value(s). /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType prev_float(genType const & x, uint const & Distance); - + template<typename genType> + GLM_FUNC_DECL genType prev_float(genType const& x, uint const& Distance); + /// Return the distance in the number of ULP between 2 scalars. /// @see gtc_ulp - template <typename T> - GLM_FUNC_DECL uint float_distance(T const & x, T const & y); + template<typename T> + GLM_FUNC_DECL uint float_distance(T const& x, T const& y); /// Return the distance in the number of ULP between 2 vectors. /// @see gtc_ulp - template<typename T, template<typename> class vecType> - GLM_FUNC_DECL vecType<uint> float_distance(vecType<T> const & x, vecType<T> const & y); - + template<typename T, qualifier Q> + GLM_FUNC_DECL vec<2, uint, Q> float_distance(vec<2, T, Q> const& x, vec<2, T, Q> const& y); + /// @} }// namespace glm diff --git a/external/include/glm/gtc/ulp.inl b/external/include/glm/gtc/ulp.inl index 54c914a..620be36 100644 --- a/external/include/glm/gtc/ulp.inl +++ b/external/include/glm/gtc/ulp.inl @@ -9,6 +9,7 @@ /// is preserved. #include "../detail/type_int.hpp" +#include "epsilon.hpp" #include <cmath> #include <cfloat> #include <limits> @@ -78,33 +79,42 @@ namespace detail ix = hx&0x7fffffff; // |x| iy = hy&0x7fffffff; // |y| - if((ix>0x7f800000) || // x is nan - (iy>0x7f800000)) // y is nan + if((ix>0x7f800000) || // x is nan + (iy>0x7f800000)) // y is nan return x+y; - if(x==y) return y; // x=y, return y - if(ix==0) { // x == 0 + if(compute_equal<float>::call(x, y)) + return y; // x=y, return y + if(ix==0) + { // x == 0 GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal t = x*x; - if(t==x) return t; else return x; // raise underflow flag + if(detail::compute_equal<float>::call(t, x)) + return t; + else + return x; // raise underflow flag } - if(hx>=0) { // x > 0 - if(hx>hy) { // x > y, x -= ulp + if(hx>=0) + { // x > 0 + if(hx>hy) // x > y, x -= ulp hx -= 1; - } else { // x < y, x += ulp + else // x < y, x += ulp hx += 1; - } - } else { // x < 0 - if(hy>=0||hx>hy){ // x < y, x -= ulp + } + else + { // x < 0 + if(hy>=0||hx>hy) // x < y, x -= ulp hx -= 1; - } else { // x > y, x += ulp + else // x > y, x += ulp hx += 1; - } } hy = hx&0x7f800000; - if(hy>=0x7f800000) return x+x; // overflow - if(hy<0x00800000) { // underflow + if(hy>=0x7f800000) + return x+x; // overflow + if(hy<0x00800000) // underflow + { t = x*x; - if(t!=x) { // raise underflow flag + if(!detail::compute_equal<float>::call(t, x)) + { // raise underflow flag GLM_SET_FLOAT_WORD(y,hx); return y; } @@ -121,27 +131,32 @@ namespace detail GLM_EXTRACT_WORDS(hx, lx, x); GLM_EXTRACT_WORDS(hy, ly, y); - ix = hx & 0x7fffffff; // |x| - iy = hy & 0x7fffffff; // |y| + ix = hx & 0x7fffffff; // |x| + iy = hy & 0x7fffffff; // |y| - if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan - ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan + if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan + ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan return x+y; - if(x==y) return y; // x=y, return y - if((ix|lx)==0) { // x == 0 - GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal + if(detail::compute_equal<double>::call(x, y)) + return y; // x=y, return y + if((ix|lx)==0) + { // x == 0 + GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal t = x*x; - if(t==x) return t; else return x; // raise underflow flag + if(detail::compute_equal<double>::call(t, x)) + return t; + else + return x; // raise underflow flag } - if(hx>=0) { // x > 0 - if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp + if(hx>=0) { // x > 0 + if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp if(lx==0) hx -= 1; lx -= 1; } else { // x < y, x += ulp lx += 1; if(lx==0) hx += 1; } - } else { // x < 0 + } else { // x < 0 if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp if(lx==0) hx -= 1; lx -= 1; @@ -151,10 +166,13 @@ namespace detail } } hy = hx&0x7ff00000; - if(hy>=0x7ff00000) return x+x; // overflow - if(hy<0x00100000) { // underflow + if(hy>=0x7ff00000) + return x+x; // overflow + if(hy<0x00100000) + { // underflow t = x*x; - if(t!=x) { // raise underflow flag + if(!detail::compute_equal<double>::call(t, x)) + { // raise underflow flag GLM_INSERT_WORDS(y,hx,lx); return y; } @@ -171,8 +189,8 @@ namespace detail namespace glm { - template <> - GLM_FUNC_QUALIFIER float next_float(float const & x) + template<> + GLM_FUNC_QUALIFIER float next_float(float const& x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<float>::max()); @@ -185,8 +203,8 @@ namespace glm # endif } - template <> - GLM_FUNC_QUALIFIER double next_float(double const & x) + template<> + GLM_FUNC_QUALIFIER double next_float(double const& x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<double>::max()); @@ -199,16 +217,16 @@ namespace glm # endif } - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x) { - vecType<T, P> Result(uninitialize); + vec<L, T, Q> Result; for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = next_float(x[i]); return Result; } - GLM_FUNC_QUALIFIER float prev_float(float const & x) + GLM_FUNC_QUALIFIER float prev_float(float const& x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<float>::min()); @@ -221,7 +239,7 @@ namespace glm # endif } - GLM_FUNC_QUALIFIER double prev_float(double const & x) + GLM_FUNC_QUALIFIER double prev_float(double const& x) { # if GLM_HAS_CXX11_STL return std::nextafter(x, std::numeric_limits<double>::min()); @@ -234,17 +252,17 @@ namespace glm # endif } - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x) { - vecType<T, P> Result(uninitialize); + vec<L, T, Q> Result; for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = prev_float(x[i]); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) + template<typename T> + GLM_FUNC_QUALIFIER T next_float(T const& x, uint const& ulps) { T temp = x; for(uint i = 0; i < ulps; ++i) @@ -252,17 +270,17 @@ namespace glm return temp; } - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x, vec<L, uint, Q> const& ulps) { - vecType<T, P> Result(uninitialize); + vec<L, T, Q> Result; for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = next_float(x[i], ulps[i]); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) + template<typename T> + GLM_FUNC_QUALIFIER T prev_float(T const& x, uint const& ulps) { T temp = x; for(uint i = 0; i < ulps; ++i) @@ -270,24 +288,24 @@ namespace glm return temp; } - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x, vec<L, uint, Q> const& ulps) { - vecType<T, P> Result(uninitialize); + vec<L, T, Q> Result; for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = prev_float(x[i], ulps[i]); return Result; } - template <typename T> - GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) + template<typename T> + GLM_FUNC_QUALIFIER uint float_distance(T const& x, T const& y) { uint ulp = 0; if(x < y) { T temp = x; - while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max()) + while(glm::epsilonNotEqual(temp, y, glm::epsilon<T>()))// && ulp < std::numeric_limits<std::size_t>::max()) { ++ulp; temp = next_float(temp); @@ -296,7 +314,7 @@ namespace glm else if(y < x) { T temp = y; - while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max()) + while(glm::epsilonNotEqual(temp, x, glm::epsilon<T>()))// && ulp < std::numeric_limits<std::size_t>::max()) { ++ulp; temp = next_float(temp); @@ -310,10 +328,10 @@ namespace glm return ulp; } - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y) + template<length_t L, typename T, qualifier Q> + GLM_FUNC_QUALIFIER vec<L, uint, Q> float_distance(vec<L, T, Q> const& x, vec<L, T, Q> const& y) { - vecType<uint, P> Result(uninitialize); + vec<L, uint, Q> Result; for(length_t i = 0, n = Result.length(); i < n; ++i) Result[i] = float_distance(x[i], y[i]); return Result; diff --git a/external/include/glm/gtc/vec1.hpp b/external/include/glm/gtc/vec1.hpp index f84ff97..44da3ab 100644 --- a/external/include/glm/gtc/vec1.hpp +++ b/external/include/glm/gtc/vec1.hpp @@ -5,160 +5,18 @@ /// /// @defgroup gtc_vec1 GLM_GTC_vec1 /// @ingroup gtc -/// -/// @brief Add vec1, ivec1, uvec1 and bvec1 types. -/// <glm/gtc/vec1.hpp> need to be included to use these functionalities. +/// +/// Include <glm/gtc/vec1.hpp> to use the features of this extension. +/// +/// Add vec1, ivec1, uvec1 and bvec1 types. #pragma once // Dependency: -#include "../glm.hpp" -#include "../detail/type_vec1.hpp" +#include "../ext/vec1.hpp" #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTC_vec1 extension included") #endif -namespace glm -{ - /// 1 component vector of high precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_vec1_t highp_vec1; - - /// 1 component vector of medium precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_vec1_t mediump_vec1; - - /// 1 component vector of low precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_vec1_t lowp_vec1; - - /// 1 component vector of high precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_dvec1_t highp_dvec1; - - /// 1 component vector of medium precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_dvec1_t mediump_dvec1; - - /// 1 component vector of low precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_dvec1_t lowp_dvec1; - - /// 1 component vector of high precision signed integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_ivec1_t highp_ivec1; - - /// 1 component vector of medium precision signed integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_ivec1_t mediump_ivec1; - - /// 1 component vector of low precision signed integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_ivec1_t lowp_ivec1; - - /// 1 component vector of high precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_uvec1_t highp_uvec1; - - /// 1 component vector of medium precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_uvec1_t mediump_uvec1; - - /// 1 component vector of low precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_uvec1_t lowp_uvec1; - - /// 1 component vector of high precision boolean. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_bvec1_t highp_bvec1; - - /// 1 component vector of medium precision boolean. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_bvec1_t mediump_bvec1; - - /// 1 component vector of low precision boolean. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_bvec1_t lowp_bvec1; - - ////////////////////////// - // vec1 definition - -#if(defined(GLM_PRECISION_HIGHP_BOOL)) - typedef highp_bvec1 bvec1; -#elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) - typedef mediump_bvec1 bvec1; -#elif(defined(GLM_PRECISION_LOWP_BOOL)) - typedef lowp_bvec1 bvec1; -#else - /// 1 component vector of boolean. - /// @see gtc_vec1 extension. - typedef highp_bvec1 bvec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_FLOAT)) - typedef highp_vec1 vec1; -#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) - typedef mediump_vec1 vec1; -#elif(defined(GLM_PRECISION_LOWP_FLOAT)) - typedef lowp_vec1 vec1; -#else - /// 1 component vector of floating-point numbers. - /// @see gtc_vec1 extension. - typedef highp_vec1 vec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_DOUBLE)) - typedef highp_dvec1 dvec1; -#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) - typedef mediump_dvec1 dvec1; -#elif(defined(GLM_PRECISION_LOWP_DOUBLE)) - typedef lowp_dvec1 dvec1; -#else - /// 1 component vector of floating-point numbers. - /// @see gtc_vec1 extension. - typedef highp_dvec1 dvec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_INT)) - typedef highp_ivec1 ivec1; -#elif(defined(GLM_PRECISION_MEDIUMP_INT)) - typedef mediump_ivec1 ivec1; -#elif(defined(GLM_PRECISION_LOWP_INT)) - typedef lowp_ivec1 ivec1; -#else - /// 1 component vector of signed integer numbers. - /// @see gtc_vec1 extension. - typedef highp_ivec1 ivec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_UINT)) - typedef highp_uvec1 uvec1; -#elif(defined(GLM_PRECISION_MEDIUMP_UINT)) - typedef mediump_uvec1 uvec1; -#elif(defined(GLM_PRECISION_LOWP_UINT)) - typedef lowp_uvec1 uvec1; -#else - /// 1 component vector of unsigned integer numbers. - /// @see gtc_vec1 extension. - typedef highp_uvec1 uvec1; -#endif//GLM_PRECISION - -}// namespace glm - #include "vec1.inl" diff --git a/external/include/glm/gtc/functions.inl b/external/include/glm/gtx/functions.inl index 1dbc496..ac1e112 100644 --- a/external/include/glm/gtc/functions.inl +++ b/external/include/glm/gtx/functions.inl @@ -1,11 +1,11 @@ -/// @ref gtc_functions -/// @file glm/gtc/functions.inl +/// @ref gtx_functions +/// @file glm/gtx/functions.inl -#include "../detail/func_exponential.hpp" +#include "../exponential.hpp" namespace glm { - template <typename T> + template<typename T> GLM_FUNC_QUALIFIER T gauss ( T x, @@ -16,15 +16,15 @@ namespace glm return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast<T>(6.28318530717958647692528676655900576))); } - template <typename T, precision P> + template<typename T, qualifier Q> GLM_FUNC_QUALIFIER T gauss ( - tvec2<T, P> const& Coord, - tvec2<T, P> const& ExpectedValue, - tvec2<T, P> const& StandardDeviation + vec<2, T, Q> const& Coord, + vec<2, T, Q> const& ExpectedValue, + vec<2, T, Q> const& StandardDeviation ) { - tvec2<T, P> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation); + vec<2, T, Q> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation); return exp(-(Squared.x + Squared.y)); } }//namespace glm |